L(s) = 1 | − 2.52i·5-s − 0.792i·7-s + 0.627·11-s + 13-s + 3.46i·17-s − 3.37·23-s − 1.37·25-s + 5.84i·29-s + 7.42i·31-s − 2·35-s + 0.627·37-s + 3.16i·41-s + 9.94i·43-s + 3.62·47-s + 6.37·49-s + ⋯ |
L(s) = 1 | − 1.12i·5-s − 0.299i·7-s + 0.189·11-s + 0.277·13-s + 0.840i·17-s − 0.703·23-s − 0.274·25-s + 1.08i·29-s + 1.33i·31-s − 0.338·35-s + 0.103·37-s + 0.494i·41-s + 1.51i·43-s + 0.529·47-s + 0.910·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5616 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.866 - 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.662271696\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.662271696\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 + 2.52iT - 5T^{2} \) |
| 7 | \( 1 + 0.792iT - 7T^{2} \) |
| 11 | \( 1 - 0.627T + 11T^{2} \) |
| 17 | \( 1 - 3.46iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + 3.37T + 23T^{2} \) |
| 29 | \( 1 - 5.84iT - 29T^{2} \) |
| 31 | \( 1 - 7.42iT - 31T^{2} \) |
| 37 | \( 1 - 0.627T + 37T^{2} \) |
| 41 | \( 1 - 3.16iT - 41T^{2} \) |
| 43 | \( 1 - 9.94iT - 43T^{2} \) |
| 47 | \( 1 - 3.62T + 47T^{2} \) |
| 53 | \( 1 - 11.1iT - 53T^{2} \) |
| 59 | \( 1 + 11.7T + 59T^{2} \) |
| 61 | \( 1 - 4.37T + 61T^{2} \) |
| 67 | \( 1 + 8.21iT - 67T^{2} \) |
| 71 | \( 1 - 9.11T + 71T^{2} \) |
| 73 | \( 1 - 1.25T + 73T^{2} \) |
| 79 | \( 1 - 0.294iT - 79T^{2} \) |
| 83 | \( 1 + 6.25T + 83T^{2} \) |
| 89 | \( 1 + 3.61iT - 89T^{2} \) |
| 97 | \( 1 - 11.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.203807034482836623307528736493, −7.66881059968378386939275164666, −6.69384874594328393230875423699, −6.05465380112278079651842917596, −5.22352952914917925289381157662, −4.56350168467162047845850867105, −3.88123876125947419614500546659, −2.96702266774611522014869127205, −1.66034514458297819440918705373, −1.01921324672618546754819195503,
0.49158377246115051641895484165, 2.06933328491322996154053236950, 2.63907270920047957176595447048, 3.60247191213630308114947451333, 4.24297966958479947874133182985, 5.35697926660728290405198127057, 5.99040595513250416279541406171, 6.69373729670559220946745291701, 7.31202264806812000476896748166, 7.969650473658393386205139198311