Properties

Label 560.3.v.a.447.2
Level $560$
Weight $3$
Character 560.447
Analytic conductor $15.259$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.2
Character \(\chi\) \(=\) 560.447
Dual form 560.3.v.a.223.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.74578 + 3.74578i) q^{3} +(3.76482 - 3.29031i) q^{5} +(-0.0261022 + 6.99995i) q^{7} -19.0618i q^{9} -5.33929i q^{11} +(13.8937 + 13.8937i) q^{13} +(-1.77738 + 26.4270i) q^{15} +(12.8989 - 12.8989i) q^{17} -25.2908i q^{19} +(-26.1225 - 26.3181i) q^{21} +(12.2842 + 12.2842i) q^{23} +(3.34766 - 24.7748i) q^{25} +(37.6891 + 37.6891i) q^{27} +13.3664i q^{29} +46.4474 q^{31} +(19.9998 + 19.9998i) q^{33} +(22.9338 + 26.4394i) q^{35} +(6.06076 + 6.06076i) q^{37} -104.086 q^{39} +80.3318i q^{41} +(-40.6508 - 40.6508i) q^{43} +(-62.7192 - 71.7640i) q^{45} +(19.3721 + 19.3721i) q^{47} +(-48.9986 - 0.365428i) q^{49} +96.6326i q^{51} +(-34.8178 + 34.8178i) q^{53} +(-17.5680 - 20.1015i) q^{55} +(94.7340 + 94.7340i) q^{57} +58.6144i q^{59} +14.4721i q^{61} +(133.431 + 0.497554i) q^{63} +(98.0219 + 6.59257i) q^{65} +(-36.9195 + 36.9195i) q^{67} -92.0282 q^{69} +24.3539i q^{71} +(30.9090 + 30.9090i) q^{73} +(80.2615 + 105.341i) q^{75} +(37.3748 + 0.139367i) q^{77} +135.635 q^{79} -110.795 q^{81} +(22.0590 - 22.0590i) q^{83} +(6.12052 - 91.0031i) q^{85} +(-50.0677 - 50.0677i) q^{87} -12.2861 q^{89} +(-97.6179 + 96.8926i) q^{91} +(-173.982 + 173.982i) q^{93} +(-83.2148 - 95.2153i) q^{95} +(46.1549 - 46.1549i) q^{97} -101.776 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 64 q^{21} + 72 q^{25} - 72 q^{37} - 272 q^{53} + 280 q^{57} + 376 q^{65} + 24 q^{77} - 528 q^{81} - 96 q^{85} - 552 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.74578 + 3.74578i −1.24859 + 1.24859i −0.292253 + 0.956341i \(0.594405\pi\)
−0.956341 + 0.292253i \(0.905595\pi\)
\(4\) 0 0
\(5\) 3.76482 3.29031i 0.752963 0.658063i
\(6\) 0 0
\(7\) −0.0261022 + 6.99995i −0.00372889 + 0.999993i
\(8\) 0 0
\(9\) 19.0618i 2.11797i
\(10\) 0 0
\(11\) 5.33929i 0.485390i −0.970103 0.242695i \(-0.921969\pi\)
0.970103 0.242695i \(-0.0780315\pi\)
\(12\) 0 0
\(13\) 13.8937 + 13.8937i 1.06875 + 1.06875i 0.997456 + 0.0712908i \(0.0227118\pi\)
0.0712908 + 0.997456i \(0.477288\pi\)
\(14\) 0 0
\(15\) −1.77738 + 26.4270i −0.118492 + 1.76180i
\(16\) 0 0
\(17\) 12.8989 12.8989i 0.758756 0.758756i −0.217340 0.976096i \(-0.569738\pi\)
0.976096 + 0.217340i \(0.0697379\pi\)
\(18\) 0 0
\(19\) 25.2908i 1.33110i −0.746355 0.665548i \(-0.768198\pi\)
0.746355 0.665548i \(-0.231802\pi\)
\(20\) 0 0
\(21\) −26.1225 26.3181i −1.24393 1.25324i
\(22\) 0 0
\(23\) 12.2842 + 12.2842i 0.534098 + 0.534098i 0.921789 0.387692i \(-0.126727\pi\)
−0.387692 + 0.921789i \(0.626727\pi\)
\(24\) 0 0
\(25\) 3.34766 24.7748i 0.133907 0.990994i
\(26\) 0 0
\(27\) 37.6891 + 37.6891i 1.39589 + 1.39589i
\(28\) 0 0
\(29\) 13.3664i 0.460911i 0.973083 + 0.230456i \(0.0740217\pi\)
−0.973083 + 0.230456i \(0.925978\pi\)
\(30\) 0 0
\(31\) 46.4474 1.49830 0.749152 0.662398i \(-0.230461\pi\)
0.749152 + 0.662398i \(0.230461\pi\)
\(32\) 0 0
\(33\) 19.9998 + 19.9998i 0.606055 + 0.606055i
\(34\) 0 0
\(35\) 22.9338 + 26.4394i 0.655251 + 0.755412i
\(36\) 0 0
\(37\) 6.06076 + 6.06076i 0.163804 + 0.163804i 0.784250 0.620445i \(-0.213048\pi\)
−0.620445 + 0.784250i \(0.713048\pi\)
\(38\) 0 0
\(39\) −104.086 −2.66886
\(40\) 0 0
\(41\) 80.3318i 1.95931i 0.200681 + 0.979657i \(0.435684\pi\)
−0.200681 + 0.979657i \(0.564316\pi\)
\(42\) 0 0
\(43\) −40.6508 40.6508i −0.945367 0.945367i 0.0532157 0.998583i \(-0.483053\pi\)
−0.998583 + 0.0532157i \(0.983053\pi\)
\(44\) 0 0
\(45\) −62.7192 71.7640i −1.39376 1.59476i
\(46\) 0 0
\(47\) 19.3721 + 19.3721i 0.412173 + 0.412173i 0.882495 0.470322i \(-0.155862\pi\)
−0.470322 + 0.882495i \(0.655862\pi\)
\(48\) 0 0
\(49\) −48.9986 0.365428i −0.999972 0.00745772i
\(50\) 0 0
\(51\) 96.6326i 1.89476i
\(52\) 0 0
\(53\) −34.8178 + 34.8178i −0.656940 + 0.656940i −0.954655 0.297715i \(-0.903776\pi\)
0.297715 + 0.954655i \(0.403776\pi\)
\(54\) 0 0
\(55\) −17.5680 20.1015i −0.319417 0.365481i
\(56\) 0 0
\(57\) 94.7340 + 94.7340i 1.66200 + 1.66200i
\(58\) 0 0
\(59\) 58.6144i 0.993465i 0.867904 + 0.496732i \(0.165467\pi\)
−0.867904 + 0.496732i \(0.834533\pi\)
\(60\) 0 0
\(61\) 14.4721i 0.237247i 0.992939 + 0.118624i \(0.0378482\pi\)
−0.992939 + 0.118624i \(0.962152\pi\)
\(62\) 0 0
\(63\) 133.431 + 0.497554i 2.11796 + 0.00789768i
\(64\) 0 0
\(65\) 98.0219 + 6.59257i 1.50803 + 0.101424i
\(66\) 0 0
\(67\) −36.9195 + 36.9195i −0.551037 + 0.551037i −0.926740 0.375703i \(-0.877401\pi\)
0.375703 + 0.926740i \(0.377401\pi\)
\(68\) 0 0
\(69\) −92.0282 −1.33374
\(70\) 0 0
\(71\) 24.3539i 0.343013i 0.985183 + 0.171506i \(0.0548634\pi\)
−0.985183 + 0.171506i \(0.945137\pi\)
\(72\) 0 0
\(73\) 30.9090 + 30.9090i 0.423411 + 0.423411i 0.886376 0.462965i \(-0.153215\pi\)
−0.462965 + 0.886376i \(0.653215\pi\)
\(74\) 0 0
\(75\) 80.2615 + 105.341i 1.07015 + 1.40454i
\(76\) 0 0
\(77\) 37.3748 + 0.139367i 0.485387 + 0.00180997i
\(78\) 0 0
\(79\) 135.635 1.71690 0.858448 0.512901i \(-0.171429\pi\)
