Properties

Label 5616.2.d.j.2159.1
Level $5616$
Weight $2$
Character 5616.2159
Analytic conductor $44.844$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5616,2,Mod(2159,5616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5616, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5616.2159"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5616 = 2^{4} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5616.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,14,0,4,0,0,0,0,0,0,0,0,0,-2,0,6,0,0,0,0, 0,0,0,0,0,-8,0,14,0,0,0,0,0,0,0,0,0,26,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(49)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.8439857752\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 5616.2159
Dual form 5616.2.d.j.2159.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.52434i q^{5} -0.792287i q^{7} +0.627719 q^{11} +1.00000 q^{13} +3.46410i q^{17} -3.37228 q^{23} -1.37228 q^{25} +5.84096i q^{29} +7.42554i q^{31} -2.00000 q^{35} +0.627719 q^{37} +3.16915i q^{41} +9.94987i q^{43} +3.62772 q^{47} +6.37228 q^{49} +11.1846i q^{53} -1.58457i q^{55} -11.7446 q^{59} +4.37228 q^{61} -2.52434i q^{65} -8.21782i q^{67} +9.11684 q^{71} +1.25544 q^{73} -0.497333i q^{77} +0.294954i q^{79} -6.25544 q^{83} +8.74456 q^{85} -3.61158i q^{89} -0.792287i q^{91} +11.4891 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{11} + 4 q^{13} - 2 q^{23} + 6 q^{25} - 8 q^{35} + 14 q^{37} + 26 q^{47} + 14 q^{49} - 24 q^{59} + 6 q^{61} + 2 q^{71} + 28 q^{73} - 48 q^{83} + 12 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5616\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2081\) \(3889\) \(4213\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 2.52434i − 1.12892i −0.825461 0.564459i \(-0.809085\pi\)
0.825461 0.564459i \(-0.190915\pi\)
\(6\) 0 0
\(7\) − 0.792287i − 0.299456i −0.988727 0.149728i \(-0.952160\pi\)
0.988727 0.149728i \(-0.0478399\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.627719 0.189264 0.0946322 0.995512i \(-0.469833\pi\)
0.0946322 + 0.995512i \(0.469833\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.46410i 0.840168i 0.907485 + 0.420084i \(0.137999\pi\)
−0.907485 + 0.420084i \(0.862001\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.37228 −0.703169 −0.351585 0.936156i \(-0.614357\pi\)
−0.351585 + 0.936156i \(0.614357\pi\)
\(24\) 0 0
\(25\) −1.37228 −0.274456
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.84096i 1.08464i 0.840172 + 0.542320i \(0.182454\pi\)
−0.840172 + 0.542320i \(0.817546\pi\)
\(30\) 0 0
\(31\) 7.42554i 1.33367i 0.745207 + 0.666833i \(0.232351\pi\)
−0.745207 + 0.666833i \(0.767649\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) 0.627719 0.103196 0.0515982 0.998668i \(-0.483568\pi\)
0.0515982 + 0.998668i \(0.483568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.16915i 0.494938i 0.968896 + 0.247469i \(0.0795988\pi\)
−0.968896 + 0.247469i \(0.920401\pi\)
\(42\) 0 0
\(43\) 9.94987i 1.51734i 0.651474 + 0.758671i \(0.274151\pi\)
−0.651474 + 0.758671i \(0.725849\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.62772 0.529157 0.264579 0.964364i \(-0.414767\pi\)
0.264579 + 0.964364i \(0.414767\pi\)
\(48\) 0 0
\(49\) 6.37228 0.910326
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.1846i 1.53632i 0.640257 + 0.768161i \(0.278828\pi\)
−0.640257 + 0.768161i \(0.721172\pi\)
\(54\) 0 0
\(55\) − 1.58457i − 0.213664i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.7446 −1.52901 −0.764506 0.644617i \(-0.777017\pi\)
−0.764506 + 0.644617i \(0.777017\pi\)
\(60\) 0 0
\(61\) 4.37228 0.559813 0.279907 0.960027i \(-0.409696\pi\)
0.279907 + 0.960027i \(0.409696\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 2.52434i − 0.313106i
\(66\) 0 0
\(67\) − 8.21782i − 1.00397i −0.864877 0.501983i \(-0.832604\pi\)
0.864877 0.501983i \(-0.167396\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.11684 1.08197 0.540985 0.841032i \(-0.318052\pi\)
