Properties

Label 5625.2.a.y.1.3
Level $5625$
Weight $2$
Character 5625.1
Self dual yes
Analytic conductor $44.916$
Analytic rank $1$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5625,2,Mod(1,5625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5625, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5625.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5625 = 3^{2} \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5625.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,14,0,0,-10,0,0,0,0,0,-10,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(16)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.9158511370\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.46980000000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 15x^{6} + 80x^{4} - 180x^{2} + 145 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.63148\) of defining polynomial
Character \(\chi\) \(=\) 5625.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.63148 q^{2} +0.661739 q^{4} +1.44512 q^{7} +2.18335 q^{8} +0.797518 q^{11} -3.02701 q^{13} -2.35770 q^{14} -4.88558 q^{16} -0.282098 q^{17} +2.88558 q^{19} -1.30114 q^{22} +3.47376 q^{23} +4.93852 q^{26} +0.956295 q^{28} -7.73271 q^{29} +2.38761 q^{31} +3.60404 q^{32} +0.460239 q^{34} -4.64195 q^{37} -4.70778 q^{38} +8.42719 q^{41} -6.07985 q^{43} +0.527748 q^{44} -5.66739 q^{46} +1.16013 q^{47} -4.91161 q^{49} -2.00309 q^{52} -11.7932 q^{53} +3.15522 q^{56} +12.6158 q^{58} +12.2420 q^{59} -0.868886 q^{61} -3.89535 q^{62} +3.89123 q^{64} -11.3892 q^{67} -0.186675 q^{68} +4.63389 q^{71} -10.8327 q^{73} +7.57327 q^{74} +1.90950 q^{76} +1.15251 q^{77} -4.73501 q^{79} -13.7488 q^{82} +16.6753 q^{83} +9.91918 q^{86} +1.74126 q^{88} -16.2163 q^{89} -4.37441 q^{91} +2.29872 q^{92} -1.89274 q^{94} -10.8409 q^{97} +8.01322 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 14 q^{4} - 10 q^{7} - 10 q^{13} - 18 q^{16} + 2 q^{19} - 20 q^{22} - 10 q^{28} + 4 q^{31} + 50 q^{34} - 50 q^{43} - 30 q^{46} - 6 q^{49} - 30 q^{52} - 60 q^{58} + 46 q^{61} - 14 q^{64} - 40 q^{67}+ \cdots - 50 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.63148 −1.15363 −0.576817 0.816874i \(-0.695705\pi\)
−0.576817 + 0.816874i \(0.695705\pi\)
\(3\) 0 0
\(4\) 0.661739 0.330869
\(5\) 0 0
\(6\) 0 0
\(7\) 1.44512 0.546206 0.273103 0.961985i \(-0.411950\pi\)
0.273103 + 0.961985i \(0.411950\pi\)
\(8\) 2.18335 0.771931
\(9\) 0 0
\(10\) 0 0
\(11\) 0.797518 0.240461 0.120230 0.992746i \(-0.461637\pi\)
0.120230 + 0.992746i \(0.461637\pi\)
\(12\) 0 0
\(13\) −3.02701 −0.839542 −0.419771 0.907630i \(-0.637890\pi\)
−0.419771 + 0.907630i \(0.637890\pi\)
\(14\) −2.35770 −0.630121
\(15\) 0 0
\(16\) −4.88558 −1.22139
\(17\) −0.282098 −0.0684189 −0.0342094 0.999415i \(-0.510891\pi\)
−0.0342094 + 0.999415i \(0.510891\pi\)
\(18\) 0 0
\(19\) 2.88558 0.661997 0.330999 0.943631i \(-0.392614\pi\)
0.330999 + 0.943631i \(0.392614\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.30114 −0.277403
\(23\) 3.47376 0.724329 0.362165 0.932114i \(-0.382038\pi\)
0.362165 + 0.932114i \(0.382038\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.93852 0.968523
\(27\) 0 0
\(28\) 0.956295 0.180723
\(29\) −7.73271 −1.43593 −0.717964 0.696080i \(-0.754926\pi\)
−0.717964 + 0.696080i \(0.754926\pi\)
\(30\) 0 0
\(31\) 2.38761 0.428828 0.214414 0.976743i \(-0.431216\pi\)
0.214414 + 0.976743i \(0.431216\pi\)
\(32\) 3.60404 0.637110
\(33\) 0 0
\(34\) 0.460239 0.0789303
\(35\) 0 0
\(36\) 0 0
\(37\) −4.64195 −0.763133 −0.381566 0.924341i \(-0.624615\pi\)
−0.381566 + 0.924341i \(0.624615\pi\)
\(38\) −4.70778 −0.763702
\(39\) 0 0
\(40\) 0 0
\(41\) 8.42719 1.31611 0.658053 0.752972i \(-0.271380\pi\)
0.658053 + 0.752972i \(0.271380\pi\)
\(42\) 0 0
\(43\) −6.07985 −0.927169 −0.463584 0.886053i \(-0.653437\pi\)
−0.463584 + 0.886053i \(0.653437\pi\)
\(44\) 0.527748 0.0795611
\(45\) 0 0
\(46\) −5.66739 −0.835610
\(47\) 1.16013 0.169223 0.0846114 0.996414i \(-0.473035\pi\)
0.0846114 + 0.996414i \(0.473035\pi\)
\(48\) 0 0
\(49\) −4.91161 −0.701659
\(50\) 0 0
\(51\) 0 0
\(52\) −2.00309 −0.277779
\(53\) −11.7932 −1.61992 −0.809960 0.586485i \(-0.800511\pi\)
−0.809960 + 0.586485i \(0.800511\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 3.15522 0.421633
\(57\) 0 0
\(58\) 12.6158 1.65653
\(59\) 12.2420 1.59378 0.796888 0.604127i \(-0.206478\pi\)
0.796888 + 0.604127i \(0.206478\pi\)
\(60\) 0 0