0.858448 + 0.512901i \(0.171429\pi\)
\(80\) 0 0
\(81\) −110.795 −1.36784
\(82\) 0 0
\(83\) 22.0590 22.0590i 0.265772 0.265772i −0.561622 0.827394i \(-0.689823\pi\)
0.827394 + 0.561622i \(0.189823\pi\)
\(84\) 0 0
\(85\) 6.12052 91.0031i 0.0720061 1.07062i
\(86\) 0 0
\(87\) −50.0677 50.0677i −0.575491 0.575491i
\(88\) 0 0
\(89\) −12.2861 −0.138046 −0.0690232 0.997615i \(-0.521988\pi\)
−0.0690232 + 0.997615i \(0.521988\pi\)
\(90\) 0 0
\(91\) −97.6179 + 96.8926i −1.07272 + 1.06475i
\(92\) 0 0
\(93\) −173.982 + 173.982i −1.87077 + 1.87077i
\(94\) 0 0
\(95\) −83.2148 95.2153i −0.875945 1.00227i
\(96\) 0 0
\(97\) 46.1549 46.1549i 0.475824 0.475824i −0.427969 0.903793i \(-0.640771\pi\)
0.903793 + 0.427969i \(0.140771\pi\)
\(98\) 0 0
\(99\) −101.776 −1.02804
\(100\) 0 0
\(101\) 102.763i 1.01745i 0.860928 + 0.508726i \(0.169883\pi\)
−0.860928 + 0.508726i \(0.830117\pi\)
\(102\) 0 0
\(103\) −18.2973 + 18.2973i −0.177643 + 0.177643i −0.790328 0.612684i \(-0.790090\pi\)
0.612684 + 0.790328i \(0.290090\pi\)
\(104\) 0 0
\(105\) −184.941 13.1314i −1.76134 0.125060i
\(106\) 0 0
\(107\) 1.83463 1.83463i 0.0171461 0.0171461i −0.698482 0.715628i \(-0.746141\pi\)
0.715628 + 0.698482i \(0.246141\pi\)
\(108\) 0 0
\(109\) 129.856i 1.19134i −0.803228 0.595672i \(-0.796886\pi\)
0.803228 0.595672i \(-0.203114\pi\)
\(110\) 0 0
\(111\) −45.4046 −0.409050
\(112\) 0 0
\(113\) 113.005 113.005i 1.00005 1.00005i 4.51785e−5 1.00000i \(-0.499986\pi\)
1.00000 4.51785e-5i \(-1.43808e-5\pi\)
\(114\) 0 0
\(115\) 86.6669 + 5.82889i 0.753626 + 0.0506860i
\(116\) 0 0
\(117\) 264.838 264.838i 2.26358 2.26358i
\(118\) 0 0
\(119\) 89.9547 + 90.6281i 0.755922 + 0.761580i
\(120\) 0 0
\(121\) 92.4919 0.764396
\(122\) 0 0
\(123\) −300.906 300.906i −2.44639 2.44639i
\(124\) 0 0
\(125\) −68.9137 104.288i −0.551310 0.834301i
\(126\) 0 0
\(127\) −25.4533 + 25.4533i −0.200420 + 0.200420i −0.800180 0.599760i \(-0.795263\pi\)
0.599760 + 0.800180i \(0.295263\pi\)
\(128\) 0 0
\(129\) 304.538 2.36076
\(130\) 0 0
\(131\) −110.052 −0.840091 −0.420045 0.907503i \(-0.637986\pi\)
−0.420045 + 0.907503i \(0.637986\pi\)
\(132\) 0 0
\(133\) 177.035 + 0.660147i 1.33109 + 0.00496351i
\(134\) 0 0
\(135\) 265.902 + 17.8835i 1.96964 + 0.132471i
\(136\) 0 0
\(137\) 65.8786 + 65.8786i 0.480866 + 0.480866i 0.905408 0.424542i \(-0.139565\pi\)
−0.424542 + 0.905408i \(0.639565\pi\)
\(138\) 0 0
\(139\) 181.155i 1.30327i −0.758531 0.651637i \(-0.774083\pi\)
0.758531 0.651637i \(-0.225917\pi\)
\(140\) 0 0
\(141\) −145.128 −1.02927
\(142\) 0 0
\(143\) 74.1826 74.1826i 0.518759 0.518759i
\(144\) 0 0
\(145\) 43.9797 + 50.3221i 0.303309 + 0.347049i
\(146\) 0 0
\(147\) 184.907 182.169i 1.25787 1.23925i
\(148\) 0 0
\(149\) 262.986i 1.76501i −0.470306 0.882504i \(-0.655856\pi\)
0.470306 0.882504i \(-0.344144\pi\)
\(150\) 0 0
\(151\) 16.4378i 0.108859i 0.998518 + 0.0544297i \(0.0173341\pi\)
−0.998518 + 0.0544297i \(0.982666\pi\)
\(152\) 0 0
\(153\) −245.875 245.875i −1.60703 1.60703i
\(154\) 0 0
\(155\) 174.866 152.827i 1.12817 0.985979i
\(156\) 0 0
\(157\) −132.576 + 132.576i −0.844435 + 0.844435i −0.989432 0.144997i \(-0.953683\pi\)
0.144997 + 0.989432i \(0.453683\pi\)
\(158\) 0 0
\(159\) 260.840i 1.64050i
\(160\) 0 0
\(161\) −86.3098 + 85.6685i −0.536086 + 0.532102i
\(162\) 0 0
\(163\) 99.2255 + 99.2255i 0.608746 + 0.608746i 0.942618 0.333873i \(-0.108356\pi\)
−0.333873 + 0.942618i \(0.608356\pi\)
\(164\) 0 0
\(165\) 141.101 + 9.48994i 0.855160 + 0.0575148i
\(166\) 0 0
\(167\) 100.023 + 100.023i 0.598939 + 0.598939i 0.940030 0.341092i \(-0.110797\pi\)
−0.341092 + 0.940030i \(0.610797\pi\)
\(168\) 0 0
\(169\) 217.070i 1.28444i
\(170\) 0 0
\(171\) −482.088 −2.81923
\(172\) 0 0
\(173\) 173.655 + 173.655i 1.00379 + 1.00379i 0.999993 + 0.00379621i \(0.00120837\pi\)
0.00379621 + 0.999993i \(0.498792\pi\)
\(174\) 0 0
\(175\) 173.335 + 24.0802i 0.990488 + 0.137601i
\(176\) 0 0
\(177\) −219.557 219.557i −1.24043 1.24043i
\(178\) 0 0
\(179\) −235.460 −1.31542 −0.657708 0.753273i \(-0.728474\pi\)
−0.657708 + 0.753273i \(0.728474\pi\)
\(180\) 0 0
\(181\) 50.8514i 0.280947i 0.990084 + 0.140473i \(0.0448625\pi\)
−0.990084 + 0.140473i \(0.955138\pi\)
\(182\) 0 0
\(183\) −54.2092 54.2092i −0.296225 0.296225i
\(184\) 0 0
\(185\) 42.7594 + 2.87584i 0.231132 + 0.0155451i
\(186\) 0 0
\(187\) −68.8708 68.8708i −0.368293 0.368293i
\(188\) 0 0
\(189\) −264.806 + 262.838i −1.40109 + 1.39068i
\(190\) 0 0
\(191\) 5.08193i 0.0266070i 0.999912 + 0.0133035i \(0.00423476\pi\)
−0.999912 + 0.0133035i \(0.995765\pi\)
\(192\) 0 0
\(193\) −119.528 + 119.528i −0.619318 + 0.619318i −0.945357 0.326038i \(-0.894286\pi\)
0.326038 + 0.945357i \(0.394286\pi\)
\(194\) 0 0
\(195\) −391.863 + 342.474i −2.00955 + 1.75628i
\(196\) 0 0
\(197\) 33.8459 + 33.8459i 0.171807 + 0.171807i 0.787773 0.615966i \(-0.211234\pi\)
−0.615966 + 0.787773i \(0.711234\pi\)
\(198\) 0 0
\(199\) 190.458i 0.957076i −0.878067 0.478538i \(-0.841167\pi\)
0.878067 0.478538i \(-0.158833\pi\)
\(200\) 0 0
\(201\) 276.585i 1.37604i
\(202\) 0 0
\(203\) −93.5643 0.348893i −0.460908 0.00171869i
\(204\) 0 0
\(205\) 264.317 + 302.435i 1.28935 + 1.47529i