0.540985 + 0.841032i \(0.318052\pi\)
\(72\) 0 0
\(73\) 1.25544 0.146938 0.0734689 0.997298i \(-0.476593\pi\)
0.0734689 + 0.997298i \(0.476593\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 0.497333i − 0.0566764i
\(78\) 0 0
\(79\) 0.294954i 0.0331849i 0.999862 + 0.0165924i \(0.00528178\pi\)
−0.999862 + 0.0165924i \(0.994718\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.25544 −0.686623 −0.343312 0.939222i \(-0.611549\pi\)
−0.343312 + 0.939222i \(0.611549\pi\)
\(84\) 0 0
\(85\) 8.74456 0.948481
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 3.61158i − 0.382827i −0.981510 0.191413i \(-0.938693\pi\)
0.981510 0.191413i \(-0.0613071\pi\)
\(90\) 0 0
\(91\) − 0.792287i − 0.0830542i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 11.4891 1.16654 0.583272 0.812277i \(-0.301772\pi\)
0.583272 + 0.812277i \(0.301772\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.4742i 1.24123i 0.784115 + 0.620615i \(0.213117\pi\)
−0.784115 + 0.620615i \(0.786883\pi\)
\(102\) 0 0
\(103\) 2.52434i 0.248730i 0.992237 + 0.124365i \(0.0396894\pi\)
−0.992237 + 0.124365i \(0.960311\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.25544 −0.314715 −0.157358 0.987542i \(-0.550297\pi\)
−0.157358 + 0.987542i \(0.550297\pi\)
\(108\) 0 0
\(109\) 1.25544 0.120249 0.0601245 0.998191i \(-0.480850\pi\)
0.0601245 + 0.998191i \(0.480850\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1.87953i − 0.176811i −0.996085 0.0884055i \(-0.971823\pi\)
0.996085 0.0884055i \(-0.0281771\pi\)
\(114\) 0 0
\(115\) 8.51278i 0.793821i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.74456 0.251594
\(120\) 0 0
\(121\) −10.6060 −0.964179
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 9.15759i − 0.819080i
\(126\) 0 0
\(127\) 4.40387i 0.390780i 0.980726 + 0.195390i \(0.0625972\pi\)
−0.980726 + 0.195390i \(0.937403\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −14.2337 −1.24360 −0.621802 0.783175i \(-0.713599\pi\)
−0.621802 + 0.783175i \(0.713599\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 1.08724i − 0.0928892i −0.998921 0.0464446i \(-0.985211\pi\)
0.998921 0.0464446i \(-0.0147891\pi\)
\(138\) 0 0
\(139\) − 2.52434i − 0.214112i −0.994253 0.107056i \(-0.965858\pi\)
0.994253 0.107056i \(-0.0341423\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.627719 0.0524925
\(144\) 0 0
\(145\) 14.7446 1.22447
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 19.8448i − 1.62575i −0.582436 0.812877i \(-0.697900\pi\)
0.582436 0.812877i \(-0.302100\pi\)
\(150\) 0 0
\(151\) 15.4410i 1.25657i 0.777984 + 0.628285i \(0.216243\pi\)
−0.777984 + 0.628285i \(0.783757\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 18.7446 1.50560
\(156\) 0 0
\(157\) 13.1168 1.04684 0.523419 0.852075i \(-0.324656\pi\)
0.523419 + 0.852075i \(0.324656\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.67181i 0.210568i
\(162\) 0 0
\(163\) 3.16915i 0.248227i 0.992268 + 0.124113i \(0.0396087\pi\)
−0.992268 + 0.124113i \(0.960391\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.86141 0.453569 0.226785 0.973945i \(-0.427179\pi\)
0.226785 + 0.973945i \(0.427179\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 13.2665i − 1.00863i −0.863519 0.504317i \(-0.831744\pi\)
0.863519 0.504317i \(-0.168256\pi\)
\(174\) 0 0
\(175\) 1.08724i 0.0821877i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.74456 −0.354625 −0.177313 0.984155i \(-0.556740\pi\)
−0.177313 + 0.984155i \(0.556740\pi\)
\(180\) 0 0
\(181\) 17.8614 1.32763 0.663814 0.747898i \(-0.268937\pi\)
0.663814 + 0.747898i \(0.268937\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 1.58457i − 0.116500i
\(186\) 0 0
\(187\) 2.17448i 0.159014i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.62772 0.479565 0.239782 0.970827i \(-0.422924\pi\)
0.239782 + 0.970827i \(0.422924\pi\)
\(192\) 0 0
\(193\) 16.7446 1.20530 0.602650 0.798006i \(-0.294112\pi\)