\(61\) −0.868886 −0.111249 −0.0556247 0.998452i \(-0.517715\pi\)
−0.0556247 + 0.998452i \(0.517715\pi\)
\(62\) −3.89535 −0.494710
\(63\) 0 0
\(64\) 3.89123 0.486403
\(65\) 0 0
\(66\) 0 0
\(67\) −11.3892 −1.39141 −0.695706 0.718327i \(-0.744908\pi\)
−0.695706 + 0.718327i \(0.744908\pi\)
\(68\) −0.186675 −0.0226377
\(69\) 0 0
\(70\) 0 0
\(71\) 4.63389 0.549942 0.274971 0.961453i \(-0.411332\pi\)
0.274971 + 0.961453i \(0.411332\pi\)
\(72\) 0 0
\(73\) −10.8327 −1.26788 −0.633938 0.773384i \(-0.718563\pi\)
−0.633938 + 0.773384i \(0.718563\pi\)
\(74\) 7.57327 0.880375
\(75\) 0 0
\(76\) 1.90950 0.219035
\(77\) 1.15251 0.131341
\(78\) 0 0
\(79\) −4.73501 −0.532730 −0.266365 0.963872i \(-0.585823\pi\)
−0.266365 + 0.963872i \(0.585823\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −13.7488 −1.51830
\(83\) 16.6753 1.83035 0.915177 0.403052i \(-0.132051\pi\)
0.915177 + 0.403052i \(0.132051\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 9.91918 1.06961
\(87\) 0 0
\(88\) 1.74126 0.185619
\(89\) −16.2163 −1.71892 −0.859462 0.511200i \(-0.829201\pi\)
−0.859462 + 0.511200i \(0.829201\pi\)
\(90\) 0 0
\(91\) −4.37441 −0.458563
\(92\) 2.29872 0.239658
\(93\) 0 0
\(94\) −1.89274 −0.195221
\(95\) 0 0
\(96\) 0 0
\(97\) −10.8409 −1.10073 −0.550363 0.834925i \(-0.685511\pi\)
−0.550363 + 0.834925i \(0.685511\pi\)
\(98\) 8.01322 0.809457
\(99\) 0 0
\(100\) 0 0
\(101\) 5.97095 0.594132 0.297066 0.954857i \(-0.403992\pi\)
0.297066 + 0.954857i \(0.403992\pi\)
\(102\) 0 0
\(103\) 8.38631 0.826327 0.413164 0.910657i \(-0.364424\pi\)
0.413164 + 0.910657i \(0.364424\pi\)
\(104\) −6.60903 −0.648069
\(105\) 0 0
\(106\) 19.2404 1.86879
\(107\) −10.0314 −0.969775 −0.484888 0.874576i \(-0.661140\pi\)
−0.484888 + 0.874576i \(0.661140\pi\)
\(108\) 0 0
\(109\) −3.57433 −0.342359 −0.171179 0.985240i \(-0.554758\pi\)
−0.171179 + 0.985240i \(0.554758\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.06027 −0.667133
\(113\) −10.3012 −0.969056 −0.484528 0.874776i \(-0.661009\pi\)
−0.484528 + 0.874776i \(0.661009\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −5.11704 −0.475105
\(117\) 0 0
\(118\) −19.9727 −1.83863
\(119\) −0.407667 −0.0373708
\(120\) 0 0
\(121\) −10.3640 −0.942179
\(122\) 1.41757 0.128341
\(123\) 0 0
\(124\) 1.57998 0.141886
\(125\) 0 0
\(126\) 0 0
\(127\) −6.78181 −0.601788 −0.300894 0.953658i \(-0.597285\pi\)
−0.300894 + 0.953658i \(0.597285\pi\)
\(128\) −13.5566 −1.19824
\(129\) 0 0
\(130\) 0 0
\(131\) 20.1690 1.76218 0.881088 0.472952i \(-0.156812\pi\)
0.881088 + 0.472952i \(0.156812\pi\)
\(132\) 0 0
\(133\) 4.17002 0.361587
\(134\) 18.5813 1.60518
\(135\) 0 0
\(136\) −0.615920 −0.0528147
\(137\) 11.2562 0.961685 0.480843 0.876807i \(-0.340331\pi\)
0.480843 + 0.876807i \(0.340331\pi\)
\(138\) 0 0
\(139\) −7.73034 −0.655679 −0.327839 0.944733i \(-0.606321\pi\)
−0.327839 + 0.944733i \(0.606321\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −7.56012 −0.634431
\(143\) −2.41409 −0.201877
\(144\) 0 0
\(145\) 0 0
\(146\) 17.6734 1.46266
\(147\) 0 0
\(148\) −3.07176 −0.252497
\(149\) 7.96312 0.652364 0.326182 0.945307i \(-0.394238\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(150\) 0 0
\(151\) 20.0043 1.62793 0.813965 0.580914i \(-0.197305\pi\)
0.813965 + 0.580914i \(0.197305\pi\)
\(152\) 6.30023 0.511016
\(153\) 0 0
\(154\) −1.88031 −0.151519
\(155\) 0 0
\(156\) 0 0
\(157\) 5.40707 0.431531 0.215765 0.976445i \(-0.430775\pi\)
0.215765 + 0.976445i \(0.430775\pi\)
\(158\) 7.72509 0.614575
\(159\) 0 0
\(160\) 0 0
\(161\) 5.02002 0.395633
\(162\) 0 0
\(163\) −5.96446 −0.467172 −0.233586 0.972336i \(-0.575046\pi\)
−0.233586 + 0.972336i \(0.575046\pi\)
\(164\) 5.57660 0.435459
\(165\) 0 0
\(166\) −27.2055 −2.11156
\(167\) −8.52261 −0.659499 −0.329750 0.944068i \(-0.606964\pi\)
−0.329750 + 0.944068i \(0.606964\pi\)
\(168\) 0 0
\(169\) −3.83720 −0.295170
\(170\) 0 0
\(171\) 0 0
\(172\) −4.02327 −0.306772
\(173\) 7.42809 0.564747 0.282374 0.959305i \(-0.408878\pi\)
0.282374 + 0.959305i \(0.408878\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.89634 −0.293697
\(177\) 0 0
\(178\) 26.4566 1.98301
\(179\) −20.7650 −1.55205 −0.776023 0.630704i \(-0.782766\pi\)
−0.776023 + 0.630704i \(0.782766\pi\)
\(180\) 0 0
\(181\) 19.7654 1.46915 0.734575 0.678528i \(-0.237382\pi\)
0.734575 + 0.678528i \(0.237382\pi\)
\(182\) 7.13678 0.529013
\(183\) 0 0
\(184\) 7.58444 0.559133