\(206\) 0 0
\(207\) 234.159 234.159i 1.13120 1.13120i
\(208\) 0 0
\(209\) −135.035 −0.646102
\(210\) 0 0
\(211\) 136.412i 0.646503i −0.946313 0.323251i \(-0.895224\pi\)
0.946313 0.323251i \(-0.104776\pi\)
\(212\) 0 0
\(213\) −91.2244 91.2244i −0.428283 0.428283i
\(214\) 0 0
\(215\) −286.797 19.2888i −1.33394 0.0897155i
\(216\) 0 0
\(217\) −1.21238 + 325.130i −0.00558701 + 1.49829i
\(218\) 0 0
\(219\) −231.557 −1.05734
\(220\) 0 0
\(221\) 358.426 1.62184
\(222\) 0 0
\(223\) 26.3304 26.3304i 0.118073 0.118073i −0.645601 0.763675i \(-0.723393\pi\)
0.763675 + 0.645601i \(0.223393\pi\)
\(224\) 0 0
\(225\) −472.252 63.8124i −2.09890 0.283611i
\(226\) 0 0
\(227\) 72.2282 + 72.2282i 0.318186 + 0.318186i 0.848070 0.529884i \(-0.177765\pi\)
−0.529884 + 0.848070i \(0.677765\pi\)
\(228\) 0 0
\(229\) 233.994 1.02181 0.510905 0.859637i \(-0.329310\pi\)
0.510905 + 0.859637i \(0.329310\pi\)
\(230\) 0 0
\(231\) −140.520 + 139.476i −0.608311 + 0.603791i
\(232\) 0 0
\(233\) −40.2994 + 40.2994i −0.172959 + 0.172959i −0.788278 0.615319i \(-0.789027\pi\)
0.615319 + 0.788278i \(0.289027\pi\)
\(234\) 0 0
\(235\) 136.673 + 9.19210i 0.581587 + 0.0391153i
\(236\) 0 0
\(237\) −508.058 + 508.058i −2.14370 + 2.14370i
\(238\) 0 0
\(239\) −103.504 −0.433070 −0.216535 0.976275i \(-0.569476\pi\)
−0.216535 + 0.976275i \(0.569476\pi\)
\(240\) 0 0
\(241\) 181.600i 0.753528i −0.926309 0.376764i \(-0.877037\pi\)
0.926309 0.376764i \(-0.122963\pi\)
\(242\) 0 0
\(243\) 75.8106 75.8106i 0.311978 0.311978i
\(244\) 0 0
\(245\) −185.673 + 159.845i −0.757850 + 0.652429i
\(246\) 0 0
\(247\) 351.383 351.383i 1.42261 1.42261i
\(248\) 0 0
\(249\) 165.257i 0.663681i
\(250\) 0 0
\(251\) 160.287 0.638592 0.319296 0.947655i \(-0.396554\pi\)
0.319296 + 0.947655i \(0.396554\pi\)
\(252\) 0 0
\(253\) 65.5892 65.5892i 0.259246 0.259246i
\(254\) 0 0
\(255\) 317.952 + 363.804i 1.24687 + 1.42668i
\(256\) 0 0
\(257\) 73.6255 73.6255i 0.286481 0.286481i −0.549206 0.835687i \(-0.685070\pi\)
0.835687 + 0.549206i \(0.185070\pi\)
\(258\) 0 0
\(259\) −42.5832 + 42.2668i −0.164414 + 0.163192i
\(260\) 0 0
\(261\) 254.788 0.976197
\(262\) 0 0
\(263\) 196.235 + 196.235i 0.746140 + 0.746140i 0.973752 0.227612i \(-0.0730916\pi\)
−0.227612 + 0.973752i \(0.573092\pi\)
\(264\) 0 0
\(265\) −16.5211 + 245.644i −0.0623438 + 0.926960i
\(266\) 0 0
\(267\) 46.0211 46.0211i 0.172364 0.172364i
\(268\) 0 0
\(269\) −66.6418 −0.247739 −0.123870 0.992299i \(-0.539530\pi\)
−0.123870 + 0.992299i \(0.539530\pi\)
\(270\) 0 0
\(271\) 138.471 0.510965 0.255482 0.966814i \(-0.417766\pi\)
0.255482 + 0.966814i \(0.417766\pi\)
\(272\) 0 0
\(273\) 2.71686 728.594i 0.00995188 2.66884i
\(274\) 0 0
\(275\) −132.280 17.8742i −0.481019 0.0649970i
\(276\) 0 0
\(277\) −215.950 215.950i −0.779602 0.779602i 0.200161 0.979763i \(-0.435853\pi\)
−0.979763 + 0.200161i \(0.935853\pi\)
\(278\) 0 0
\(279\) 885.370i 3.17337i
\(280\) 0 0
\(281\) −104.952 −0.373493 −0.186747 0.982408i \(-0.559794\pi\)
−0.186747 + 0.982408i \(0.559794\pi\)
\(282\) 0 0
\(283\) 322.376 322.376i 1.13914 1.13914i 0.150535 0.988605i \(-0.451901\pi\)
0.988605 0.150535i \(-0.0480995\pi\)
\(284\) 0 0
\(285\) 668.360 + 44.9513i 2.34512 + 0.157724i
\(286\) 0 0
\(287\) −562.319 2.09684i −1.95930 0.00730606i
\(288\) 0 0
\(289\) 43.7611i 0.151422i
\(290\) 0 0
\(291\) 345.772i 1.18822i
\(292\) 0 0
\(293\) 346.513 + 346.513i 1.18264 + 1.18264i 0.979058 + 0.203582i \(0.0652582\pi\)
0.203582 + 0.979058i \(0.434742\pi\)
\(294\) 0 0
\(295\) 192.860 + 220.672i 0.653762 + 0.748042i
\(296\) 0 0
\(297\) 201.233 201.233i 0.677554 0.677554i
\(298\) 0 0
\(299\) 341.347i 1.14163i
\(300\) 0 0
\(301\) 285.615 283.493i 0.948886 0.941836i
\(302\) 0 0
\(303\) −384.927 384.927i −1.27038 1.27038i
\(304\) 0 0
\(305\) 47.6177 + 54.4847i 0.156124 + 0.178638i
\(306\) 0 0
\(307\) 231.968 + 231.968i 0.755596 + 0.755596i 0.975518 0.219922i \(-0.0705802\pi\)
−0.219922 + 0.975518i \(0.570580\pi\)
\(308\) 0 0
\(309\) 137.075i 0.443609i
\(310\) 0 0
\(311\) −518.189 −1.66620 −0.833102 0.553120i \(-0.813437\pi\)
−0.833102 + 0.553120i \(0.813437\pi\)
\(312\) 0 0
\(313\) 22.9990 + 22.9990i 0.0734792 + 0.0734792i 0.742891 0.669412i \(-0.233454\pi\)
−0.669412 + 0.742891i \(0.733454\pi\)
\(314\) 0 0
\(315\) 503.982 437.158i 1.59994 1.38780i
\(316\) 0 0
\(317\) −388.164 388.164i −1.22449 1.22449i −0.966018 0.258476i \(-0.916780\pi\)
−0.258476 0.966018i \(-0.583220\pi\)
\(318\) 0 0
\(319\) 71.3673 0.223722
\(320\) 0 0
\(321\) 13.7443i 0.0428170i
\(322\) 0 0
\(323\) −326.223 326.223i −1.00998 1.00998i
\(324\) 0 0
\(325\) 390.726 297.703i 1.20223 0.916009i
\(326\) 0 0
\(327\) 486.414 + 486.414i 1.48750 + 1.48750i
\(328\) 0 0
\(329\) −136.110 + 135.098i −0.413707 + 0.410633i
\(330\) 0 0
\(331\) 503.079i 1.51988i 0.649995 + 0.759938i \(0.274771\pi\)
−0.649995 + 0.759938i \(0.725229\pi\)
\(332\) 0 0
\(333\) 115.529 115.529i 0.346933 0.346933i
\(334\) 0 0
\(335\) −17.5183 + 260.472i −0.0522936 + 0.777528i
\(336\) 0 0
\(337\) −346.146 346.146i −1.02714 1.02714i −0.999621 0.0275189i \(-0.991239\pi\)
−0.0275189 0.999621i \(-0.508761\pi\)
