Properties

Label 2-5616-12.11-c1-0-26
Degree $2$
Conductor $5616$
Sign $0.866 - 0.5i$
Analytic cond. $44.8439$
Root an. cond. $6.69656$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.52i·5-s − 0.792i·7-s + 0.627·11-s + 13-s + 3.46i·17-s − 3.37·23-s − 1.37·25-s + 5.84i·29-s + 7.42i·31-s − 2·35-s + 0.627·37-s + 3.16i·41-s + 9.94i·43-s + 3.62·47-s + 6.37·49-s + ⋯
L(s)  = 1  − 1.12i·5-s − 0.299i·7-s + 0.189·11-s + 0.277·13-s + 0.840i·17-s − 0.703·23-s − 0.274·25-s + 1.08i·29-s + 1.33i·31-s − 0.338·35-s + 0.103·37-s + 0.494i·41-s + 1.51i·43-s + 0.529·47-s + 0.910·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5616\)    =    \(2^{4} \cdot 3^{3} \cdot 13\)
Sign: $0.866 - 0.5i$
Analytic conductor: \(44.8439\)
Root analytic conductor: \(6.69656\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5616} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5616,\ (\ :1/2),\ 0.866 - 0.5i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.662271696\)
\(L(\frac12)\) \(\approx\) \(1.662271696\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2.52iT - 5T^{2} \)
7 \( 1 + 0.792iT - 7T^{2} \)
11 \( 1 - 0.627T + 11T^{2} \)
17 \( 1 - 3.46iT - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 3.37T + 23T^{2} \)
29 \( 1 - 5.84iT - 29T^{2} \)
31 \( 1 - 7.42iT - 31T^{2} \)
37 \( 1 - 0.627T + 37T^{2} \)
41 \( 1 - 3.16iT - 41T^{2} \)
43 \( 1 - 9.94iT - 43T^{2} \)
47 \( 1 - 3.62T + 47T^{2} \)
53 \( 1 - 11.1iT - 53T^{2} \)
59 \( 1 + 11.7T + 59T^{2} \)
61 \( 1 - 4.37T + 61T^{2} \)
67 \( 1 + 8.21iT - 67T^{2} \)
71 \( 1 - 9.11T + 71T^{2} \)
73 \( 1 - 1.25T + 73T^{2} \)
79 \( 1 - 0.294iT - 79T^{2} \)
83 \( 1 + 6.25T + 83T^{2} \)
89 \( 1 + 3.61iT - 89T^{2} \)
97 \( 1 - 11.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.203807034482836623307528736493, −7.66881059968378386939275164666, −6.69384874594328393230875423699, −6.05465380112278079651842917596, −5.22352952914917925289381157662, −4.56350168467162047845850867105, −3.88123876125947419614500546659, −2.96702266774611522014869127205, −1.66034514458297819440918705373, −1.01921324672618546754819195503, 0.49158377246115051641895484165, 2.06933328491322996154053236950, 2.63907270920047957176595447048, 3.60247191213630308114947451333, 4.24297966958479947874133182985, 5.35697926660728290405198127057, 5.99040595513250416279541406171, 6.69373729670559220946745291701, 7.31202264806812000476896748166, 7.969650473658393386205139198311

Graph of the $Z$-function along the critical line