Newspace parameters
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.cq (of order \(12\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.47162251319\) |
Analytic rank: | \(0\) |
Dimension: | \(256\) |
Relative dimension: | \(64\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
131.1 | −1.41271 | − | 0.0650974i | −0.881367 | + | 3.28931i | 1.99152 | + | 0.183928i | 0.965926 | − | 0.258819i | 1.45925 | − | 4.58948i | 1.65139 | + | 2.06710i | −2.80148 | − | 0.389481i | −7.44466 | − | 4.29817i | −1.38143 | + | 0.302758i |
131.2 | −1.41111 | + | 0.0936383i | −0.452924 | + | 1.69034i | 1.98246 | − | 0.264268i | −0.965926 | + | 0.258819i | 0.480846 | − | 2.42766i | 2.56186 | − | 0.660959i | −2.77273 | + | 0.558546i | −0.0540195 | − | 0.0311882i | 1.33879 | − | 0.455670i |
131.3 | −1.40318 | − | 0.176293i | −0.125759 | + | 0.469340i | 1.93784 | + | 0.494742i | −0.965926 | + | 0.258819i | 0.259204 | − | 0.636399i | −2.02989 | − | 1.69692i | −2.63193 | − | 1.03584i | 2.39361 | + | 1.38195i | 1.40100 | − | 0.192885i |
131.4 | −1.40292 | + | 0.178396i | −0.435451 | + | 1.62512i | 1.93635 | − | 0.500551i | 0.965926 | − | 0.258819i | 0.320985 | − | 2.35760i | −0.451133 | − | 2.60701i | −2.62724 | + | 1.04767i | 0.146666 | + | 0.0846776i | −1.30894 | + | 0.535419i |
131.5 | −1.39869 | − | 0.208965i | 0.308027 | − | 1.14957i | 1.91267 | + | 0.584555i | 0.965926 | − | 0.258819i | −0.671056 | + | 1.54353i | −2.40355 | + | 1.10587i | −2.55308 | − | 1.21729i | 1.37144 | + | 0.791800i | −1.40511 | + | 0.160163i |
131.6 | −1.37515 | + | 0.330105i | 0.775057 | − | 2.89255i | 1.78206 | − | 0.907887i | 0.965926 | − | 0.258819i | −0.110970 | + | 4.23354i | 0.737890 | + | 2.54077i | −2.15090 | + | 1.83675i | −5.16806 | − | 2.98378i | −1.24285 | + | 0.674772i |
131.7 | −1.32233 | − | 0.501450i | 0.462065 | − | 1.72445i | 1.49710 | + | 1.32616i | −0.965926 | + | 0.258819i | −1.47573 | + | 2.04858i | 0.938017 | + | 2.47389i | −1.31464 | − | 2.50434i | −0.162150 | − | 0.0936173i | 1.40705 | + | 0.142121i |
131.8 | −1.29421 | + | 0.570104i | 0.00690551 | − | 0.0257717i | 1.34996 | − | 1.47567i | −0.965926 | + | 0.258819i | 0.00575539 | + | 0.0372909i | 0.0420874 | + | 2.64542i | −0.905849 | + | 2.67945i | 2.59746 | + | 1.49964i | 1.10256 | − | 0.885645i |
131.9 | −1.27472 | − | 0.612435i | −0.369093 | + | 1.37747i | 1.24985 | + | 1.56137i | 0.965926 | − | 0.258819i | 1.31410 | − | 1.52985i | −2.52764 | + | 0.781698i | −0.636973 | − | 2.75577i | 0.836876 | + | 0.483170i | −1.38980 | − | 0.261644i |
131.10 | −1.26130 | − | 0.639623i | 0.527774 | − | 1.96968i | 1.18177 | + | 1.61351i | 0.965926 | − | 0.258819i | −1.92554 | + | 2.14679i | 1.01863 | − | 2.44180i | −0.458523 | − | 2.79101i | −1.00302 | − | 0.579095i | −1.38387 | − | 0.291379i |
131.11 | −1.23165 | + | 0.695008i | −0.817954 | + | 3.05265i | 1.03393 | − | 1.71201i | −0.965926 | + | 0.258819i | −1.11418 | − | 4.32828i | −2.26433 | − | 1.36851i | −0.0835767 | + | 2.82719i | −6.05152 | − | 3.49385i | 1.00980 | − | 0.990101i |