\(338\) 0 0
\(339\) 846.585i 2.49730i
\(340\) 0 0
\(341\) 247.997i 0.727263i
\(342\) 0 0
\(343\) 3.83695 342.979i 0.0111865 0.999937i
\(344\) 0 0
\(345\) −346.469 + 302.802i −1.00426 + 0.877686i
\(346\) 0 0
\(347\) −147.270 + 147.270i −0.424410 + 0.424410i −0.886719 0.462309i \(-0.847021\pi\)
0.462309 + 0.886719i \(0.347021\pi\)
\(348\) 0 0
\(349\) −183.581 −0.526020 −0.263010 0.964793i \(-0.584715\pi\)
−0.263010 + 0.964793i \(0.584715\pi\)
\(350\) 0 0
\(351\) 1047.28i 2.98371i
\(352\) 0 0
\(353\) 14.1827 + 14.1827i 0.0401777 + 0.0401777i 0.726910 0.686733i \(-0.240956\pi\)
−0.686733 + 0.726910i \(0.740956\pi\)
\(354\) 0 0
\(355\) 80.1320 + 91.6879i 0.225724 + 0.258276i
\(356\) 0 0
\(357\) −676.424 2.52232i −1.89474 0.00706534i
\(358\) 0 0
\(359\) −362.363 −1.00937 −0.504683 0.863305i \(-0.668391\pi\)
−0.504683 + 0.863305i \(0.668391\pi\)
\(360\) 0 0
\(361\) −278.627 −0.771819
\(362\) 0 0
\(363\) −346.455 + 346.455i −0.954420 + 0.954420i
\(364\) 0 0
\(365\) 218.067 + 14.6663i 0.597444 + 0.0401818i
\(366\) 0 0
\(367\) −219.352 219.352i −0.597691 0.597691i 0.342007 0.939697i \(-0.388893\pi\)
−0.939697 + 0.342007i \(0.888893\pi\)
\(368\) 0 0
\(369\) 1531.27 4.14977
\(370\) 0 0
\(371\) −242.814 244.632i −0.654486 0.659386i
\(372\) 0 0
\(373\) −215.361 + 215.361i −0.577375 + 0.577375i −0.934179 0.356804i \(-0.883866\pi\)
0.356804 + 0.934179i \(0.383866\pi\)
\(374\) 0 0
\(375\) 648.774 + 132.503i 1.73006 + 0.353341i
\(376\) 0 0
\(377\) −185.709 + 185.709i −0.492597 + 0.492597i
\(378\) 0 0
\(379\) 668.674 1.76431 0.882156 0.470958i \(-0.156092\pi\)
0.882156 + 0.470958i \(0.156092\pi\)
\(380\) 0 0
\(381\) 190.685i 0.500485i
\(382\) 0 0
\(383\) 254.814 254.814i 0.665311 0.665311i −0.291316 0.956627i \(-0.594093\pi\)
0.956627 + 0.291316i \(0.0940931\pi\)
\(384\) 0 0
\(385\) 141.168 122.450i 0.366670 0.318052i
\(386\) 0 0
\(387\) −774.876 + 774.876i −2.00226 + 2.00226i
\(388\) 0 0
\(389\) 307.853i 0.791395i −0.918381 0.395698i \(-0.870503\pi\)
0.918381 0.395698i \(-0.129497\pi\)
\(390\) 0 0
\(391\) 316.906 0.810500
\(392\) 0 0
\(393\) 412.230 412.230i 1.04893 1.04893i
\(394\) 0 0
\(395\) 510.640 446.281i 1.29276 1.12982i
\(396\) 0 0
\(397\) −116.570 + 116.570i −0.293627 + 0.293627i −0.838511 0.544884i \(-0.816574\pi\)
0.544884 + 0.838511i \(0.316574\pi\)
\(398\) 0 0
\(399\) −665.606 + 660.660i −1.66819 + 1.65579i
\(400\) 0 0
\(401\) 399.186 0.995476 0.497738 0.867327i \(-0.334164\pi\)
0.497738 + 0.867327i \(0.334164\pi\)
\(402\) 0 0
\(403\) 645.327 + 645.327i 1.60131 + 1.60131i
\(404\) 0 0
\(405\) −417.122 + 364.549i −1.02993 + 0.900122i
\(406\) 0 0
\(407\) 32.3602 32.3602i 0.0795090 0.0795090i
\(408\) 0 0
\(409\) −381.063 −0.931693 −0.465847 0.884865i \(-0.654250\pi\)
−0.465847 + 0.884865i \(0.654250\pi\)
\(410\) 0 0
\(411\) −493.534 −1.20081
\(412\) 0 0
\(413\) −410.298 1.52997i −0.993458 0.00370452i
\(414\) 0 0
\(415\) 10.4670 155.629i 0.0252218 0.375011i
\(416\) 0 0
\(417\) 678.567 + 678.567i 1.62726 + 1.62726i
\(418\) 0 0
\(419\) 647.238i 1.54472i −0.635184 0.772361i \(-0.719076\pi\)
0.635184 0.772361i \(-0.280924\pi\)
\(420\) 0 0
\(421\) 102.049 0.242397 0.121198 0.992628i \(-0.461326\pi\)
0.121198 + 0.992628i \(0.461326\pi\)
\(422\) 0 0
\(423\) 369.267 369.267i 0.872972 0.872972i
\(424\) 0 0
\(425\) −276.386 362.748i −0.650320 0.853525i
\(426\) 0 0
\(427\) −101.304 0.377753i −0.237246 0.000884668i
\(428\) 0 0
\(429\) 555.743i 1.29544i
\(430\) 0 0
\(431\) 355.282i 0.824321i 0.911111 + 0.412160i \(0.135226\pi\)
−0.911111 + 0.412160i \(0.864774\pi\)
\(432\) 0 0
\(433\) −564.434 564.434i −1.30354 1.30354i −0.925987 0.377555i \(-0.876765\pi\)
−0.377555 0.925987i \(-0.623235\pi\)
\(434\) 0 0
\(435\) −353.234 23.7572i −0.812033 0.0546142i
\(436\) 0 0
\(437\) 310.679 310.679i 0.710936 0.710936i
\(438\) 0 0
\(439\) 632.554i 1.44090i −0.693508 0.720449i \(-0.743936\pi\)
0.693508 0.720449i \(-0.256064\pi\)
\(440\) 0 0
\(441\) −6.96571 + 934.000i −0.0157953 + 2.11791i
\(442\) 0 0
\(443\) −388.523 388.523i −0.877026 0.877026i 0.116200 0.993226i \(-0.462929\pi\)
−0.993226 + 0.116200i \(0.962929\pi\)
\(444\) 0 0
\(445\) −46.2550 + 40.4252i −0.103944 + 0.0908432i
\(446\) 0 0
\(447\) 985.088 + 985.088i 2.20378 + 2.20378i
\(448\) 0 0
\(449\) 445.157i 0.991440i 0.868482 + 0.495720i \(0.165096\pi\)
−0.868482 + 0.495720i \(0.834904\pi\)
\(450\) 0 0
\(451\) 428.915 0.951032
\(452\) 0 0
\(453\) −61.5723 61.5723i −0.135921 0.135921i
\(454\) 0 0
\(455\) −48.7063 + 685.976i −0.107047 + 1.50764i
\(456\) 0 0
\(457\) 35.6409 + 35.6409i 0.0779889 + 0.0779889i 0.745025 0.667036i \(-0.232437\pi\)
−0.667036 + 0.745025i \(0.732437\pi\)
\(458\) 0 0
\(459\) 972.294 2.11829
\(460\) 0 0
\(461\) 636.338i 1.38034i −0.723646 0.690171i \(-0.757535\pi\)
0.723646 0.690171i \(-0.242465\pi\)
\(462\) 0 0
\(463\) 482.511 + 482.511i 1.04214 + 1.04214i 0.999072 + 0.0430689i \(0.0137135\pi\)
0.0430689 + 0.999072i \(0.486287\pi\)
\(464\) 0 0
\(465\) −82.5546 + 1227.47i −0.177537 + 2.63971i
\(466\) 0 0
\(467\) 143.927 + 143.927i 0.308195 + 0.308195i 0.844209 0.536014i \(-0.180071\pi\)
−0.536014 + 0.844209i \(0.680071\pi\)
