Properties

 Label 567.2.f.j Level $567$ Weight $2$ Character orbit 567.f Analytic conductor $4.528$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$567 = 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 567.f (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$4.52751779461$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$3$$ Twist minimal: no (minimal twist has level 63) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{2} + ( -1 + \zeta_{12}^{2} ) q^{4} + ( 2 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{5} -\zeta_{12}^{2} q^{7} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{8} +O(q^{10})$$ $$q + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{2} + ( -1 + \zeta_{12}^{2} ) q^{4} + ( 2 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{5} -\zeta_{12}^{2} q^{7} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{8} -6 q^{10} + ( -2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{11} + ( -2 + 2 \zeta_{12}^{2} ) q^{13} + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{14} + 5 \zeta_{12}^{2} q^{16} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{17} -4 q^{19} + ( 2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{20} + ( -6 + 6 \zeta_{12}^{2} ) q^{22} + ( 2 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{23} -7 \zeta_{12}^{2} q^{25} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{26} + q^{28} + ( 4 - 4 \zeta_{12}^{2} ) q^{31} + ( 3 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{32} -6 \zeta_{12}^{2} q^{34} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{35} + 2 q^{37} + ( 4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{38} + ( -6 + 6 \zeta_{12}^{2} ) q^{40} + ( -6 \zeta_{12} + 12 \zeta_{12}^{3} ) q^{41} + 4 \zeta_{12}^{2} q^{43} + ( 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{44} -6 q^{46} + ( -4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{47} + ( -1 + \zeta_{12}^{2} ) q^{49} + ( -7 \zeta_{12} + 14 \zeta_{12}^{3} ) q^{50} -2 \zeta_{12}^{2} q^{52} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{53} -12 q^{55} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{56} + ( 4 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{59} + 10 \zeta_{12}^{2} q^{61} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{62} + q^{64} + ( 4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{65} + ( 4 - 4 \zeta_{12}^{2} ) q^{67} + ( -2 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{68} + 6 \zeta_{12}^{2} q^{70} + ( -12 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{71} + 14 q^{73} + ( -2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{74} + ( 4 - 4 \zeta_{12}^{2} ) q^{76} + ( -2 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{77} -8 \zeta_{12}^{2} q^{79} + ( 20 \zeta_{12} - 10 \zeta_{12}^{3} ) q^{80} + 18 q^{82} + ( 12 - 12 \zeta_{12}^{2} ) q^{85} + ( 4 \zeta_{12} - 8 \zeta_{12}^{3} ) q^{86} + 6 \zeta_{12}^{2} q^{88} + ( -4 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{89} + 2 q^{91} + ( 2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{92} + ( -12 + 12 \zeta_{12}^{2} ) q^{94} + ( -8 \zeta_{12} + 16 \zeta_{12}^{3} ) q^{95} -14 \zeta_{12}^{2} q^{97} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 2q^{4} - 2q^{7} + O(q^{10})$$ $$4q - 2q^{4} - 2q^{7} - 24q^{10} - 4q^{13} + 10q^{16} - 16q^{19} - 12q^{22} - 14q^{25} + 4q^{28} + 8q^{31} - 12q^{34} + 8q^{37} - 12q^{40} + 8q^{43} - 24q^{46} - 2q^{49} - 4q^{52} - 48q^{55} + 20q^{61} + 4q^{64} + 8q^{67} + 12q^{70} + 56q^{73} + 8q^{76} - 16q^{79} + 72q^{82} + 24q^{85} + 12q^{88} + 8q^{91} - 24q^{94} - 28q^{97} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/567\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$407$$ $$\chi(n)$$ $$1$$ $$-1 + \zeta_{12}$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