\(185\) 0 0
\(186\) 0 0
\(187\) −0.224978 −0.0164521
\(188\) 0.767705 0.0559906
\(189\) 0 0
\(190\) 0 0
\(191\) 16.8195 1.21702 0.608509 0.793547i \(-0.291768\pi\)
0.608509 + 0.793547i \(0.291768\pi\)
\(192\) 0 0
\(193\) −20.1885 −1.45320 −0.726602 0.687059i \(-0.758901\pi\)
−0.726602 + 0.687059i \(0.758901\pi\)
\(194\) 17.6867 1.26983
\(195\) 0 0
\(196\) −3.25021 −0.232158
\(197\) −12.3010 −0.876410 −0.438205 0.898875i \(-0.644386\pi\)
−0.438205 + 0.898875i \(0.644386\pi\)
\(198\) 0 0
\(199\) 19.6340 1.39182 0.695909 0.718130i \(-0.255002\pi\)
0.695909 + 0.718130i \(0.255002\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −9.74151 −0.685410
\(203\) −11.1747 −0.784313
\(204\) 0 0
\(205\) 0 0
\(206\) −13.6821 −0.953279
\(207\) 0 0
\(208\) 14.7887 1.02541
\(209\) 2.30130 0.159184
\(210\) 0 0
\(211\) 7.55552 0.520144 0.260072 0.965589i \(-0.416254\pi\)
0.260072 + 0.965589i \(0.416254\pi\)
\(212\) −7.80402 −0.535982
\(213\) 0 0
\(214\) 16.3661 1.11877
\(215\) 0 0
\(216\) 0 0
\(217\) 3.45040 0.234228
\(218\) 5.83146 0.394956
\(219\) 0 0
\(220\) 0 0
\(221\) 0.853915 0.0574405
\(222\) 0 0
\(223\) −1.60772 −0.107661 −0.0538303 0.998550i \(-0.517143\pi\)
−0.0538303 + 0.998550i \(0.517143\pi\)
\(224\) 5.20829 0.347993
\(225\) 0 0
\(226\) 16.8062 1.11793
\(227\) 5.53703 0.367506 0.183753 0.982972i \(-0.441175\pi\)
0.183753 + 0.982972i \(0.441175\pi\)
\(228\) 0 0
\(229\) 12.3562 0.816521 0.408260 0.912865i \(-0.366136\pi\)
0.408260 + 0.912865i \(0.366136\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −16.8832 −1.10844
\(233\) 6.66543 0.436667 0.218333 0.975874i \(-0.429938\pi\)
0.218333 + 0.975874i \(0.429938\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 8.10102 0.527332
\(237\) 0 0
\(238\) 0.665103 0.0431122
\(239\) −5.71449 −0.369640 −0.184820 0.982772i \(-0.559170\pi\)
−0.184820 + 0.982772i \(0.559170\pi\)
\(240\) 0 0
\(241\) −21.1134 −1.36003 −0.680016 0.733198i \(-0.738027\pi\)
−0.680016 + 0.733198i \(0.738027\pi\)
\(242\) 16.9086 1.08693
\(243\) 0 0
\(244\) −0.574975 −0.0368090
\(245\) 0 0
\(246\) 0 0
\(247\) −8.73468 −0.555774
\(248\) 5.21300 0.331026
\(249\) 0 0
\(250\) 0 0
\(251\) 7.39926 0.467037 0.233519 0.972352i \(-0.424976\pi\)
0.233519 + 0.972352i \(0.424976\pi\)
\(252\) 0 0
\(253\) 2.77039 0.174173
\(254\) 11.0644 0.694243
\(255\) 0 0
\(256\) 14.3348 0.895928
\(257\) −7.27627 −0.453881 −0.226941 0.973909i \(-0.572872\pi\)
−0.226941 + 0.973909i \(0.572872\pi\)
\(258\) 0 0
\(259\) −6.70820 −0.416828
\(260\) 0 0
\(261\) 0 0
\(262\) −32.9054 −2.03290
\(263\) −8.62308 −0.531722 −0.265861 0.964011i \(-0.585656\pi\)
−0.265861 + 0.964011i \(0.585656\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −6.80332 −0.417139
\(267\) 0 0
\(268\) −7.53667 −0.460375
\(269\) −11.3763 −0.693626 −0.346813 0.937934i \(-0.612736\pi\)
−0.346813 + 0.937934i \(0.612736\pi\)
\(270\) 0 0
\(271\) −13.6887 −0.831532 −0.415766 0.909472i \(-0.636487\pi\)
−0.415766 + 0.909472i \(0.636487\pi\)
\(272\) 1.37821 0.0835665
\(273\) 0 0
\(274\) −18.3644 −1.10943
\(275\) 0 0
\(276\) 0 0
\(277\) −26.4969 −1.59204 −0.796022 0.605267i \(-0.793066\pi\)
−0.796022 + 0.605267i \(0.793066\pi\)
\(278\) 12.6119 0.756413
\(279\) 0 0
\(280\) 0 0
\(281\) 11.1577 0.665612 0.332806 0.942995i \(-0.392005\pi\)
0.332806 + 0.942995i \(0.392005\pi\)
\(282\) 0 0
\(283\) 23.7714 1.41306 0.706532 0.707681i \(-0.250258\pi\)
0.706532 + 0.707681i \(0.250258\pi\)
\(284\) 3.06643 0.181959
\(285\) 0 0
\(286\) 3.93856 0.232892
\(287\) 12.1783 0.718865
\(288\) 0 0
\(289\) −16.9204 −0.995319
\(290\) 0 0
\(291\) 0 0
\(292\) −7.16844 −0.419501
\(293\) 0.0928455 0.00542409 0.00271204 0.999996i \(-0.499137\pi\)
0.00271204 + 0.999996i \(0.499137\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −10.1350 −0.589086
\(297\) 0 0
\(298\) −12.9917 −0.752589
\(299\) −10.5151 −0.608105
\(300\) 0 0
\(301\) −8.78615 −0.506425
\(302\) −32.6368 −1.87803
\(303\) 0 0
\(304\) −14.0977 −0.808560
\(305\) 0 0
\(306\) 0 0
\(307\) −12.5168 −0.714372 −0.357186 0.934033i \(-0.616264\pi\)
−0.357186 + 0.934033i \(0.616264\pi\)
\(308\) 0.762662 0.0434567
\(309\) 0 0
\(310\) 0 0
\(311\) −30.5365 −1.73157 −0.865783 0.500420i \(-0.833179\pi\)
−0.865783 + 0.500420i \(0.833179\pi\)
\(312\) 0 0
\(313\) 13.4428 0.759833 0.379916 0.925021i \(-0.375953\pi\)
0.379916 + 0.925021i \(0.375953\pi\)
\(314\) −8.82154 −0.497828
\(315\) 0 0
\(316\) −3.13334 −0.176264