\(468\) 0 0
\(469\) −257.471 259.398i −0.548979 0.553088i
\(470\) 0 0
\(471\) 993.203i 2.10871i
\(472\) 0 0
\(473\) −217.047 + 217.047i −0.458872 + 0.458872i
\(474\) 0 0
\(475\) −626.577 84.6653i −1.31911 0.178243i
\(476\) 0 0
\(477\) 663.689 + 663.689i 1.39138 + 1.39138i
\(478\) 0 0
\(479\) 651.349i 1.35981i 0.733300 + 0.679905i \(0.237979\pi\)
−0.733300 + 0.679905i \(0.762021\pi\)
\(480\) 0 0
\(481\) 168.413i 0.350130i
\(482\) 0 0
\(483\) 2.40214 644.193i 0.00497337 1.33373i
\(484\) 0 0
\(485\) 21.9005 325.629i 0.0451558 0.671400i
\(486\) 0 0
\(487\) 10.5862 10.5862i 0.0217375 0.0217375i −0.696154 0.717892i \(-0.745107\pi\)
0.717892 + 0.696154i \(0.245107\pi\)
\(488\) 0 0
\(489\) −743.354 −1.52015
\(490\) 0 0
\(491\) 385.151i 0.784421i −0.919875 0.392211i \(-0.871710\pi\)
0.919875 0.392211i \(-0.128290\pi\)
\(492\) 0 0
\(493\) 172.412 + 172.412i 0.349719 + 0.349719i
\(494\) 0 0
\(495\) −383.169 + 334.876i −0.774079 + 0.676517i
\(496\) 0 0
\(497\) −170.476 0.635691i −0.343010 0.00127906i
\(498\) 0 0
\(499\) −569.287 −1.14086 −0.570428 0.821348i \(-0.693223\pi\)
−0.570428 + 0.821348i \(0.693223\pi\)
\(500\) 0 0
\(501\) −749.327 −1.49566
\(502\) 0 0
\(503\) −647.047 + 647.047i −1.28637 + 1.28637i −0.349402 + 0.936973i \(0.613615\pi\)
−0.936973 + 0.349402i \(0.886385\pi\)
\(504\) 0 0
\(505\) 338.122 + 386.882i 0.669548 + 0.766104i
\(506\) 0 0
\(507\) −813.097 813.097i −1.60374 1.60374i
\(508\) 0 0
\(509\) −194.701 −0.382517 −0.191258 0.981540i \(-0.561257\pi\)
−0.191258 + 0.981540i \(0.561257\pi\)
\(510\) 0 0
\(511\) −217.168 + 215.555i −0.424987 + 0.421829i
\(512\) 0 0
\(513\) 953.190 953.190i 1.85807 1.85807i
\(514\) 0 0
\(515\) −8.68207 + 129.090i −0.0168584 + 0.250659i
\(516\) 0 0
\(517\) 103.434 103.434i 0.200065 0.200065i
\(518\) 0 0
\(519\) −1300.95 −2.50665
\(520\) 0 0
\(521\) 563.976i 1.08249i 0.840866 + 0.541244i \(0.182046\pi\)
−0.840866 + 0.541244i \(0.817954\pi\)
\(522\) 0 0
\(523\) 110.514 110.514i 0.211309 0.211309i −0.593515 0.804823i \(-0.702260\pi\)
0.804823 + 0.593515i \(0.202260\pi\)
\(524\) 0 0
\(525\) −739.475 + 559.077i −1.40852 + 1.06491i
\(526\) 0 0
\(527\) 599.119 599.119i 1.13685 1.13685i
\(528\) 0 0
\(529\) 227.195i 0.429479i
\(530\) 0 0
\(531\) 1117.29 2.10413
\(532\) 0 0
\(533\) −1116.11 + 1116.11i −2.09401 + 2.09401i
\(534\) 0 0
\(535\) 0.870534 12.9436i 0.00162717 0.0241936i
\(536\) 0 0
\(537\) 881.980 881.980i 1.64242 1.64242i
\(538\) 0 0
\(539\) −1.95113 + 261.618i −0.00361991 + 0.485377i
\(540\) 0 0
\(541\) −477.169 −0.882013 −0.441006 0.897504i \(-0.645378\pi\)
−0.441006 + 0.897504i \(0.645378\pi\)
\(542\) 0 0
\(543\) −190.478 190.478i −0.350789 0.350789i
\(544\) 0 0
\(545\) −427.269 488.886i −0.783979 0.897038i
\(546\) 0 0
\(547\) 550.361 550.361i 1.00615 1.00615i 0.00616429 0.999981i \(-0.498038\pi\)
0.999981 0.00616429i \(-0.00196217\pi\)
\(548\) 0 0
\(549\) 275.863 0.502483
\(550\) 0 0
\(551\) 338.048 0.613518
\(552\) 0 0
\(553\) −3.54037 + 949.436i −0.00640211 + 1.71688i
\(554\) 0 0
\(555\) −170.940 + 149.395i −0.308000 + 0.269181i
\(556\) 0 0
\(557\) −187.128 187.128i −0.335957 0.335957i 0.518886 0.854843i \(-0.326347\pi\)
−0.854843 + 0.518886i \(0.826347\pi\)
\(558\) 0 0
\(559\) 1129.58i 2.02072i
\(560\) 0 0
\(561\) 515.950 0.919697
\(562\) 0 0
\(563\) −553.472 + 553.472i −0.983077 + 0.983077i −0.999859 0.0167825i \(-0.994658\pi\)
0.0167825 + 0.999859i \(0.494658\pi\)
\(564\) 0 0
\(565\) 53.6210 797.266i 0.0949045 1.41109i
\(566\) 0 0
\(567\) 2.89199 775.558i 0.00510051 1.36783i
\(568\) 0 0
\(569\) 6.99633i 0.0122958i 0.999981 + 0.00614792i \(0.00195696\pi\)
−0.999981 + 0.00614792i \(0.998043\pi\)
\(570\) 0 0
\(571\) 569.612i 0.997569i 0.866726 + 0.498784i \(0.166220\pi\)
−0.866726 + 0.498784i \(0.833780\pi\)
\(572\) 0 0
\(573\) −19.0358 19.0358i −0.0332213 0.0332213i
\(574\) 0 0
\(575\) 345.464 263.217i 0.600807 0.457768i
\(576\) 0 0
\(577\) 81.9100 81.9100i 0.141958 0.141958i −0.632556 0.774515i \(-0.717994\pi\)
0.774515 + 0.632556i \(0.217994\pi\)
\(578\) 0 0
\(579\) 895.455i 1.54655i
\(580\) 0 0
\(581\) 153.836 + 154.988i 0.264779 + 0.266761i
\(582\) 0 0
\(583\) 185.903 + 185.903i 0.318873 + 0.318873i
\(584\) 0 0
\(585\) 125.666 1868.47i 0.214814 3.19396i
\(586\) 0 0
\(587\) −101.642 101.642i −0.173155 0.173155i 0.615209 0.788364i \(-0.289072\pi\)
−0.788364 + 0.615209i \(0.789072\pi\)
\(588\) 0 0
\(589\) 1174.70i 1.99439i
\(590\) 0 0
\(591\) −253.559 −0.429034
\(592\) 0 0
\(593\) 415.591 + 415.591i 0.700828 + 0.700828i 0.964588 0.263760i \(-0.0849628\pi\)
−0.263760 + 0.964588i \(0.584963\pi\)
\(594\) 0 0
\(595\) 636.858 + 45.2187i 1.07035 + 0.0759978i
\(596\) 0 0
\(597\) 713.414 + 713.414i 1.19500 + 1.19500i
\(598\) 0 0
\(599\) 461.719 0.770816 0.385408 0.922746i \(-0.374061\pi\)
0.385408 + 0.922746i \(0.374061\pi\)
\(600\) 0 0
\(601\) 118.562i 0.197275i 0.995123 + 0.0986373i \(0.0314484\pi\)
−0.995123 + 0.0986373i \(0.968552\pi\)
\(602\) 0 0
\(603\) 703.751 + 703.751i 1.16708 + 1.16708i
\(604\) 0 0
\(605\) 348.215 304.328i 0.575562 0.503021i
\(606\) 0 0
\(607\) −191.896 191.896i −0.316138 0.316138i 0.531144 0.847282i \(-0.321762\pi\)