0.602650 + 0.798006i \(0.294112\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.86797i 0.560569i 0.959917 + 0.280285i \(0.0904289\pi\)
−0.959917 + 0.280285i \(0.909571\pi\)
\(198\) 0 0
\(199\) 5.98844i 0.424509i 0.977214 + 0.212255i \(0.0680806\pi\)
−0.977214 + 0.212255i \(0.931919\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.62772 0.324802
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 8.66025i − 0.596196i −0.954535 0.298098i \(-0.903648\pi\)
0.954535 0.298098i \(-0.0963523\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 25.1168 1.71295
\(216\) 0 0
\(217\) 5.88316 0.399375
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.46410i 0.233021i
\(222\) 0 0
\(223\) 14.1514i 0.947645i 0.880620 + 0.473823i \(0.157126\pi\)
−0.880620 + 0.473823i \(0.842874\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.1168 −1.26883 −0.634415 0.772993i \(-0.718759\pi\)
−0.634415 + 0.772993i \(0.718759\pi\)
\(228\) 0 0
\(229\) 11.3723 0.751502 0.375751 0.926721i \(-0.377385\pi\)
0.375751 + 0.926721i \(0.377385\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 7.22316i − 0.473205i −0.971607 0.236602i \(-0.923966\pi\)
0.971607 0.236602i \(-0.0760339\pi\)
\(234\) 0 0
\(235\) − 9.15759i − 0.597375i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −5.25544 −0.339946 −0.169973 0.985449i \(-0.554368\pi\)
−0.169973 + 0.985449i \(0.554368\pi\)
\(240\) 0 0
\(241\) −22.9783 −1.48016 −0.740080 0.672519i \(-0.765212\pi\)
−0.740080 + 0.672519i \(0.765212\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 16.0858i − 1.02768i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.4891 1.23014 0.615071 0.788471i \(-0.289127\pi\)
0.615071 + 0.788471i \(0.289127\pi\)
\(252\) 0 0
\(253\) −2.11684 −0.133085
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 19.2000i 1.19767i 0.800874 + 0.598833i \(0.204369\pi\)
−0.800874 + 0.598833i \(0.795631\pi\)
\(258\) 0 0
\(259\) − 0.497333i − 0.0309028i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.86141 0.299767 0.149884 0.988704i \(-0.452110\pi\)
0.149884 + 0.988704i \(0.452110\pi\)
\(264\) 0 0
\(265\) 28.2337 1.73438
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 0.792287i − 0.0483066i −0.999708 0.0241533i \(-0.992311\pi\)
0.999708 0.0241533i \(-0.00768898\pi\)
\(270\) 0 0
\(271\) 10.3923i 0.631288i 0.948878 + 0.315644i \(0.102220\pi\)
−0.948878 + 0.315644i \(0.897780\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.861407 −0.0519448
\(276\) 0 0
\(277\) 23.3505 1.40300 0.701499 0.712671i \(-0.252515\pi\)
0.701499 + 0.712671i \(0.252515\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 21.3368i − 1.27285i −0.771339 0.636425i \(-0.780413\pi\)
0.771339 0.636425i \(-0.219587\pi\)
\(282\) 0 0
\(283\) 8.07035i 0.479732i 0.970806 + 0.239866i \(0.0771036\pi\)
−0.970806 + 0.239866i \(0.922896\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.51087 0.148212
\(288\) 0 0
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 20.1947i − 1.17979i −0.807481 0.589894i \(-0.799170\pi\)
0.807481 0.589894i \(-0.200830\pi\)
\(294\) 0 0
\(295\) 29.6472i 1.72613i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.37228 −0.195024
\(300\) 0 0
\(301\) 7.88316 0.454378
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 11.0371i − 0.631983i
\(306\) 0 0
\(307\) − 13.5615i − 0.773993i −0.922081 0.386996i \(-0.873513\pi\)
0.922081 0.386996i \(-0.126487\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −10.1168 −0.573674 −0.286837 0.957979i \(-0.592604\pi\)
−0.286837 + 0.957979i \(0.592604\pi\)
\(312\) 0 0
\(313\) −11.0000 −0.621757 −0.310878 0.950450i \(-0.600623\pi\)
−0.310878 + 0.950450i \(0.600623\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.51278i 0.478125i 0.971004 + 0.239063i \(0.0768401\pi\)
−0.971004 + 0.239063i \(0.923160\pi\)
\(318\) 0 0
\(319\) 3.66648i 0.205284i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.37228 −0.0761205