\(317\) −12.4363 −0.698493 −0.349247 0.937031i \(-0.613562\pi\)
−0.349247 + 0.937031i \(0.613562\pi\)
\(318\) 0 0
\(319\) −6.16697 −0.345284
\(320\) 0 0
\(321\) 0 0
\(322\) −8.19008 −0.456415
\(323\) −0.814017 −0.0452931
\(324\) 0 0
\(325\) 0 0
\(326\) 9.73091 0.538945
\(327\) 0 0
\(328\) 18.3995 1.01594
\(329\) 1.67654 0.0924304
\(330\) 0 0
\(331\) 1.86199 0.102344 0.0511721 0.998690i \(-0.483704\pi\)
0.0511721 + 0.998690i \(0.483704\pi\)
\(332\) 11.0347 0.605608
\(333\) 0 0
\(334\) 13.9045 0.760820
\(335\) 0 0
\(336\) 0 0
\(337\) 11.3165 0.616450 0.308225 0.951313i \(-0.400265\pi\)
0.308225 + 0.951313i \(0.400265\pi\)
\(338\) 6.26034 0.340517
\(339\) 0 0
\(340\) 0 0
\(341\) 1.90416 0.103116
\(342\) 0 0
\(343\) −17.2138 −0.929456
\(344\) −13.2745 −0.715711
\(345\) 0 0
\(346\) −12.1188 −0.651511
\(347\) 25.4682 1.36721 0.683603 0.729854i \(-0.260412\pi\)
0.683603 + 0.729854i \(0.260412\pi\)
\(348\) 0 0
\(349\) 11.2236 0.600787 0.300394 0.953815i \(-0.402882\pi\)
0.300394 + 0.953815i \(0.402882\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.87429 0.153200
\(353\) 13.0338 0.693722 0.346861 0.937917i \(-0.387248\pi\)
0.346861 + 0.937917i \(0.387248\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −10.7310 −0.568739
\(357\) 0 0
\(358\) 33.8777 1.79049
\(359\) −29.5123 −1.55760 −0.778800 0.627273i \(-0.784171\pi\)
−0.778800 + 0.627273i \(0.784171\pi\)
\(360\) 0 0
\(361\) −10.6734 −0.561760
\(362\) −32.2469 −1.69486
\(363\) 0 0
\(364\) −2.89472 −0.151724
\(365\) 0 0
\(366\) 0 0
\(367\) −17.2070 −0.898199 −0.449100 0.893482i \(-0.648255\pi\)
−0.449100 + 0.893482i \(0.648255\pi\)
\(368\) −16.9713 −0.884692
\(369\) 0 0
\(370\) 0 0
\(371\) −17.0426 −0.884810
\(372\) 0 0
\(373\) −16.2030 −0.838957 −0.419479 0.907765i \(-0.637787\pi\)
−0.419479 + 0.907765i \(0.637787\pi\)
\(374\) 0.367049 0.0189796
\(375\) 0 0
\(376\) 2.53298 0.130628
\(377\) 23.4070 1.20552
\(378\) 0 0
\(379\) 28.5047 1.46419 0.732095 0.681203i \(-0.238543\pi\)
0.732095 + 0.681203i \(0.238543\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −27.4408 −1.40399
\(383\) −26.9679 −1.37800 −0.688998 0.724763i \(-0.741949\pi\)
−0.688998 + 0.724763i \(0.741949\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 32.9373 1.67646
\(387\) 0 0
\(388\) −7.17384 −0.364197
\(389\) 6.02735 0.305599 0.152799 0.988257i \(-0.451171\pi\)
0.152799 + 0.988257i \(0.451171\pi\)
\(390\) 0 0
\(391\) −0.979942 −0.0495578
\(392\) −10.7238 −0.541633
\(393\) 0 0
\(394\) 20.0689 1.01106
\(395\) 0 0
\(396\) 0 0
\(397\) −18.4231 −0.924627 −0.462313 0.886717i \(-0.652980\pi\)
−0.462313 + 0.886717i \(0.652980\pi\)
\(398\) −32.0325 −1.60565
\(399\) 0 0
\(400\) 0 0
\(401\) −17.4430 −0.871063 −0.435532 0.900173i \(-0.643440\pi\)
−0.435532 + 0.900173i \(0.643440\pi\)
\(402\) 0 0
\(403\) −7.22733 −0.360019
\(404\) 3.95121 0.196580
\(405\) 0 0
\(406\) 18.2314 0.904809
\(407\) −3.70204 −0.183503
\(408\) 0 0
\(409\) −21.9024 −1.08300 −0.541501 0.840700i \(-0.682144\pi\)
−0.541501 + 0.840700i \(0.682144\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 5.54954 0.273406
\(413\) 17.6913 0.870530
\(414\) 0 0
\(415\) 0 0
\(416\) −10.9095 −0.534881
\(417\) 0 0
\(418\) −3.75453 −0.183640
\(419\) −8.29532 −0.405253 −0.202626 0.979256i \(-0.564948\pi\)
−0.202626 + 0.979256i \(0.564948\pi\)
\(420\) 0 0
\(421\) −11.0805 −0.540028 −0.270014 0.962856i \(-0.587028\pi\)
−0.270014 + 0.962856i \(0.587028\pi\)
\(422\) −12.3267 −0.600055
\(423\) 0 0
\(424\) −25.7487 −1.25047
\(425\) 0 0
\(426\) 0 0
\(427\) −1.25565 −0.0607651
\(428\) −6.63819 −0.320869
\(429\) 0 0
\(430\) 0 0
\(431\) −25.2816 −1.21777 −0.608885 0.793259i \(-0.708383\pi\)
−0.608885 + 0.793259i \(0.708383\pi\)
\(432\) 0 0
\(433\) −6.04358 −0.290436 −0.145218 0.989400i \(-0.546388\pi\)
−0.145218 + 0.989400i \(0.546388\pi\)
\(434\) −5.62927 −0.270214
\(435\) 0 0
\(436\) −2.36527 −0.113276
\(437\) 10.0238 0.479504
\(438\) 0 0
\(439\) −18.0624 −0.862073 −0.431036 0.902335i \(-0.641852\pi\)
−0.431036 + 0.902335i \(0.641852\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.39315 −0.0662653
\(443\) 12.8138 0.608804 0.304402 0.952544i \(-0.401543\pi\)
0.304402 + 0.952544i \(0.401543\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.62296 0.124201
\(447\) 0 0
\(448\) 5.62331 0.265676
\(449\) −34.9139 −1.64769 −0.823845 0.566815i \(-0.808175\pi\)
−0.823845 + 0.566815i \(0.808175\pi\)