−0.847282 + 0.531144i \(0.821762\pi\)
\(608\) 0 0
\(609\) 351.778 349.165i 0.577633 0.573341i
\(610\) 0 0
\(611\) 538.302i 0.881017i
\(612\) 0 0
\(613\) −336.397 + 336.397i −0.548772 + 0.548772i −0.926086 0.377313i \(-0.876848\pi\)
0.377313 + 0.926086i \(0.376848\pi\)
\(614\) 0 0
\(615\) −2122.93 142.780i −3.45191 0.232162i
\(616\) 0 0
\(617\) −17.8001 17.8001i −0.0288495 0.0288495i 0.692535 0.721384i \(-0.256494\pi\)
−0.721384 + 0.692535i \(0.756494\pi\)
\(618\) 0 0
\(619\) 660.367i 1.06683i 0.845854 + 0.533414i \(0.179091\pi\)
−0.845854 + 0.533414i \(0.820909\pi\)
\(620\) 0 0
\(621\) 925.965i 1.49109i
\(622\) 0 0
\(623\) 0.320695 86.0023i 0.000514759 0.138045i
\(624\) 0 0
\(625\) −602.586 165.876i −0.964138 0.265401i
\(626\) 0 0
\(627\) 505.813 505.813i 0.806719 0.806719i
\(628\) 0 0
\(629\) 156.354 0.248575
\(630\) 0 0
\(631\) 1159.21i 1.83709i −0.395313 0.918547i \(-0.629364\pi\)
0.395313 0.918547i \(-0.370636\pi\)
\(632\) 0 0
\(633\) 510.970 + 510.970i 0.807219 + 0.807219i
\(634\) 0 0
\(635\) −12.0776 + 179.576i −0.0190199 + 0.282797i
\(636\) 0 0
\(637\) −675.695 685.850i −1.06075 1.07669i
\(638\) 0 0
\(639\) 464.228 0.726491
\(640\) 0 0
\(641\) −888.588 −1.38625 −0.693127 0.720816i \(-0.743767\pi\)
−0.693127 + 0.720816i \(0.743767\pi\)
\(642\) 0 0
\(643\) 431.429 431.429i 0.670963 0.670963i −0.286975 0.957938i \(-0.592650\pi\)
0.957938 + 0.286975i \(0.0926497\pi\)
\(644\) 0 0
\(645\) 1146.53 1002.03i 1.77756 1.55353i
\(646\) 0 0
\(647\) 38.7344 + 38.7344i 0.0598677 + 0.0598677i 0.736407 0.676539i \(-0.236521\pi\)
−0.676539 + 0.736407i \(0.736521\pi\)
\(648\) 0 0
\(649\) 312.960 0.482218
\(650\) 0 0
\(651\) −1213.32 1222.41i −1.86379 1.87774i
\(652\) 0 0
\(653\) 746.810 746.810i 1.14366 1.14366i 0.155885 0.987775i \(-0.450177\pi\)
0.987775 0.155885i \(-0.0498231\pi\)
\(654\) 0 0
\(655\) −414.325 + 362.105i −0.632557 + 0.552833i
\(656\) 0 0
\(657\) 589.180 589.180i 0.896773 0.896773i
\(658\) 0 0
\(659\) 749.367 1.13713 0.568563 0.822639i \(-0.307499\pi\)
0.568563 + 0.822639i \(0.307499\pi\)
\(660\) 0 0
\(661\) 1158.45i 1.75257i −0.481793 0.876285i \(-0.660014\pi\)
0.481793 0.876285i \(-0.339986\pi\)
\(662\) 0 0
\(663\) −1342.58 + 1342.58i −2.02501 + 2.02501i
\(664\) 0 0
\(665\) 668.675 580.014i 1.00553 0.872202i
\(666\) 0 0
\(667\) −164.196 + 164.196i −0.246172 + 0.246172i
\(668\) 0 0
\(669\) 197.256i 0.294851i
\(670\) 0 0
\(671\) 77.2707 0.115158
\(672\) 0 0
\(673\) −290.178 + 290.178i −0.431171 + 0.431171i −0.889027 0.457855i \(-0.848618\pi\)
0.457855 + 0.889027i \(0.348618\pi\)
\(674\) 0 0
\(675\) 1059.91 807.572i 1.57024 1.19640i
\(676\) 0 0
\(677\) 266.713 266.713i 0.393963 0.393963i −0.482134 0.876097i \(-0.660138\pi\)
0.876097 + 0.482134i \(0.160138\pi\)
\(678\) 0 0
\(679\) 321.877 + 324.287i 0.474046 + 0.477595i
\(680\) 0 0
\(681\) −541.102 −0.794570
\(682\) 0 0
\(683\) −676.697 676.697i −0.990771 0.990771i 0.00918636 0.999958i \(-0.497076\pi\)
−0.999958 + 0.00918636i \(0.997076\pi\)
\(684\) 0 0
\(685\) 464.782 + 31.2595i 0.678514 + 0.0456342i
\(686\) 0 0
\(687\) −876.492 + 876.492i −1.27583 + 1.27583i
\(688\) 0 0
\(689\) −967.498 −1.40421
\(690\) 0 0
\(691\) 530.569 0.767827 0.383914 0.923369i \(-0.374576\pi\)
0.383914 + 0.923369i \(0.374576\pi\)
\(692\) 0 0
\(693\) 2.65659 712.429i 0.00383346 1.02804i
\(694\) 0 0
\(695\) −596.057 682.015i −0.857636 0.981317i
\(696\) 0 0
\(697\) 1036.19 + 1036.19i 1.48664 + 1.48664i
\(698\) 0 0
\(699\) 301.905i 0.431910i
\(700\) 0 0
\(701\) −551.968 −0.787401 −0.393701 0.919239i \(-0.628805\pi\)
−0.393701 + 0.919239i \(0.628805\pi\)
\(702\) 0 0
\(703\) 153.282 153.282i 0.218039 0.218039i
\(704\) 0 0
\(705\) −546.379 + 477.515i −0.775005 + 0.677327i
\(706\) 0 0
\(707\) −719.334 2.68233i −1.01745 0.00379396i
\(708\) 0 0
\(709\) 721.903i 1.01820i 0.860708 + 0.509099i \(0.170021\pi\)
−0.860708 + 0.509099i \(0.829979\pi\)
\(710\) 0 0
\(711\) 2585.44i 3.63634i
\(712\) 0 0
\(713\) 570.572 + 570.572i 0.800241 + 0.800241i
\(714\) 0 0
\(715\) 35.1997 523.368i 0.0492303 0.731983i
\(716\) 0 0
\(717\) 387.703 387.703i 0.540729 0.540729i
\(718\) 0 0
\(719\) 852.389i 1.18552i 0.805379 + 0.592760i \(0.201962\pi\)
−0.805379 + 0.592760i \(0.798038\pi\)
\(720\) 0 0
\(721\) −127.602 128.558i −0.176980 0.178305i
\(722\) 0 0
\(723\) 680.235 + 680.235i 0.940851 + 0.940851i
\(724\) 0 0
\(725\) 331.151 + 44.7463i 0.456760 + 0.0617191i
\(726\) 0 0
\(727\) 235.912 + 235.912i 0.324501 + 0.324501i 0.850491 0.525990i \(-0.176305\pi\)
−0.525990 + 0.850491i \(0.676305\pi\)
\(728\) 0 0
\(729\) 429.213i 0.588769i
\(730\) 0 0
\(731\) −1048.70 −1.43461
\(732\) 0 0
\(733\) 391.187 + 391.187i 0.533679 + 0.533679i 0.921665 0.387986i \(-0.126829\pi\)
−0.387986 + 0.921665i \(0.626829\pi\)
\(734\) 0 0
\(735\) 96.7462 1294.24i 0.131627 1.76087i
\(736\) 0 0
\(737\) 197.124 + 197.124i 0.267468 + 0.267468i
\(738\) 0 0
\(739\) −420.950 −0.569621 −0.284811 0.958584i \(-0.591931\pi\)
−0.284811 + 0.958584i \(0.591931\pi\)
\(740\) 0 0
\(741\) 2632.41i 3.55251i
\(742\) 0 0
\(743\) −544.803 544.803i −0.733248 0.733248i 0.238014 0.971262i \(-0.423504\pi\)