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 2.87419i − 0.158459i
\(330\) 0 0
\(331\) 10.3923i 0.571213i 0.958347 + 0.285606i \(0.0921950\pi\)
−0.958347 + 0.285606i \(0.907805\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −20.7446 −1.13340
\(336\) 0 0
\(337\) 4.25544 0.231808 0.115904 0.993260i \(-0.463023\pi\)
0.115904 + 0.993260i \(0.463023\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.66115i 0.252415i
\(342\) 0 0
\(343\) − 10.5947i − 0.572059i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.2554 0.711589 0.355795 0.934564i \(-0.384210\pi\)
0.355795 + 0.934564i \(0.384210\pi\)
\(348\) 0 0
\(349\) −4.23369 −0.226624 −0.113312 0.993559i \(-0.536146\pi\)
−0.113312 + 0.993559i \(0.536146\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 17.1730i 0.914028i 0.889459 + 0.457014i \(0.151081\pi\)
−0.889459 + 0.457014i \(0.848919\pi\)
\(354\) 0 0
\(355\) − 23.0140i − 1.22146i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.62772 0.297020 0.148510 0.988911i \(-0.452552\pi\)
0.148510 + 0.988911i \(0.452552\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 3.16915i − 0.165881i
\(366\) 0 0
\(367\) 29.0024i 1.51391i 0.653464 + 0.756957i \(0.273315\pi\)
−0.653464 + 0.756957i \(0.726685\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.86141 0.460061
\(372\) 0 0
\(373\) 2.88316 0.149284 0.0746421 0.997210i \(-0.476219\pi\)
0.0746421 + 0.997210i \(0.476219\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.84096i 0.300825i
\(378\) 0 0
\(379\) 8.21782i 0.422121i 0.977473 + 0.211061i \(0.0676917\pi\)
−0.977473 + 0.211061i \(0.932308\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 25.7228 1.31437 0.657187 0.753727i \(-0.271746\pi\)
0.657187 + 0.753727i \(0.271746\pi\)
\(384\) 0 0
\(385\) −1.25544 −0.0639830
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 32.1716i 1.63116i 0.578642 + 0.815582i \(0.303583\pi\)
−0.578642 + 0.815582i \(0.696417\pi\)
\(390\) 0 0
\(391\) − 11.6819i − 0.590780i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.744563 0.0374630
\(396\) 0 0
\(397\) −9.37228 −0.470381 −0.235191 0.971949i \(-0.575571\pi\)
−0.235191 + 0.971949i \(0.575571\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 18.4627i − 0.921981i −0.887405 0.460990i \(-0.847494\pi\)
0.887405 0.460990i \(-0.152506\pi\)
\(402\) 0 0
\(403\) 7.42554i 0.369892i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.394031 0.0195314
\(408\) 0 0
\(409\) 10.7446 0.531284 0.265642 0.964072i \(-0.414416\pi\)
0.265642 + 0.964072i \(0.414416\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.30506i 0.457872i
\(414\) 0 0
\(415\) 15.7908i 0.775142i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) −8.23369 −0.401285 −0.200643 0.979664i \(-0.564303\pi\)
−0.200643 + 0.979664i \(0.564303\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 4.75372i − 0.230589i
\(426\) 0 0
\(427\) − 3.46410i − 0.167640i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −37.1168 −1.78786 −0.893928 0.448211i \(-0.852061\pi\)
−0.893928 + 0.448211i \(0.852061\pi\)
\(432\) 0 0
\(433\) 8.11684 0.390071 0.195035 0.980796i \(-0.437518\pi\)
0.195035 + 0.980796i \(0.437518\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.8935i 1.18810i 0.804427 + 0.594051i \(0.202472\pi\)
−0.804427 + 0.594051i \(0.797528\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.00000 −0.190046 −0.0950229 0.995475i \(-0.530292\pi\)
−0.0950229 + 0.995475i \(0.530292\pi\)
\(444\) 0 0
\(445\) −9.11684 −0.432180
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.0371i 0.520874i 0.965491 + 0.260437i \(0.0838666\pi\)
−0.965491 + 0.260437i \(0.916133\pi\)
\(450\) 0 0
\(451\) 1.98933i 0.0936740i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.00000 −0.0937614
\(456\) 0 0
\(457\) 11.4891 0.537439 0.268719 0.963219i \(-0.413400\pi\)
0.268719 + 0.963219i \(0.413400\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 1.23472i − 0.0575065i −0.999587 0.0287533i \(-0.990846\pi\)