190.1
 0.866025 + 0.500000i −0.866025 − 0.500000i 0.866025 − 0.500000i −0.866025 + 0.500000i
−0.866025 1.50000i 0 −0.500000 + 0.866025i 1.73205 3.00000i 0 −0.500000 0.866025i −1.73205 0 −6.00000
190.2 0.866025 + 1.50000i 0 −0.500000 + 0.866025i −1.73205 + 3.00000i 0 −0.500000 0.866025i 1.73205 0 −6.00000
379.1 −0.866025 + 1.50000i 0 −0.500000 0.866025i 1.73205 + 3.00000i 0 −0.500000 + 0.866025i −1.73205 0 −6.00000
379.2 0.866025 1.50000i 0 −0.500000 0.866025i −1.73205 3.00000i 0 −0.500000 + 0.866025i 1.73205 0 −6.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.2.f.j 4
3.b odd 2 1 inner 567.2.f.j 4
9.c even 3 1 63.2.a.b 2
9.c even 3 1 inner 567.2.f.j 4
9.d odd 6 1 63.2.a.b 2
9.d odd 6 1 inner 567.2.f.j 4
36.f odd 6 1 1008.2.a.n 2
36.h even 6 1 1008.2.a.n 2
45.h odd 6 1 1575.2.a.q 2
45.j even 6 1 1575.2.a.q 2
45.k odd 12 2 1575.2.d.i 4
45.l even 12 2 1575.2.d.i 4
63.g even 3 1 441.2.e.j 4
63.h even 3 1 441.2.e.j 4
63.i even 6 1 441.2.e.i 4
63.j odd 6 1 441.2.e.j 4
63.k odd 6 1 441.2.e.i 4
63.l odd 6 1 441.2.a.g 2
63.n odd 6 1 441.2.e.j 4
63.o even 6 1 441.2.a.g 2
63.s even 6 1 441.2.e.i 4
63.t odd 6 1 441.2.e.i 4
72.j odd 6 1 4032.2.a.bt 2
72.l even 6 1 4032.2.a.bq 2
72.n even 6 1 4032.2.a.bt 2
72.p odd 6 1 4032.2.a.bq 2
99.g even 6 1 7623.2.a.bi 2
99.h odd 6 1 7623.2.a.bi 2
252.s odd 6 1 7056.2.a.cm 2
252.bi even 6 1 7056.2.a.cm 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.a.b 2 9.c even 3 1
63.2.a.b 2 9.d odd 6 1
441.2.a.g 2 63.l odd 6 1
441.2.a.g 2 63.o even 6 1
441.2.e.i 4 63.i even 6 1
441.2.e.i 4 63.k odd 6 1
441.2.e.i 4 63.s even 6 1
441.2.e.i 4 63.t odd 6 1
441.2.e.j 4 63.g even 3 1
441.2.e.j 4 63.h even 3 1
441.2.e.j 4 63.j odd 6 1
441.2.e.j 4 63.n odd 6 1
567.2.f.j 4 1.a even 1 1 trivial
567.2.f.j 4 3.b odd 2 1 inner
567.2.f.j 4 9.c even 3 1 inner
567.2.f.j 4 9.d odd 6 1 inner
1008.2.a.n 2 36.f odd 6 1
1008.2.a.n 2 36.h even 6 1
1575.2.a.q 2 45.h odd 6 1
1575.2.a.q 2 45.j even 6 1
1575.2.d.i 4 45.k odd 12 2
1575.2.d.i 4 45.l even 12 2
4032.2.a.bq 2 72.l even 6 1
4032.2.a.bq 2 72.p odd 6 1
4032.2.a.bt 2 72.j odd 6 1
4032.2.a.bt 2 72.n even 6 1
7056.2.a.cm 2 252.s odd 6 1
7056.2.a.cm 2 252.bi even 6 1
7623.2.a.bi 2 99.g even 6 1
7623.2.a.bi 2 99.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(567, [\chi])$$:

 $$T_{2}^{4} + 3 T_{2}^{2} + 9$$ $$T_{5}^{4} + 12 T_{5}^{2} + 144$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$9 + 3 T^{2} + T^{4}$$
$3$ $$T^{4}$$
$5$ $$144 + 12 T^{2} + T^{4}$$
$7$ $$( 1 + T + T^{2} )^{2}$$
$11$ $$144 + 12 T^{2} + T^{4}$$
$13$ $$( 4 + 2 T + T^{2} )^{2}$$
$17$ $$( -12 + T^{2} )^{2}$$
$19$ $$( 4 + T )^{4}$$
$23$ $$144 + 12 T^{2} + T^{4}$$
$29$ $$T^{4}$$
$31$ $$( 16 - 4 T + T^{2} )^{2}$$
$37$ $$( -2 + T )^{4}$$
$41$ $$11664 + 108 T^{2} + T^{4}$$
$43$ $$( 16 - 4 T + T^{2} )^{2}$$
$47$ $$2304 + 48 T^{2} + T^{4}$$
$53$ $$( -48 + T^{2} )^{2}$$
$59$ $$2304 + 48 T^{2} + T^{4}$$
$61$ $$( 100 - 10 T + T^{2} )^{2}$$
$67$ $$( 16 - 4 T + T^{2} )^{2}$$
$71$ $$( -108 + T^{2} )^{2}$$
$73$ $$( -14 + T )^{4}$$
$79$ $$( 64 + 8 T + T^{2} )^{2}$$
$83$ $$T^{4}$$
$89$ $$( -12 + T^{2} )^{2}$$
$97$ $$( 196 + 14 T + T^{2} )^{2}$$