−0.971262 + 0.238014i \(0.923504\pi\)
\(744\) 0 0
\(745\) −865.307 990.094i −1.16149 1.32899i
\(746\) 0 0
\(747\) −420.484 420.484i −0.562897 0.562897i
\(748\) 0 0
\(749\) 12.7944 + 12.8902i 0.0170820 + 0.0172099i
\(750\) 0 0
\(751\) 468.863i 0.624319i −0.950030 0.312159i \(-0.898948\pi\)
0.950030 0.312159i \(-0.101052\pi\)
\(752\) 0 0
\(753\) −600.399 + 600.399i −0.797342 + 0.797342i
\(754\) 0 0
\(755\) 54.0854 + 61.8852i 0.0716363 + 0.0819671i
\(756\) 0 0
\(757\) 90.8925 + 90.8925i 0.120069 + 0.120069i 0.764588 0.644519i \(-0.222942\pi\)
−0.644519 + 0.764588i \(0.722942\pi\)
\(758\) 0 0
\(759\) 491.366i 0.647386i
\(760\) 0 0
\(761\) 1012.45i 1.33041i −0.746659 0.665207i \(-0.768343\pi\)
0.746659 0.665207i \(-0.231657\pi\)
\(762\) 0 0
\(763\) 908.989 + 3.38954i 1.19134 + 0.00444239i
\(764\) 0 0
\(765\) −1734.68 116.668i −2.26755 0.152507i
\(766\) 0 0
\(767\) −814.371 + 814.371i −1.06176 + 1.06176i
\(768\) 0 0
\(769\) −895.086 −1.16396 −0.581980 0.813203i \(-0.697722\pi\)
−0.581980 + 0.813203i \(0.697722\pi\)
\(770\) 0 0
\(771\) 551.570i 0.715396i
\(772\) 0 0
\(773\) −124.555 124.555i −0.161132 0.161132i 0.621936 0.783068i \(-0.286346\pi\)
−0.783068 + 0.621936i \(0.786346\pi\)
\(774\) 0 0
\(775\) 155.490 1150.73i 0.200633 1.48481i
\(776\) 0 0
\(777\) 1.18516 317.830i 0.00152530 0.409047i
\(778\) 0 0
\(779\) 2031.66 2.60804
\(780\) 0 0
\(781\) 130.033 0.166495
\(782\) 0 0
\(783\) −503.769 + 503.769i −0.643383 + 0.643383i
\(784\) 0 0
\(785\) −62.9075 + 935.343i −0.0801370 + 1.19152i
\(786\) 0 0
\(787\) −729.166 729.166i −0.926513 0.926513i 0.0709660 0.997479i \(-0.477392\pi\)
−0.997479 + 0.0709660i \(0.977392\pi\)
\(788\) 0 0
\(789\) −1470.11 −1.86325
\(790\) 0 0
\(791\) 788.081 + 793.980i 0.996309 + 1.00377i
\(792\) 0 0
\(793\) −201.071 + 201.071i −0.253557 + 0.253557i
\(794\) 0 0
\(795\) −858.246 982.015i −1.07955 1.23524i
\(796\) 0 0
\(797\) −698.698 + 698.698i −0.876660 + 0.876660i −0.993187 0.116527i \(-0.962824\pi\)
0.116527 + 0.993187i \(0.462824\pi\)
\(798\) 0 0
\(799\) 499.757 0.625478
\(800\) 0 0
\(801\) 234.195i 0.292378i
\(802\) 0 0
\(803\) 165.032 165.032i 0.205520 0.205520i
\(804\) 0 0
\(805\) −43.0641 + 606.512i −0.0534958 + 0.753431i
\(806\) 0 0
\(807\) 249.626 249.626i 0.309325 0.309325i
\(808\) 0 0
\(809\) 1166.88i 1.44237i −0.692742 0.721186i \(-0.743597\pi\)
0.692742 0.721186i \(-0.256403\pi\)
\(810\) 0 0
\(811\) 545.364 0.672458 0.336229 0.941780i \(-0.390848\pi\)
0.336229 + 0.941780i \(0.390848\pi\)
\(812\) 0 0
\(813\) −518.684 + 518.684i −0.637987 + 0.637987i
\(814\) 0 0
\(815\) 700.049 + 47.0826i 0.858956 + 0.0577701i
\(816\) 0 0
\(817\) −1028.09 + 1028.09i −1.25838 + 1.25838i
\(818\) 0 0
\(819\) 1846.94 + 1860.77i 2.25512 + 2.27200i
\(820\) 0 0
\(821\) 48.9036 0.0595659 0.0297829 0.999556i \(-0.490518\pi\)
0.0297829 + 0.999556i \(0.490518\pi\)
\(822\) 0 0
\(823\) 115.349 + 115.349i 0.140157 + 0.140157i 0.773704 0.633547i \(-0.218402\pi\)
−0.633547 + 0.773704i \(0.718402\pi\)
\(824\) 0 0
\(825\) 562.446 428.540i 0.681752 0.519442i
\(826\) 0 0
\(827\) 416.893 416.893i 0.504102 0.504102i −0.408608 0.912710i \(-0.633986\pi\)
0.912710 + 0.408608i \(0.133986\pi\)
\(828\) 0 0
\(829\) 134.715 0.162503 0.0812514 0.996694i \(-0.474108\pi\)
0.0812514 + 0.996694i \(0.474108\pi\)
\(830\) 0 0
\(831\) 1617.80 1.94681
\(832\) 0 0
\(833\) −636.740 + 627.313i −0.764394 + 0.753077i
\(834\) 0 0
\(835\) 705.673 + 47.4609i 0.845118 + 0.0568394i
\(836\) 0 0
\(837\) 1750.56 + 1750.56i 2.09147 + 2.09147i
\(838\) 0 0
\(839\) 199.958i 0.238329i −0.992875 0.119165i \(-0.961978\pi\)
0.992875 0.119165i \(-0.0380216\pi\)
\(840\) 0 0
\(841\) 662.339 0.787561
\(842\) 0 0
\(843\) 393.126 393.126i 0.466342 0.466342i
\(844\) 0 0
\(845\) 714.228 + 817.228i 0.845241 + 0.967134i
\(846\) 0 0
\(847\) −2.41424 + 647.439i −0.00285035 + 0.764391i
\(848\) 0 0
\(849\) 2415.10i 2.84464i
\(850\) 0 0
\(851\) 148.904i 0.174975i
\(852\) 0 0
\(853\) 632.422 + 632.422i 0.741409 + 0.741409i 0.972849 0.231440i \(-0.0743437\pi\)
−0.231440 + 0.972849i \(0.574344\pi\)
\(854\) 0 0
\(855\) −1814.97 + 1586.22i −2.12277 + 1.85523i
\(856\) 0 0
\(857\) −373.070 + 373.070i −0.435320 + 0.435320i −0.890434 0.455113i \(-0.849599\pi\)
0.455113 + 0.890434i \(0.349599\pi\)
\(858\) 0 0
\(859\) 311.575i 0.362719i −0.983417 0.181359i \(-0.941950\pi\)
0.983417 0.181359i \(-0.0580497\pi\)
\(860\) 0 0
\(861\) 2114.18 2098.47i 2.45549 2.43725i
\(862\) 0 0
\(863\) 579.293 + 579.293i 0.671255 + 0.671255i 0.958005 0.286750i \(-0.0925751\pi\)
−0.286750 + 0.958005i \(0.592575\pi\)
\(864\) 0 0
\(865\) 1225.16 + 82.3997i 1.41637 + 0.0952597i
\(866\) 0 0
\(867\) 163.919 + 163.919i 0.189065 + 0.189065i
\(868\) 0 0
\(869\) 724.194i 0.833364i
\(870\) 0 0
\(871\) −1025.90 −1.17784
\(872\) 0 0
\(873\) −879.794 879.794i −1.00778 1.00778i
\(874\) 0 0
\(875\) 731.807 479.670i 0.836351 0.548195i
\(876\) 0 0
\(877\) −497.930 497.930i −0.567765 0.567765i 0.363737 0.931502i \(-0.381501\pi\)
−0.931502 + 0.363737i \(0.881501\pi\)
\(878\) 0 0
\(879\) −2595.93 −2.95327
\(880\) 0 0