\(450\) 0 0
\(451\) 6.72083 0.316472
\(452\) −6.81671 −0.320631
\(453\) 0 0
\(454\) −9.03358 −0.423967
\(455\) 0 0
\(456\) 0 0
\(457\) 19.6673 0.919999 0.459999 0.887919i \(-0.347850\pi\)
0.459999 + 0.887919i \(0.347850\pi\)
\(458\) −20.1589 −0.941966
\(459\) 0 0
\(460\) 0 0
\(461\) −31.0991 −1.44843 −0.724215 0.689575i \(-0.757798\pi\)
−0.724215 + 0.689575i \(0.757798\pi\)
\(462\) 0 0
\(463\) −38.9301 −1.80924 −0.904618 0.426222i \(-0.859844\pi\)
−0.904618 + 0.426222i \(0.859844\pi\)
\(464\) 37.7788 1.75384
\(465\) 0 0
\(466\) −10.8745 −0.503753
\(467\) 11.3805 0.526626 0.263313 0.964710i \(-0.415185\pi\)
0.263313 + 0.964710i \(0.415185\pi\)
\(468\) 0 0
\(469\) −16.4588 −0.759997
\(470\) 0 0
\(471\) 0 0
\(472\) 26.7286 1.23029
\(473\) −4.84879 −0.222948
\(474\) 0 0
\(475\) 0 0
\(476\) −0.269769 −0.0123649
\(477\) 0 0
\(478\) 9.32310 0.426429
\(479\) 24.6901 1.12812 0.564060 0.825734i \(-0.309238\pi\)
0.564060 + 0.825734i \(0.309238\pi\)
\(480\) 0 0
\(481\) 14.0512 0.640682
\(482\) 34.4461 1.56898
\(483\) 0 0
\(484\) −6.85824 −0.311738
\(485\) 0 0
\(486\) 0 0
\(487\) 3.83392 0.173731 0.0868657 0.996220i \(-0.472315\pi\)
0.0868657 + 0.996220i \(0.472315\pi\)
\(488\) −1.89708 −0.0858769
\(489\) 0 0
\(490\) 0 0
\(491\) 7.57778 0.341980 0.170990 0.985273i \(-0.445303\pi\)
0.170990 + 0.985273i \(0.445303\pi\)
\(492\) 0 0
\(493\) 2.18139 0.0982447
\(494\) 14.2505 0.641160
\(495\) 0 0
\(496\) −11.6649 −0.523768
\(497\) 6.69656 0.300382
\(498\) 0 0
\(499\) 22.9554 1.02763 0.513813 0.857902i \(-0.328232\pi\)
0.513813 + 0.857902i \(0.328232\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12.0718 −0.538789
\(503\) 31.2801 1.39471 0.697355 0.716726i \(-0.254360\pi\)
0.697355 + 0.716726i \(0.254360\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4.51984 −0.200931
\(507\) 0 0
\(508\) −4.48778 −0.199113
\(509\) −23.1936 −1.02804 −0.514020 0.857778i \(-0.671844\pi\)
−0.514020 + 0.857778i \(0.671844\pi\)
\(510\) 0 0
\(511\) −15.6547 −0.692521
\(512\) 3.72605 0.164670
\(513\) 0 0
\(514\) 11.8711 0.523612
\(515\) 0 0
\(516\) 0 0
\(517\) 0.925226 0.0406914
\(518\) 10.9443 0.480866
\(519\) 0 0
\(520\) 0 0
\(521\) −31.0116 −1.35864 −0.679321 0.733841i \(-0.737726\pi\)
−0.679321 + 0.733841i \(0.737726\pi\)
\(522\) 0 0
\(523\) 11.3537 0.496462 0.248231 0.968701i \(-0.420151\pi\)
0.248231 + 0.968701i \(0.420151\pi\)
\(524\) 13.3466 0.583050
\(525\) 0 0
\(526\) 14.0684 0.613412
\(527\) −0.673542 −0.0293399
\(528\) 0 0
\(529\) −10.9330 −0.475347
\(530\) 0 0
\(531\) 0 0
\(532\) 2.75947 0.119638
\(533\) −25.5092 −1.10493
\(534\) 0 0
\(535\) 0 0
\(536\) −24.8666 −1.07407
\(537\) 0 0
\(538\) 18.5603 0.800190
\(539\) −3.91710 −0.168721
\(540\) 0 0
\(541\) −26.8120 −1.15274 −0.576368 0.817190i \(-0.695531\pi\)
−0.576368 + 0.817190i \(0.695531\pi\)
\(542\) 22.3330 0.959283
\(543\) 0 0
\(544\) −1.01669 −0.0435904
\(545\) 0 0
\(546\) 0 0
\(547\) −39.2250 −1.67714 −0.838570 0.544793i \(-0.816608\pi\)
−0.838570 + 0.544793i \(0.816608\pi\)
\(548\) 7.44869 0.318192
\(549\) 0 0
\(550\) 0 0
\(551\) −22.3134 −0.950581
\(552\) 0 0
\(553\) −6.84268 −0.290980
\(554\) 43.2293 1.83664
\(555\) 0 0
\(556\) −5.11547 −0.216944
\(557\) −44.3906 −1.88089 −0.940445 0.339946i \(-0.889591\pi\)
−0.940445 + 0.339946i \(0.889591\pi\)
\(558\) 0 0
\(559\) 18.4038 0.778397
\(560\) 0 0
\(561\) 0 0
\(562\) −18.2036 −0.767873
\(563\) 33.4717 1.41066 0.705332 0.708877i \(-0.250798\pi\)
0.705332 + 0.708877i \(0.250798\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −38.7827 −1.63016
\(567\) 0 0
\(568\) 10.1174 0.424517
\(569\) 0.968748 0.0406120 0.0203060 0.999794i \(-0.493536\pi\)
0.0203060 + 0.999794i \(0.493536\pi\)
\(570\) 0 0
\(571\) 25.5141 1.06773 0.533867 0.845569i \(-0.320738\pi\)
0.533867 + 0.845569i \(0.320738\pi\)
\(572\) −1.59750 −0.0667948
\(573\) 0 0
\(574\) −19.8688 −0.829306
\(575\) 0 0
\(576\) 0 0
\(577\) 34.3026 1.42804 0.714019 0.700127i \(-0.246873\pi\)
0.714019 + 0.700127i \(0.246873\pi\)
\(578\) 27.6054 1.14823
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0979 0.999750
\(582\) 0 0
\(583\) −9.40528 −0.389527
\(584\) −23.6517 −0.978713
\(585\) 0 0
\(586\) −0.151476 −0.00625741
\(587\) 25.3199 1.04507 0.522533 0.852619i \(-0.324987\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(588\) 0 0
\(589\) 6.88965 0.283883
\(590\) 0 0
\(591\) 0 0
\(592\) 22.6786 0.932086
