Properties

Label 567.2.f.b
Level $567$
Weight $2$
Character orbit 567.f
Analytic conductor $4.528$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(190,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.190"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,1,-2,0,1,-6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + \zeta_{6} q^{4} - 2 \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} - 3 q^{8} + 2 q^{10} + ( - 4 \zeta_{6} + 4) q^{11} + 2 \zeta_{6} q^{13} + \zeta_{6} q^{14} + ( - \zeta_{6} + 1) q^{16} + \cdots + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} - 2 q^{5} + q^{7} - 6 q^{8} + 4 q^{10} + 4 q^{11} + 2 q^{13} + q^{14} + q^{16} + 12 q^{17} + 8 q^{19} + 2 q^{20} + 4 q^{22} + q^{25} - 4 q^{26} + 2 q^{28} - 2 q^{29} - 5 q^{32}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
190.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 0.500000 0.866025i −1.00000 + 1.73205i 0 0.500000 + 0.866025i −3.00000 0 2.00000
379.1 −0.500000 + 0.866025i 0 0.500000 + 0.866025i −1.00000 1.73205i 0 0.500000 0.866025i −3.00000 0 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.2.f.b 2
3.b odd 2 1 567.2.f.g 2
9.c even 3 1 63.2.a.a 1
9.c even 3 1 inner 567.2.f.b 2
9.d odd 6 1 21.2.a.a 1
9.d odd 6 1 567.2.f.g 2
36.f odd 6 1 1008.2.a.l 1
36.h even 6 1 336.2.a.a 1
45.h odd 6 1 525.2.a.d 1
45.j even 6 1 1575.2.a.c 1
45.k odd 12 2 1575.2.d.a 2
45.l even 12 2 525.2.d.a 2
63.g even 3 1 441.2.e.a 2
63.h even 3 1 441.2.e.a 2
63.i even 6 1 147.2.e.c 2
63.j odd 6 1 147.2.e.b 2
63.k odd 6 1 441.2.e.b 2
63.l odd 6 1 441.2.a.f 1
63.n odd 6 1 147.2.e.b 2
63.o even 6 1 147.2.a.a 1
63.s even 6 1 147.2.e.c 2
63.t odd 6 1 441.2.e.b 2
72.j odd 6 1 1344.2.a.g 1
72.l even 6 1 1344.2.a.s 1
72.n even 6 1 4032.2.a.h 1
72.p odd 6 1 4032.2.a.k 1
99.g even 6 1 2541.2.a.j 1
99.h odd 6 1 7623.2.a.g 1
117.n odd 6 1 3549.2.a.c 1
144.u even 12 2 5376.2.c.l 2
144.w odd 12 2 5376.2.c.r 2
153.i odd 6 1 6069.2.a.b 1
171.l even 6 1 7581.2.a.d 1
180.n even 6 1 8400.2.a.bn 1
252.o even 6 1 2352.2.q.x 2
252.r odd 6 1 2352.2.q.e 2
252.s odd 6 1 2352.2.a.v 1
252.bb even 6 1 2352.2.q.x 2
252.bi even 6 1 7056.2.a.p 1
252.bn odd 6 1 2352.2.q.e 2
315.z even 6 1 3675.2.a.n 1
504.cc even 6 1 9408.2.a.bv 1
504.co odd 6 1 9408.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
21.2.a.a 1 9.d odd 6 1
63.2.a.a 1 9.c even 3 1
147.2.a.a 1 63.o even 6 1
147.2.e.b 2 63.j odd 6 1
147.2.e.b 2 63.n odd 6 1
147.2.e.c 2 63.i even 6 1
147.2.e.c 2 63.s even 6 1
336.2.a.a 1 36.h even 6 1
441.2.a.f 1 63.l odd 6 1
441.2.e.a 2 63.g even 3 1
441.2.e.a 2 63.h even 3 1
441.2.e.b 2 63.k odd 6 1
441.2.e.b 2 63.t odd 6 1
525.2.a.d 1 45.h odd 6 1
525.2.d.a 2 45.l even 12 2
567.2.f.b 2 1.a even 1 1 trivial
567.2.f.b 2 9.c even 3 1 inner
567.2.f.g 2 3.b odd 2 1
567.2.f.g 2 9.d odd 6 1
1008.2.a.l 1 36.f odd 6 1
1344.2.a.g 1 72.j odd 6 1
1344.2.a.s 1 72.l even 6 1
1575.2.a.c 1 45.j even 6 1
1575.2.d.a 2 45.k odd 12 2
2352.2.a.v 1 252.s odd 6 1
2352.2.q.e 2 252.r odd 6 1
2352.2.q.e 2 252.bn odd 6 1
2352.2.q.x 2 252.o even 6 1
2352.2.q.x 2 252.bb even 6 1
2541.2.a.j 1 99.g even 6 1
3549.2.a.c 1 117.n odd 6 1
3675.2.a.n 1 315.z even 6 1
4032.2.a.h 1 72.n even 6 1
4032.2.a.k 1 72.p odd 6 1
5376.2.c.l 2 144.u even 12 2
5376.2.c.r 2 144.w odd 12 2
6069.2.a.b 1 153.i odd 6 1
7056.2.a.p 1 252.bi even 6 1
7581.2.a.d 1 171.l even 6 1
7623.2.a.g 1 99.h odd 6 1
8400.2.a.bn 1 180.n even 6 1
9408.2.a.m 1 504.co odd 6 1
9408.2.a.bv 1 504.cc even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(567, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 2T_{5} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$13$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$17$ \( (T - 6)^{2} \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 6)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 16T + 256 \) Copy content Toggle raw display
$83$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$89$ \( (T - 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 18T + 324 \) Copy content Toggle raw display
show more
show less