Properties

Label 560.3.v.a
Level $560$
Weight $3$
Character orbit 560.v
Analytic conductor $15.259$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,3,Mod(223,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.223"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 560.v (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.2588948042\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 64 q^{21} + 72 q^{25} - 72 q^{37} - 272 q^{53} + 280 q^{57} + 376 q^{65} + 24 q^{77} - 528 q^{81} - 96 q^{85} - 552 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
223.1 0 −3.74578 3.74578i 0 −3.76482 3.29031i 0 6.99995 + 0.0261022i 0 19.0618i 0
223.2 0 −3.74578 3.74578i 0 3.76482 + 3.29031i 0 −0.0261022 6.99995i 0 19.0618i 0
223.3 0 −2.85574 2.85574i 0 −3.59158 + 3.47858i 0 −6.44957 + 2.72085i 0 7.31049i 0
223.4 0 −2.85574 2.85574i 0 3.59158 3.47858i 0 −2.72085 + 6.44957i 0 7.31049i 0
223.5 0 −1.21355 1.21355i 0 −4.89142 + 1.03636i 0 2.17441 6.65372i 0 6.05460i 0
223.6 0 −1.21355 1.21355i 0 4.89142 1.03636i 0 6.65372 2.17441i 0 6.05460i 0
223.7 0 −0.917157 0.917157i 0 1.87103 + 4.63673i 0 3.29129 + 6.17798i 0 7.31765i 0
223.8 0 −0.917157 0.917157i 0 −1.87103 4.63673i 0 −6.17798 3.29129i 0 7.31765i 0
223.9 0 0.917157 + 0.917157i 0 −1.87103 4.63673i 0 6.17798 + 3.29129i 0 7.31765i 0
223.10 0 0.917157 + 0.917157i 0 1.87103 + 4.63673i 0 −3.29129 6.17798i 0 7.31765i 0
223.11 0 1.21355 + 1.21355i 0 4.89142 1.03636i 0 −6.65372 + 2.17441i 0 6.05460i 0
223.12 0 1.21355 + 1.21355i 0 −4.89142 + 1.03636i 0 −2.17441 + 6.65372i 0 6.05460i 0
223.13 0 2.85574 + 2.85574i 0 3.59158 3.47858i 0 2.72085 6.44957i 0 7.31049i 0
223.14 0 2.85574 + 2.85574i 0 −3.59158 + 3.47858i 0 6.44957 2.72085i 0 7.31049i 0
223.15 0 3.74578 + 3.74578i 0 3.76482 + 3.29031i 0 0.0261022 + 6.99995i 0 19.0618i 0
223.16 0 3.74578 + 3.74578i 0 −3.76482 3.29031i 0 −6.99995 0.0261022i 0 19.0618i 0
447.1 0 −3.74578 + 3.74578i 0 −3.76482 + 3.29031i 0 6.99995 0.0261022i 0 19.0618i 0
447.2 0 −3.74578 + 3.74578i 0 3.76482 3.29031i 0 −0.0261022 + 6.99995i 0 19.0618i 0
447.3 0 −2.85574 + 2.85574i 0 −3.59158 3.47858i 0 −6.44957 2.72085i 0 7.31049i 0
447.4 0 −2.85574 + 2.85574i 0 3.59158 + 3.47858i 0 −2.72085 6.44957i 0 7.31049i 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 223.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.c odd 4 1 inner
7.b odd 2 1 inner
20.e even 4 1 inner
28.d even 2 1 inner
35.f even 4 1 inner
140.j odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.3.v.a 32
4.b odd 2 1 inner 560.3.v.a 32
5.c odd 4 1 inner 560.3.v.a 32
7.b odd 2 1 inner 560.3.v.a 32
20.e even 4 1 inner 560.3.v.a 32
28.d even 2 1 inner 560.3.v.a 32
35.f even 4 1 inner 560.3.v.a 32
140.j odd 4 1 inner 560.3.v.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
560.3.v.a 32 1.a even 1 1 trivial
560.3.v.a 32 4.b odd 2 1 inner
560.3.v.a 32 5.c odd 4 1 inner
560.3.v.a 32 7.b odd 2 1 inner
560.3.v.a 32 20.e even 4 1 inner
560.3.v.a 32 28.d even 2 1 inner
560.3.v.a 32 35.f even 4 1 inner
560.3.v.a 32 140.j odd 4 1 inner