\(593\) −0.909773 −0.0373599 −0.0186800 0.999826i \(-0.505946\pi\)
−0.0186800 + 0.999826i \(0.505946\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5.26951 0.215847
\(597\) 0 0
\(598\) 17.1552 0.701530
\(599\) 2.86390 0.117016 0.0585080 0.998287i \(-0.481366\pi\)
0.0585080 + 0.998287i \(0.481366\pi\)
\(600\) 0 0
\(601\) −3.46431 −0.141312 −0.0706560 0.997501i \(-0.522509\pi\)
−0.0706560 + 0.997501i \(0.522509\pi\)
\(602\) 14.3345 0.584229
\(603\) 0 0
\(604\) 13.2376 0.538632
\(605\) 0 0
\(606\) 0 0
\(607\) 13.9220 0.565075 0.282538 0.959256i \(-0.408824\pi\)
0.282538 + 0.959256i \(0.408824\pi\)
\(608\) 10.3997 0.421765
\(609\) 0 0
\(610\) 0 0
\(611\) −3.51173 −0.142070
\(612\) 0 0
\(613\) −4.86475 −0.196485 −0.0982427 0.995162i \(-0.531322\pi\)
−0.0982427 + 0.995162i \(0.531322\pi\)
\(614\) 20.4210 0.824124
\(615\) 0 0
\(616\) 2.51634 0.101386
\(617\) −20.0261 −0.806220 −0.403110 0.915152i \(-0.632071\pi\)
−0.403110 + 0.915152i \(0.632071\pi\)
\(618\) 0 0
\(619\) 37.7672 1.51799 0.758996 0.651095i \(-0.225690\pi\)
0.758996 + 0.651095i \(0.225690\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 49.8198 1.99759
\(623\) −23.4346 −0.938886
\(624\) 0 0
\(625\) 0 0
\(626\) −21.9317 −0.876568
\(627\) 0 0
\(628\) 3.57807 0.142780
\(629\) 1.30949 0.0522127
\(630\) 0 0
\(631\) −25.0097 −0.995622 −0.497811 0.867286i \(-0.665863\pi\)
−0.497811 + 0.867286i \(0.665863\pi\)
\(632\) −10.3382 −0.411231
\(633\) 0 0
\(634\) 20.2896 0.805805
\(635\) 0 0
\(636\) 0 0
\(637\) 14.8675 0.589072
\(638\) 10.0613 0.398331
\(639\) 0 0
\(640\) 0 0
\(641\) −10.8546 −0.428731 −0.214365 0.976754i \(-0.568768\pi\)
−0.214365 + 0.976754i \(0.568768\pi\)
\(642\) 0 0
\(643\) −31.0302 −1.22371 −0.611856 0.790969i \(-0.709577\pi\)
−0.611856 + 0.790969i \(0.709577\pi\)
\(644\) 3.32194 0.130903
\(645\) 0 0
\(646\) 1.32806 0.0522516
\(647\) −49.2351 −1.93563 −0.967815 0.251662i \(-0.919023\pi\)
−0.967815 + 0.251662i \(0.919023\pi\)
\(648\) 0 0
\(649\) 9.76323 0.383240
\(650\) 0 0
\(651\) 0 0
\(652\) −3.94691 −0.154573
\(653\) 42.5573 1.66540 0.832698 0.553727i \(-0.186795\pi\)
0.832698 + 0.553727i \(0.186795\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −41.1717 −1.60748
\(657\) 0 0
\(658\) −2.73524 −0.106631
\(659\) −32.0671 −1.24916 −0.624578 0.780963i \(-0.714729\pi\)
−0.624578 + 0.780963i \(0.714729\pi\)
\(660\) 0 0
\(661\) 38.0549 1.48016 0.740082 0.672517i \(-0.234787\pi\)
0.740082 + 0.672517i \(0.234787\pi\)
\(662\) −3.03780 −0.118068
\(663\) 0 0
\(664\) 36.4081 1.41291
\(665\) 0 0
\(666\) 0 0
\(667\) −26.8616 −1.04009
\(668\) −5.63974 −0.218208
\(669\) 0 0
\(670\) 0 0
\(671\) −0.692952 −0.0267511
\(672\) 0 0
\(673\) −23.8508 −0.919381 −0.459691 0.888079i \(-0.652040\pi\)
−0.459691 + 0.888079i \(0.652040\pi\)
\(674\) −18.4627 −0.711158
\(675\) 0 0
\(676\) −2.53923 −0.0976626
\(677\) −10.5516 −0.405530 −0.202765 0.979227i \(-0.564993\pi\)
−0.202765 + 0.979227i \(0.564993\pi\)
\(678\) 0 0
\(679\) −15.6665 −0.601223
\(680\) 0 0
\(681\) 0 0
\(682\) −3.10661 −0.118958
\(683\) −19.9516 −0.763427 −0.381713 0.924281i \(-0.624666\pi\)
−0.381713 + 0.924281i \(0.624666\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 28.0840 1.07225
\(687\) 0 0
\(688\) 29.7036 1.13244
\(689\) 35.6981 1.35999
\(690\) 0 0
\(691\) 32.7907 1.24742 0.623708 0.781657i \(-0.285625\pi\)
0.623708 + 0.781657i \(0.285625\pi\)
\(692\) 4.91545 0.186858
\(693\) 0 0
\(694\) −41.5510 −1.57725
\(695\) 0 0
\(696\) 0 0
\(697\) −2.37730 −0.0900465
\(698\) −18.3112 −0.693088
\(699\) 0 0
\(700\) 0 0
\(701\) −2.70090 −0.102012 −0.0510058 0.998698i \(-0.516243\pi\)
−0.0510058 + 0.998698i \(0.516243\pi\)
\(702\) 0 0
\(703\) −13.3947 −0.505192
\(704\) 3.10332 0.116961
\(705\) 0 0
\(706\) −21.2645 −0.800300
\(707\) 8.62877 0.324518
\(708\) 0 0
\(709\) −30.2828 −1.13729 −0.568647 0.822582i \(-0.692533\pi\)
−0.568647 + 0.822582i \(0.692533\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −35.4059 −1.32689
\(713\) 8.29400 0.310613
\(714\) 0 0
\(715\) 0 0
\(716\) −13.7410 −0.513525
\(717\) 0 0
\(718\) 48.1488 1.79690
\(719\) −20.3313 −0.758228 −0.379114 0.925350i \(-0.623771\pi\)
−0.379114 + 0.925350i \(0.623771\pi\)
\(720\) 0 0
\(721\) 12.1193 0.451345
\(722\) 17.4135 0.648064
\(723\) 0 0
\(724\) 13.0795 0.486097
\(725\) 0 0
\(726\) 0 0
\(727\) −21.6351 −0.802400 −0.401200 0.915991i \(-0.631407\pi\)
−0.401200 + 0.915991i \(0.631407\pi\)