0.999587 0.0287533i \(-0.00915371\pi\)
\(462\) 0 0
\(463\) − 5.54601i − 0.257745i −0.991661 0.128872i \(-0.958864\pi\)
0.991661 0.128872i \(-0.0411358\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −32.9783 −1.52605 −0.763026 0.646368i \(-0.776287\pi\)
−0.763026 + 0.646368i \(0.776287\pi\)
\(468\) 0 0
\(469\) −6.51087 −0.300644
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.24572i 0.287179i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 26.6060 1.21566 0.607829 0.794068i \(-0.292041\pi\)
0.607829 + 0.794068i \(0.292041\pi\)
\(480\) 0 0
\(481\) 0.627719 0.0286215
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 29.0024i − 1.31693i
\(486\) 0 0
\(487\) − 0.202380i − 0.00917070i −0.999989 0.00458535i \(-0.998540\pi\)
0.999989 0.00458535i \(-0.00145957\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 15.7228 0.709561 0.354780 0.934950i \(-0.384556\pi\)
0.354780 + 0.934950i \(0.384556\pi\)
\(492\) 0 0
\(493\) −20.2337 −0.911279
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 7.22316i − 0.324003i
\(498\) 0 0
\(499\) − 3.75906i − 0.168278i −0.996454 0.0841392i \(-0.973186\pi\)
0.996454 0.0841392i \(-0.0268140\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.88316 −0.173141 −0.0865707 0.996246i \(-0.527591\pi\)
−0.0865707 + 0.996246i \(0.527591\pi\)
\(504\) 0 0
\(505\) 31.4891 1.40125
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 23.7137i 1.05109i 0.850765 + 0.525546i \(0.176139\pi\)
−0.850765 + 0.525546i \(0.823861\pi\)
\(510\) 0 0
\(511\) − 0.994667i − 0.0440015i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.37228 0.280796
\(516\) 0 0
\(517\) 2.27719 0.100151
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.4897i 0.897668i 0.893615 + 0.448834i \(0.148161\pi\)
−0.893615 + 0.448834i \(0.851839\pi\)
\(522\) 0 0
\(523\) − 23.3089i − 1.01923i −0.860403 0.509615i \(-0.829788\pi\)
0.860403 0.509615i \(-0.170212\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.7228 −1.12050
\(528\) 0 0
\(529\) −11.6277 −0.505553
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.16915i 0.137271i
\(534\) 0 0
\(535\) 8.21782i 0.355287i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 27.0951 1.16491 0.582455 0.812863i \(-0.302092\pi\)
0.582455 + 0.812863i \(0.302092\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 3.16915i − 0.135751i
\(546\) 0 0
\(547\) 9.30506i 0.397856i 0.980014 + 0.198928i \(0.0637460\pi\)
−0.980014 + 0.198928i \(0.936254\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.233688 0.00993742
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 31.8766i − 1.35066i −0.737517 0.675328i \(-0.764002\pi\)
0.737517 0.675328i \(-0.235998\pi\)
\(558\) 0 0
\(559\) 9.94987i 0.420835i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.9783 1.55845 0.779224 0.626746i \(-0.215614\pi\)
0.779224 + 0.626746i \(0.215614\pi\)
\(564\) 0 0
\(565\) −4.74456 −0.199605
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 3.16915i 0.132858i 0.997791 + 0.0664288i \(0.0211605\pi\)
−0.997791 + 0.0664288i \(0.978839\pi\)
\(570\) 0 0
\(571\) − 16.3807i − 0.685513i −0.939424 0.342756i \(-0.888639\pi\)
0.939424 0.342756i \(-0.111361\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.62772 0.192989
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.95610i 0.205614i
\(582\) 0 0
\(583\) 7.02078i 0.290771i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.6277 0.521202 0.260601 0.965447i \(-0.416079\pi\)
0.260601 + 0.965447i \(0.416079\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.7692i 0.524367i 0.965018 + 0.262183i \(0.0844425\pi\)
−0.965018 + 0.262183i \(0.915557\pi\)
\(594\) 0 0
\(595\) − 6.92820i − 0.284029i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.74456 0.193858 0.0969288 0.995291i \(-0.469098\pi\)
0.0969288 + 0.995291i \(0.469098\pi\)
\(600\) 0 0
\(601\) −24.2554 −0.989400 −0.494700 0.869064i \(-0.664722\pi\)