131.12 | −1.17180 | + | 0.791760i | 0.282699 | − | 1.05505i | 0.746231 | − | 1.85557i | 0.965926 | − | 0.258819i | 0.504077 | + | 1.46013i | 2.60058 | + | 0.486822i | 0.594732 | + | 2.76519i | 1.56487 | + | 0.903479i | −0.926949 | + | 1.06807i |
131.13 | −1.13884 | − | 0.838476i | −0.589179 | + | 2.19885i | 0.593914 | + | 1.90978i | −0.965926 | + | 0.258819i | 2.51466 | − | 2.01012i | −1.24964 | + | 2.33204i | 0.924933 | − | 2.67292i | −1.88972 | − | 1.09103i | 1.31705 | + | 0.515152i |
131.14 | −1.12144 | + | 0.861608i | 0.282922 | − | 1.05588i | 0.515264 | − | 1.93249i | −0.965926 | + | 0.258819i | 0.592473 | + | 1.42787i | 1.08456 | − | 2.41324i | 1.08721 | + | 2.61113i | 1.56324 | + | 0.902538i | 0.860229 | − | 1.12250i |
131.15 | −1.09371 | − | 0.896547i | 0.828070 | − | 3.09040i | 0.392407 | + | 1.96113i | −0.965926 | + | 0.258819i | −3.67636 | + | 2.63760i | −2.63963 | − | 0.179838i | 1.32906 | − | 2.49672i | −6.26680 | − | 3.61814i | 1.28849 | + | 0.582925i |
131.16 | −1.06468 | − | 0.930838i | −0.713853 | + | 2.66413i | 0.267080 | + | 1.98209i | −0.965926 | + | 0.258819i | 3.23990 | − | 2.17196i | 1.78145 | − | 1.95613i | 1.56065 | − | 2.35889i | −3.98995 | − | 2.30360i | 1.26932 | + | 0.623562i |
131.17 | −1.00283 | − | 0.997167i | 0.0989001 | − | 0.369100i | 0.0113170 | + | 1.99997i | −0.965926 | + | 0.258819i | −0.467234 | + | 0.271523i | −0.933440 | − | 2.47562i | 1.98295 | − | 2.01690i | 2.47162 | + | 1.42699i | 1.22674 | + | 0.703639i |
131.18 | −0.974272 | + | 1.02508i | 0.756910 | − | 2.82483i | −0.101589 | − | 1.99742i | −0.965926 | + | 0.258819i | 2.15825 | + | 3.52805i | −2.21995 | + | 1.43938i | 2.14649 | + | 1.84189i | −4.80866 | − | 2.77628i | 0.675763 | − | 1.24231i |
131.19 | −0.936556 | − | 1.05965i | −0.198048 | + | 0.739127i | −0.245727 | + | 1.98485i | 0.965926 | − | 0.258819i | 0.968701 | − | 0.482371i | 2.08724 | + | 1.62586i | 2.33339 | − | 1.59853i | 2.09099 | + | 1.20723i | −1.17890 | − | 0.781147i |
131.20 | −0.929742 | + | 1.06564i | −0.517131 | + | 1.92996i | −0.271161 | − | 1.98153i | 0.965926 | − | 0.258819i | −1.57583 | − | 2.34543i | −0.249933 | − | 2.63392i | 2.36370 | + | 1.55335i | −0.859235 | − | 0.496080i | −0.622254 | + | 1.26996i |
See next 80 embeddings (of 256 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
16.f | odd | 4 | 1 | inner |
112.v | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 560.2.cq.a | ✓ | 256 |
7.d | odd | 6 | 1 | inner | 560.2.cq.a | ✓ | 256 |
16.f | odd | 4 | 1 | inner | 560.2.cq.a | ✓ | 256 |
112.v | even | 12 | 1 | inner | 560.2.cq.a | ✓ | 256 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
560.2.cq.a | ✓ | 256 | 1.a | even | 1 | 1 | trivial |
560.2.cq.a | ✓ | 256 | 7.d | odd | 6 | 1 | inner |
560.2.cq.a | ✓ | 256 | 16.f | odd | 4 | 1 | inner |
560.2.cq.a | ✓ | 256 | 112.v | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(560, [\chi])\).