\(728\) −9.55087 −0.353979
\(729\) 0 0
\(730\) 0 0
\(731\) 1.71512 0.0634359
\(732\) 0 0
\(733\) −42.5223 −1.57060 −0.785299 0.619116i \(-0.787491\pi\)
−0.785299 + 0.619116i \(0.787491\pi\)
\(734\) 28.0730 1.03619
\(735\) 0 0
\(736\) 12.5196 0.461478
\(737\) −9.08308 −0.334580
\(738\) 0 0
\(739\) −11.7281 −0.431425 −0.215713 0.976457i \(-0.569207\pi\)
−0.215713 + 0.976457i \(0.569207\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 27.8048 1.02075
\(743\) −27.4555 −1.00724 −0.503622 0.863924i \(-0.668000\pi\)
−0.503622 + 0.863924i \(0.668000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 26.4349 0.967849
\(747\) 0 0
\(748\) −0.148877 −0.00544348
\(749\) −14.4967 −0.529697
\(750\) 0 0
\(751\) −25.8528 −0.943383 −0.471692 0.881764i \(-0.656356\pi\)
−0.471692 + 0.881764i \(0.656356\pi\)
\(752\) −5.66792 −0.206688
\(753\) 0 0
\(754\) −38.1881 −1.39073
\(755\) 0 0
\(756\) 0 0
\(757\) 28.8785 1.04961 0.524803 0.851224i \(-0.324139\pi\)
0.524803 + 0.851224i \(0.324139\pi\)
\(758\) −46.5050 −1.68914
\(759\) 0 0
\(760\) 0 0
\(761\) −40.6966 −1.47525 −0.737626 0.675210i \(-0.764053\pi\)
−0.737626 + 0.675210i \(0.764053\pi\)
\(762\) 0 0
\(763\) −5.16535 −0.186998
\(764\) 11.1301 0.402674
\(765\) 0 0
\(766\) 43.9977 1.58970
\(767\) −37.0567 −1.33804
\(768\) 0 0
\(769\) 12.8126 0.462033 0.231017 0.972950i \(-0.425795\pi\)
0.231017 + 0.972950i \(0.425795\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −13.3595 −0.480820
\(773\) −29.1725 −1.04926 −0.524632 0.851329i \(-0.675797\pi\)
−0.524632 + 0.851329i \(0.675797\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −23.6695 −0.849685
\(777\) 0 0
\(778\) −9.83352 −0.352549
\(779\) 24.3173 0.871258
\(780\) 0 0
\(781\) 3.69561 0.132239
\(782\) 1.59876 0.0571715
\(783\) 0 0
\(784\) 23.9961 0.857003
\(785\) 0 0
\(786\) 0 0
\(787\) 11.5839 0.412921 0.206460 0.978455i \(-0.433806\pi\)
0.206460 + 0.978455i \(0.433806\pi\)
\(788\) −8.14005 −0.289977
\(789\) 0 0
\(790\) 0 0
\(791\) −14.8865 −0.529304
\(792\) 0 0
\(793\) 2.63013 0.0933985
\(794\) 30.0569 1.06668
\(795\) 0 0
\(796\) 12.9926 0.460510
\(797\) 38.8479 1.37606 0.688031 0.725681i \(-0.258475\pi\)
0.688031 + 0.725681i \(0.258475\pi\)
\(798\) 0 0
\(799\) −0.327271 −0.0115780
\(800\) 0 0
\(801\) 0 0
\(802\) 28.4580 1.00489
\(803\) −8.63930 −0.304874
\(804\) 0 0
\(805\) 0 0
\(806\) 11.7913 0.415330
\(807\) 0 0
\(808\) 13.0367 0.458629
\(809\) −32.9255 −1.15760 −0.578799 0.815470i \(-0.696479\pi\)
−0.578799 + 0.815470i \(0.696479\pi\)
\(810\) 0 0
\(811\) −5.59127 −0.196336 −0.0981680 0.995170i \(-0.531298\pi\)
−0.0981680 + 0.995170i \(0.531298\pi\)
\(812\) −7.39476 −0.259505
\(813\) 0 0
\(814\) 6.03982 0.211696
\(815\) 0 0
\(816\) 0 0
\(817\) −17.5439 −0.613783
\(818\) 35.7333 1.24939
\(819\) 0 0
\(820\) 0 0
\(821\) −13.8837 −0.484545 −0.242272 0.970208i \(-0.577893\pi\)
−0.242272 + 0.970208i \(0.577893\pi\)
\(822\) 0 0
\(823\) −23.1074 −0.805473 −0.402736 0.915316i \(-0.631941\pi\)
−0.402736 + 0.915316i \(0.631941\pi\)
\(824\) 18.3103 0.637868
\(825\) 0 0
\(826\) −28.8630 −1.00427
\(827\) 49.3260 1.71523 0.857616 0.514290i \(-0.171944\pi\)
0.857616 + 0.514290i \(0.171944\pi\)
\(828\) 0 0
\(829\) 41.0813 1.42681 0.713406 0.700751i \(-0.247152\pi\)
0.713406 + 0.700751i \(0.247152\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −11.7788 −0.408356
\(833\) 1.38556 0.0480067
\(834\) 0 0
\(835\) 0 0
\(836\) 1.52286 0.0526692
\(837\) 0 0
\(838\) 13.5337 0.467513
\(839\) −6.97734 −0.240884 −0.120442 0.992720i \(-0.538431\pi\)
−0.120442 + 0.992720i \(0.538431\pi\)
\(840\) 0 0
\(841\) 30.7948 1.06189
\(842\) 18.0776 0.622995
\(843\) 0 0
\(844\) 4.99978 0.172100
\(845\) 0 0
\(846\) 0 0
\(847\) −14.9772 −0.514624
\(848\) 57.6166 1.97856
\(849\) 0 0
\(850\) 0 0
\(851\) −16.1250 −0.552759
\(852\) 0 0
\(853\) −29.0382 −0.994249 −0.497125 0.867679i \(-0.665611\pi\)
−0.497125 + 0.867679i \(0.665611\pi\)
\(854\) 2.04857 0.0701006
\(855\) 0 0
\(856\) −21.9021 −0.748600
\(857\) 4.63176 0.158218 0.0791090 0.996866i \(-0.474792\pi\)
0.0791090 + 0.996866i \(0.474792\pi\)
\(858\) 0 0
\(859\) −10.8416 −0.369912 −0.184956 0.982747i \(-0.559214\pi\)
−0.184956 + 0.982747i \(0.559214\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 41.2465 1.40486
\(863\) −26.1400 −0.889815 −0.444908 0.895576i \(-0.646763\pi\)
−0.444908 + 0.895576i \(0.646763\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 9.86000 0.335056