−0.494700 + 0.869064i \(0.664722\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.7730i 1.08848i
\(606\) 0 0
\(607\) − 1.28962i − 0.0523441i −0.999657 0.0261720i \(-0.991668\pi\)
0.999657 0.0261720i \(-0.00833177\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.62772 0.146762
\(612\) 0 0
\(613\) −0.627719 −0.0253533 −0.0126767 0.999920i \(-0.504035\pi\)
−0.0126767 + 0.999920i \(0.504035\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.6295i 1.63568i 0.575445 + 0.817840i \(0.304829\pi\)
−0.575445 + 0.817840i \(0.695171\pi\)
\(618\) 0 0
\(619\) − 2.57924i − 0.103668i −0.998656 0.0518342i \(-0.983493\pi\)
0.998656 0.0518342i \(-0.0165067\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.86141 −0.114640
\(624\) 0 0
\(625\) −29.9783 −1.19913
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.17448i 0.0867022i
\(630\) 0 0
\(631\) − 2.96677i − 0.118105i −0.998255 0.0590526i \(-0.981192\pi\)
0.998255 0.0590526i \(-0.0188080\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 11.1168 0.441158
\(636\) 0 0
\(637\) 6.37228 0.252479
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 26.5330i − 1.04799i −0.851721 0.523995i \(-0.824441\pi\)
0.851721 0.523995i \(-0.175559\pi\)
\(642\) 0 0
\(643\) − 42.2689i − 1.66692i −0.552577 0.833462i \(-0.686355\pi\)
0.552577 0.833462i \(-0.313645\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.3505 −0.957318 −0.478659 0.878001i \(-0.658877\pi\)
−0.478659 + 0.878001i \(0.658877\pi\)
\(648\) 0 0
\(649\) −7.37228 −0.289387
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 48.4974i 1.89785i 0.315501 + 0.948925i \(0.397828\pi\)
−0.315501 + 0.948925i \(0.602172\pi\)
\(654\) 0 0
\(655\) 35.9306i 1.40393i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −44.7446 −1.74300 −0.871500 0.490395i \(-0.836853\pi\)
−0.871500 + 0.490395i \(0.836853\pi\)
\(660\) 0 0
\(661\) 39.0951 1.52062 0.760311 0.649559i \(-0.225046\pi\)
0.760311 + 0.649559i \(0.225046\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 19.6974i − 0.762685i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.74456 0.105953
\(672\) 0 0
\(673\) 0.372281 0.0143504 0.00717520 0.999974i \(-0.497716\pi\)
0.00717520 + 0.999974i \(0.497716\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.4125i 1.09198i 0.837791 + 0.545991i \(0.183847\pi\)
−0.837791 + 0.545991i \(0.816153\pi\)
\(678\) 0 0
\(679\) − 9.10268i − 0.349329i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −44.4891 −1.70233 −0.851165 0.524899i \(-0.824103\pi\)
−0.851165 + 0.524899i \(0.824103\pi\)
\(684\) 0 0
\(685\) −2.74456 −0.104864
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 11.1846i 0.426099i
\(690\) 0 0
\(691\) 3.16915i 0.120560i 0.998182 + 0.0602800i \(0.0191994\pi\)
−0.998182 + 0.0602800i \(0.980801\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.37228 −0.241714
\(696\) 0 0
\(697\) −10.9783 −0.415831
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 21.4843i − 0.811452i −0.913995 0.405726i \(-0.867019\pi\)
0.913995 0.405726i \(-0.132981\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 9.88316 0.371694
\(708\) 0 0
\(709\) −25.2554 −0.948488 −0.474244 0.880393i \(-0.657279\pi\)
−0.474244 + 0.880393i \(0.657279\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 25.0410i − 0.937793i
\(714\) 0 0
\(715\) − 1.58457i − 0.0592597i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −25.3723 −0.946226 −0.473113 0.881002i \(-0.656870\pi\)
−0.473113 + 0.881002i \(0.656870\pi\)
\(720\) 0 0
\(721\) 2.00000 0.0744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 8.01544i − 0.297686i
\(726\) 0 0
\(727\) 27.4179i 1.01687i 0.861100 + 0.508436i \(0.169776\pi\)
−0.861100 + 0.508436i \(0.830224\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −34.4674 −1.27482
\(732\) 0 0
\(733\) 9.37228 0.346173 0.173087 0.984907i \(-0.444626\pi\)
0.173087 + 0.984907i \(0.444626\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 5.15848i − 0.190015i