\(881\) 1087.91i 1.23486i −0.786625 0.617432i \(-0.788173\pi\)
0.786625 0.617432i \(-0.211827\pi\)
\(882\) 0 0
\(883\) −974.771 974.771i −1.10393 1.10393i −0.993932 0.109999i \(-0.964915\pi\)
−0.109999 0.993932i \(-0.535085\pi\)
\(884\) 0 0
\(885\) −1549.00 104.180i −1.75028 0.117717i
\(886\) 0 0
\(887\) −1012.26 1012.26i −1.14121 1.14121i −0.988229 0.152984i \(-0.951112\pi\)
−0.152984 0.988229i \(-0.548888\pi\)
\(888\) 0 0
\(889\) −177.507 178.836i −0.199671 0.201166i
\(890\) 0 0
\(891\) 591.566i 0.663935i
\(892\) 0 0
\(893\) 489.938 489.938i 0.548643 0.548643i
\(894\) 0 0
\(895\) −886.462 + 774.736i −0.990460 + 0.865627i
\(896\) 0 0
\(897\) −1278.61 1278.61i −1.42543 1.42543i
\(898\) 0 0
\(899\) 620.836i 0.690586i
\(900\) 0 0
\(901\) 898.221i 0.996915i
\(902\) 0 0
\(903\) −7.94912 + 2131.75i −0.00880301 + 2.36074i
\(904\) 0 0
\(905\) 167.317 + 191.446i 0.184881 + 0.211543i
\(906\) 0 0
\(907\) −1067.07 + 1067.07i −1.17649 + 1.17649i −0.195853 + 0.980633i \(0.562748\pi\)
−0.980633 + 0.195853i \(0.937252\pi\)
\(908\) 0 0
\(909\) 1958.84 2.15494
\(910\) 0 0
\(911\) 581.817i 0.638658i −0.947644 0.319329i \(-0.896543\pi\)
0.947644 0.319329i \(-0.103457\pi\)
\(912\) 0 0
\(913\) −117.780 117.780i −0.129003 0.129003i
\(914\) 0 0
\(915\) −382.453 25.7223i −0.417982 0.0281118i
\(916\) 0 0
\(917\) 2.87260 770.358i 0.00313260 0.840085i
\(918\) 0 0
\(919\) 186.155 0.202562 0.101281 0.994858i \(-0.467706\pi\)
0.101281 + 0.994858i \(0.467706\pi\)
\(920\) 0 0
\(921\) −1737.80 −1.88686
\(922\) 0 0
\(923\) −338.366 + 338.366i −0.366593 + 0.366593i
\(924\) 0 0
\(925\) 170.444 129.865i 0.184264 0.140395i
\(926\) 0 0
\(927\) 348.778 + 348.778i 0.376244 + 0.376244i
\(928\) 0 0
\(929\) −1007.18 −1.08415 −0.542076 0.840329i \(-0.682362\pi\)
−0.542076 + 0.840329i \(0.682362\pi\)
\(930\) 0 0
\(931\) −9.24199 + 1239.22i −0.00992695 + 1.33106i
\(932\) 0 0
\(933\) 1941.02 1941.02i 2.08041 2.08041i
\(934\) 0 0
\(935\) −485.892 32.6793i −0.519671 0.0349511i
\(936\) 0 0
\(937\) 664.204 664.204i 0.708862 0.708862i −0.257434 0.966296i \(-0.582877\pi\)
0.966296 + 0.257434i \(0.0828769\pi\)
\(938\) 0 0
\(939\) −172.298 −0.183491
\(940\) 0 0
\(941\) 947.407i 1.00681i 0.864051 + 0.503404i \(0.167919\pi\)
−0.864051 + 0.503404i \(0.832081\pi\)
\(942\) 0 0
\(943\) −986.816 + 986.816i −1.04646 + 1.04646i
\(944\) 0 0
\(945\) −132.124 + 1860.83i −0.139814 + 1.96913i
\(946\) 0 0
\(947\) −745.833 + 745.833i −0.787575 + 0.787575i −0.981096 0.193521i \(-0.938009\pi\)
0.193521 + 0.981096i \(0.438009\pi\)
\(948\) 0 0
\(949\) 858.881i 0.905038i
\(950\) 0 0
\(951\) 2907.96 3.05779
\(952\) 0 0
\(953\) −148.533 + 148.533i −0.155859 + 0.155859i −0.780729 0.624870i \(-0.785152\pi\)
0.624870 + 0.780729i \(0.285152\pi\)
\(954\) 0 0
\(955\) 16.7211 + 19.1325i 0.0175091 + 0.0200341i
\(956\) 0 0
\(957\) −267.326 + 267.326i −0.279338 + 0.279338i
\(958\) 0 0
\(959\) −462.867 + 459.427i −0.482655 + 0.479069i
\(960\) 0 0
\(961\) 1196.37 1.24492
\(962\) 0 0
\(963\) −34.9713 34.9713i −0.0363149 0.0363149i
\(964\) 0 0
\(965\) −56.7164 + 843.289i −0.0587734 + 0.873874i
\(966\) 0 0
\(967\) 785.722 785.722i 0.812535 0.812535i −0.172478 0.985013i \(-0.555177\pi\)
0.985013 + 0.172478i \(0.0551774\pi\)
\(968\) 0 0
\(969\) 2443.92 2.52211
\(970\) 0 0
\(971\) 574.407 0.591562 0.295781 0.955256i \(-0.404420\pi\)
0.295781 + 0.955256i \(0.404420\pi\)
\(972\) 0 0
\(973\) 1268.08 + 4.72855i 1.30326 + 0.00485976i
\(974\) 0 0
\(975\) −348.444 + 2578.70i −0.357378 + 2.64482i
\(976\) 0 0
\(977\) −327.396 327.396i −0.335103 0.335103i 0.519417 0.854521i \(-0.326149\pi\)
−0.854521 + 0.519417i \(0.826149\pi\)
\(978\) 0 0
\(979\) 65.5993i 0.0670064i
\(980\) 0 0
\(981\) −2475.29 −2.52323
\(982\) 0 0
\(983\) 573.336 573.336i 0.583252 0.583252i −0.352544 0.935795i \(-0.614683\pi\)
0.935795 + 0.352544i \(0.114683\pi\)
\(984\) 0 0
\(985\) 238.788 + 16.0599i 0.242424 + 0.0163045i
\(986\) 0 0
\(987\) 3.78815 1015.89i 0.00383805 1.02927i
\(988\) 0 0
\(989\) 998.729i 1.00984i
\(990\) 0 0
\(991\) 682.946i 0.689149i −0.938759 0.344574i \(-0.888023\pi\)
0.938759 0.344574i \(-0.111977\pi\)
\(992\) 0 0
\(993\) −1884.42 1884.42i −1.89771 1.89771i
\(994\) 0 0
\(995\) −626.667 717.039i −0.629816 0.720643i
\(996\) 0 0
\(997\) −479.397 + 479.397i −0.480840 + 0.480840i −0.905400 0.424560i \(-0.860429\pi\)
0.424560 + 0.905400i \(0.360429\pi\)
\(998\) 0 0
\(999\) 456.849i 0.457307i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.3.v.a.447.2 yes 32
4.3 odd 2 inner 560.3.v.a.447.15 yes 32
5.3 odd 4 inner 560.3.v.a.223.1 32
7.6 odd 2 inner 560.3.v.a.447.16 yes 32
20.3 even 4 inner 560.3.v.a.223.16 yes 32
28.27 even 2 inner 560.3.v.a.447.1 yes 32
35.13 even 4 inner 560.3.v.a.223.15 yes 32
140.83 odd 4 inner 560.3.v.a.223.2 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.3.v.a.223.1 32 5.3 odd 4 inner
560.3.v.a.223.2 yes 32 140.83 odd 4 inner
560.3.v.a.223.15 yes 32 35.13 even 4 inner
560.3.v.a.223.16 yes 32 20.3 even 4 inner
560.3.v.a.447.1 yes 32 28.27 even 2 inner
560.3.v.a.447.2 yes 32 1.1 even 1 trivial
560.3.v.a.447.15 yes 32 4.3 odd 2 inner
560.3.v.a.447.16 yes 32 7.6 odd 2 inner