\(867\) 0 0
\(868\) 2.28326 0.0774990
\(869\) −3.77625 −0.128101
\(870\) 0 0
\(871\) 34.4752 1.16815
\(872\) −7.80402 −0.264277
\(873\) 0 0
\(874\) −16.3537 −0.553172
\(875\) 0 0
\(876\) 0 0
\(877\) 40.1008 1.35411 0.677054 0.735933i \(-0.263256\pi\)
0.677054 + 0.735933i \(0.263256\pi\)
\(878\) 29.4686 0.994516
\(879\) 0 0
\(880\) 0 0
\(881\) −34.4321 −1.16005 −0.580023 0.814600i \(-0.696956\pi\)
−0.580023 + 0.814600i \(0.696956\pi\)
\(882\) 0 0
\(883\) −51.3034 −1.72650 −0.863249 0.504778i \(-0.831574\pi\)
−0.863249 + 0.504778i \(0.831574\pi\)
\(884\) 0.565069 0.0190053
\(885\) 0 0
\(886\) −20.9056 −0.702336
\(887\) 11.5446 0.387631 0.193815 0.981038i \(-0.437914\pi\)
0.193815 + 0.981038i \(0.437914\pi\)
\(888\) 0 0
\(889\) −9.80056 −0.328700
\(890\) 0 0
\(891\) 0 0
\(892\) −1.06389 −0.0356216
\(893\) 3.34765 0.112025
\(894\) 0 0
\(895\) 0 0
\(896\) −19.5909 −0.654486
\(897\) 0 0
\(898\) 56.9615 1.90083
\(899\) −18.4627 −0.615766
\(900\) 0 0
\(901\) 3.32684 0.110833
\(902\) −10.9649 −0.365092
\(903\) 0 0
\(904\) −22.4911 −0.748044
\(905\) 0 0
\(906\) 0 0
\(907\) 29.4860 0.979067 0.489533 0.871985i \(-0.337167\pi\)
0.489533 + 0.871985i \(0.337167\pi\)
\(908\) 3.66407 0.121596
\(909\) 0 0
\(910\) 0 0
\(911\) −6.96402 −0.230728 −0.115364 0.993323i \(-0.536804\pi\)
−0.115364 + 0.993323i \(0.536804\pi\)
\(912\) 0 0
\(913\) 13.2989 0.440128
\(914\) −32.0869 −1.06134
\(915\) 0 0
\(916\) 8.17658 0.270162
\(917\) 29.1468 0.962511
\(918\) 0 0
\(919\) −21.0012 −0.692767 −0.346384 0.938093i \(-0.612590\pi\)
−0.346384 + 0.938093i \(0.612590\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 50.7377 1.67096
\(923\) −14.0268 −0.461699
\(924\) 0 0
\(925\) 0 0
\(926\) 63.5139 2.08720
\(927\) 0 0
\(928\) −27.8690 −0.914845
\(929\) 9.22471 0.302653 0.151326 0.988484i \(-0.451646\pi\)
0.151326 + 0.988484i \(0.451646\pi\)
\(930\) 0 0
\(931\) −14.1729 −0.464496
\(932\) 4.41077 0.144480
\(933\) 0 0
\(934\) −18.5671 −0.607533
\(935\) 0 0
\(936\) 0 0
\(937\) 35.5933 1.16278 0.581392 0.813624i \(-0.302508\pi\)
0.581392 + 0.813624i \(0.302508\pi\)
\(938\) 26.8523 0.876758
\(939\) 0 0
\(940\) 0 0
\(941\) 53.0875 1.73060 0.865302 0.501250i \(-0.167126\pi\)
0.865302 + 0.501250i \(0.167126\pi\)
\(942\) 0 0
\(943\) 29.2740 0.953294
\(944\) −59.8094 −1.94663
\(945\) 0 0
\(946\) 7.91072 0.257200
\(947\) −20.8873 −0.678746 −0.339373 0.940652i \(-0.610215\pi\)
−0.339373 + 0.940652i \(0.610215\pi\)
\(948\) 0 0
\(949\) 32.7908 1.06443
\(950\) 0 0
\(951\) 0 0
\(952\) −0.890081 −0.0288477
\(953\) −35.0040 −1.13389 −0.566945 0.823755i \(-0.691875\pi\)
−0.566945 + 0.823755i \(0.691875\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −3.78150 −0.122303
\(957\) 0 0
\(958\) −40.2815 −1.30144
\(959\) 16.2667 0.525278
\(960\) 0 0
\(961\) −25.2993 −0.816107
\(962\) −22.9244 −0.739112
\(963\) 0 0
\(964\) −13.9715 −0.449993
\(965\) 0 0
\(966\) 0 0
\(967\) 8.32372 0.267673 0.133836 0.991003i \(-0.457270\pi\)
0.133836 + 0.991003i \(0.457270\pi\)
\(968\) −22.6282 −0.727297
\(969\) 0 0
\(970\) 0 0
\(971\) −13.0277 −0.418080 −0.209040 0.977907i \(-0.567034\pi\)
−0.209040 + 0.977907i \(0.567034\pi\)
\(972\) 0 0
\(973\) −11.1713 −0.358136
\(974\) −6.25497 −0.200422
\(975\) 0 0
\(976\) 4.24501 0.135879
\(977\) −48.0089 −1.53594 −0.767970 0.640486i \(-0.778733\pi\)
−0.767970 + 0.640486i \(0.778733\pi\)
\(978\) 0 0
\(979\) −12.9328 −0.413334
\(980\) 0 0
\(981\) 0 0
\(982\) −12.3630 −0.394520
\(983\) 30.3257 0.967240 0.483620 0.875278i \(-0.339322\pi\)
0.483620 + 0.875278i \(0.339322\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −3.55889 −0.113338
\(987\) 0 0
\(988\) −5.78008 −0.183889
\(989\) −21.1200 −0.671576
\(990\) 0 0
\(991\) 10.8408 0.344368 0.172184 0.985065i \(-0.444918\pi\)
0.172184 + 0.985065i \(0.444918\pi\)
\(992\) 8.60505 0.273211
\(993\) 0 0
\(994\) −10.9253 −0.346530
\(995\) 0 0
\(996\) 0 0
\(997\) −1.33544 −0.0422939 −0.0211470 0.999776i \(-0.506732\pi\)
−0.0211470 + 0.999776i \(0.506732\pi\)
\(998\) −37.4514 −1.18550
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5625.2.a.y.1.3 8
3.2 odd 2 inner 5625.2.a.y.1.6 yes 8
5.4 even 2 5625.2.a.ba.1.6 yes 8
15.14 odd 2 5625.2.a.ba.1.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5625.2.a.y.1.3 8 1.1 even 1 trivial
5625.2.a.y.1.6 yes 8 3.2 odd 2 inner
5625.2.a.ba.1.3 yes 8 15.14 odd 2
5625.2.a.ba.1.6 yes 8 5.4 even 2