\(738\) 0 0
\(739\) − 15.1460i − 0.557156i −0.960414 0.278578i \(-0.910137\pi\)
0.960414 0.278578i \(-0.0898630\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.13859 0.0784574 0.0392287 0.999230i \(-0.487510\pi\)
0.0392287 + 0.999230i \(0.487510\pi\)
\(744\) 0 0
\(745\) −50.0951 −1.83534
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.57924i 0.0942434i
\(750\) 0 0
\(751\) 3.46410i 0.126407i 0.998001 + 0.0632034i \(0.0201317\pi\)
−0.998001 + 0.0632034i \(0.979868\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 38.9783 1.41856
\(756\) 0 0
\(757\) −43.7228 −1.58913 −0.794566 0.607177i \(-0.792302\pi\)
−0.794566 + 0.607177i \(0.792302\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.1137i 0.511621i 0.966727 + 0.255810i \(0.0823423\pi\)
−0.966727 + 0.255810i \(0.917658\pi\)
\(762\) 0 0
\(763\) − 0.994667i − 0.0360094i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.7446 −0.424072
\(768\) 0 0
\(769\) 10.2337 0.369036 0.184518 0.982829i \(-0.440928\pi\)
0.184518 + 0.982829i \(0.440928\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.27806i 0.261774i 0.991397 + 0.130887i \(0.0417824\pi\)
−0.991397 + 0.130887i \(0.958218\pi\)
\(774\) 0 0
\(775\) − 10.1899i − 0.366033i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 5.72281 0.204778
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 33.1113i − 1.18179i
\(786\) 0 0
\(787\) − 44.7384i − 1.59475i −0.603484 0.797375i \(-0.706221\pi\)
0.603484 0.797375i \(-0.293779\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1.48913 −0.0529472
\(792\) 0 0
\(793\) 4.37228 0.155264
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 28.5051i − 1.00970i −0.863206 0.504851i \(-0.831547\pi\)
0.863206 0.504851i \(-0.168453\pi\)
\(798\) 0 0
\(799\) 12.5668i 0.444581i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.788061 0.0278101
\(804\) 0 0
\(805\) 6.74456 0.237715
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.6410i 1.21791i 0.793204 + 0.608957i \(0.208412\pi\)
−0.793204 + 0.608957i \(0.791588\pi\)
\(810\) 0 0
\(811\) 24.9484i 0.876058i 0.898961 + 0.438029i \(0.144323\pi\)
−0.898961 + 0.438029i \(0.855677\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 4.16381i − 0.145318i −0.997357 0.0726591i \(-0.976852\pi\)
0.997357 0.0726591i \(-0.0231485\pi\)
\(822\) 0 0
\(823\) 15.2009i 0.529871i 0.964266 + 0.264936i \(0.0853507\pi\)
−0.964266 + 0.264936i \(0.914649\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 38.1168 1.32545 0.662726 0.748862i \(-0.269399\pi\)
0.662726 + 0.748862i \(0.269399\pi\)
\(828\) 0 0
\(829\) −3.11684 −0.108252 −0.0541262 0.998534i \(-0.517237\pi\)
−0.0541262 + 0.998534i \(0.517237\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.0742i 0.764827i
\(834\) 0 0
\(835\) − 14.7962i − 0.512043i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.8397 1.54804 0.774018 0.633163i \(-0.218244\pi\)
0.774018 + 0.633163i \(0.218244\pi\)
\(840\) 0 0
\(841\) −5.11684 −0.176443
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 2.52434i − 0.0868399i
\(846\) 0 0
\(847\) 8.40297i 0.288730i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.11684 −0.0725645
\(852\) 0 0
\(853\) −11.8832 −0.406872 −0.203436 0.979088i \(-0.565211\pi\)
−0.203436 + 0.979088i \(0.565211\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 31.2867i 1.06873i 0.845253 + 0.534367i \(0.179450\pi\)
−0.845253 + 0.534367i \(0.820550\pi\)
\(858\) 0 0
\(859\) − 30.0897i − 1.02665i −0.858195 0.513323i \(-0.828414\pi\)
0.858195 0.513323i \(-0.171586\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.6060 0.633355 0.316677 0.948533i \(-0.397433\pi\)
0.316677 + 0.948533i \(0.397433\pi\)
\(864\) 0 0
\(865\) −33.4891 −1.13866
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.185148i 0.00628071i
\(870\) 0 0
\(871\) − 8.21782i − 0.278450i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −7.25544 −0.245279
\(876\) 0 0
\(877\) 21.0951 0.712331 0.356165 0.934423i \(-0.384084\pi\)
0.356165 + 0.934423i \(0.384084\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 17.4303i 0.587242i 0.955922 + 0.293621i \(0.0948604\pi\)
−0.955922 + 0.293621i \(0.905140\pi\)
\(882\) 0 0
\(883\) − 55.6280i − 1.87203i −0.351958 0.936016i \(-0.614484\pi\)
0.351958 0.936016i \(-0.385516\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 39.6060 1.32984 0.664919 0.746915i \(-0.268466\pi\)
0.664919 + 0.746915i \(0.268466\pi\)
\(888\) 0 0
\(889\) 3.48913 0.117022
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 11.9769i 0.400343i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −43.3723 −1.44655
\(900\) 0 0
\(901\) −38.7446 −1.29077
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 45.0882i − 1.49878i
\(906\) 0 0
\(907\) 38.4550i 1.27688i 0.769673 + 0.638438i \(0.220419\pi\)
−0.769673 + 0.638438i \(0.779581\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −39.0951 −1.29528 −0.647639 0.761947i \(-0.724244\pi\)
−0.647639 + 0.761947i \(0.724244\pi\)
\(912\) 0 0
\(913\) −3.92665 −0.129953
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.2772i 0.372405i
\(918\) 0 0
\(919\) − 52.7161i − 1.73895i −0.493981 0.869473i \(-0.664459\pi\)
0.493981 0.869473i \(-0.335541\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.11684 0.300085
\(924\) 0 0
\(925\) −0.861407 −0.0283229
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 44.6458i − 1.46478i −0.680885 0.732390i \(-0.738405\pi\)
0.680885 0.732390i \(-0.261595\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.48913 0.179514
\(936\) 0 0
\(937\) 7.97825 0.260638 0.130319 0.991472i \(-0.458400\pi\)
0.130319 + 0.991472i \(0.458400\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 23.9538i − 0.780870i −0.920630 0.390435i \(-0.872325\pi\)
0.920630 0.390435i \(-0.127675\pi\)
\(942\) 0 0
\(943\) − 10.6873i − 0.348025i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 40.7228 1.32331 0.661657 0.749807i \(-0.269854\pi\)
0.661657 + 0.749807i \(0.269854\pi\)
\(948\) 0 0
\(949\) 1.25544 0.0407532
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 45.7330i − 1.48144i −0.671815 0.740719i \(-0.734485\pi\)
0.671815 0.740719i \(-0.265515\pi\)
\(954\) 0 0
\(955\) − 16.7306i − 0.541390i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.861407 −0.0278163
\(960\) 0 0
\(961\) −24.1386 −0.778664
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 42.2689i − 1.36069i
\(966\) 0 0
\(967\) 0.202380i 0.00650809i 0.999995 + 0.00325405i \(0.00103580\pi\)
−0.999995 + 0.00325405i \(0.998964\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.9783 0.994139 0.497070 0.867711i \(-0.334409\pi\)
0.497070 + 0.867711i \(0.334409\pi\)
\(972\) 0 0
\(973\) −2.00000 −0.0641171
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.4086i 0.460973i 0.973075 + 0.230487i \(0.0740318\pi\)
−0.973075 + 0.230487i \(0.925968\pi\)
\(978\) 0 0
\(979\) − 2.26706i − 0.0724554i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −41.2554 −1.31584 −0.657922 0.753086i \(-0.728564\pi\)
−0.657922 + 0.753086i \(0.728564\pi\)
\(984\) 0 0
\(985\) 19.8614 0.632837
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 33.5538i − 1.06695i
\(990\) 0 0
\(991\) − 31.8217i − 1.01085i −0.862870 0.505425i \(-0.831336\pi\)
0.862870 0.505425i \(-0.168664\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 15.1168 0.479236
\(996\) 0 0
\(997\) −15.1168 −0.478755 −0.239378 0.970927i \(-0.576943\pi\)
−0.239378 + 0.970927i \(0.576943\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5616.2.d.j.2159.1 yes 4
3.2 odd 2 5616.2.d.e.2159.4 yes 4
4.3 odd 2 5616.2.d.e.2159.1 4
12.11 even 2 inner 5616.2.d.j.2159.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5616.2.d.e.2159.1 4 4.3 odd 2
5616.2.d.e.2159.4 yes 4 3.2 odd 2
5616.2.d.j.2159.1 yes 4 1.1 even 1 trivial
5616.2.d.j.2159.4 yes 4 12.11 even 2 inner