Properties

Label 560.2.bs.c.271.1
Level $560$
Weight $2$
Character 560.271
Analytic conductor $4.472$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(31,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 43 x^{10} - 160 x^{9} + 572 x^{8} - 1394 x^{7} + 3039 x^{6} - 4844 x^{5} + \cdots + 657 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.1
Root \(0.500000 - 2.35365i\) of defining polynomial
Character \(\chi\) \(=\) 560.271
Dual form 560.2.bs.c.31.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60984 - 2.78832i) q^{3} +(0.866025 + 0.500000i) q^{5} +(-0.279599 + 2.63094i) q^{7} +(-3.68317 + 6.37943i) q^{9} +(1.40022 - 0.808417i) q^{11} +5.32414i q^{13} -3.21968i q^{15} +(-4.03609 + 2.33024i) q^{17} +(-2.68317 + 4.64738i) q^{19} +(7.78601 - 3.45577i) q^{21} +(-5.13166 - 2.96277i) q^{23} +(0.500000 + 0.866025i) q^{25} +14.0582 q^{27} +8.25106 q^{29} +(2.66611 + 4.61784i) q^{31} +(-4.50826 - 2.60284i) q^{33} +(-1.55761 + 2.13866i) q^{35} +(3.02810 - 5.24482i) q^{37} +(14.8454 - 8.57102i) q^{39} +2.35034i q^{41} -3.04075i q^{43} +(-6.37943 + 3.68317i) q^{45} +(-1.08102 + 1.87238i) q^{47} +(-6.84365 - 1.47122i) q^{49} +(12.9949 + 7.50263i) q^{51} +(-2.69786 - 4.67282i) q^{53} +1.61683 q^{55} +17.2779 q^{57} +(3.72375 + 6.44972i) q^{59} +(-0.549881 - 0.317474i) q^{61} +(-15.7541 - 11.4739i) q^{63} +(-2.66207 + 4.61084i) q^{65} +(-12.3459 + 7.12793i) q^{67} +19.0783i q^{69} +5.61214i q^{71} +(0.645073 - 0.372433i) q^{73} +(1.60984 - 2.78832i) q^{75} +(1.73539 + 3.90992i) q^{77} +(-0.535453 - 0.309144i) q^{79} +(-11.5819 - 20.0605i) q^{81} -3.11383 q^{83} -4.66048 q^{85} +(-13.2829 - 23.0066i) q^{87} +(-1.96739 - 1.13587i) q^{89} +(-14.0075 - 1.48863i) q^{91} +(8.58403 - 14.8680i) q^{93} +(-4.64738 + 2.68317i) q^{95} -4.11527i q^{97} +11.9101i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{3} - 2 q^{7} - 10 q^{9} + 6 q^{11} + 2 q^{19} + 12 q^{21} - 18 q^{23} + 6 q^{25} + 20 q^{27} + 16 q^{29} + 4 q^{31} - 6 q^{35} - 4 q^{37} + 24 q^{39} - 12 q^{45} + 12 q^{47} - 8 q^{49} - 12 q^{51}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.60984 2.78832i −0.929441 1.60984i −0.784258 0.620435i \(-0.786956\pi\)
−0.145183 0.989405i \(-0.546377\pi\)
\(4\) 0 0
\(5\) 0.866025 + 0.500000i 0.387298 + 0.223607i
\(6\) 0 0
\(7\) −0.279599 + 2.63094i −0.105679 + 0.994400i
\(8\) 0 0
\(9\) −3.68317 + 6.37943i −1.22772 + 2.12648i
\(10\) 0 0
\(11\) 1.40022 0.808417i 0.422182 0.243747i −0.273828 0.961779i \(-0.588290\pi\)
0.696011 + 0.718032i \(0.254957\pi\)
\(12\) 0 0
\(13\) 5.32414i 1.47665i 0.674444 + 0.738326i \(0.264383\pi\)
−0.674444 + 0.738326i \(0.735617\pi\)
\(14\) 0 0
\(15\) 3.21968i 0.831318i
\(16\) 0 0
\(17\) −4.03609 + 2.33024i −0.978897 + 0.565166i −0.901937 0.431868i \(-0.857855\pi\)
−0.0769599 + 0.997034i \(0.524521\pi\)
\(18\) 0 0
\(19\) −2.68317 + 4.64738i −0.615561 + 1.06618i 0.374725 + 0.927136i \(0.377737\pi\)
−0.990286 + 0.139047i \(0.955596\pi\)
\(20\) 0 0
\(21\) 7.78601 3.45577i 1.69905 0.754111i
\(22\) 0 0
\(23\) −5.13166 2.96277i −1.07003 0.617780i −0.141837 0.989890i \(-0.545301\pi\)
−0.928188 + 0.372110i \(0.878634\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 14.0582 2.70550
\(28\) 0 0
\(29\) 8.25106 1.53218 0.766092 0.642731i \(-0.222199\pi\)
0.766092 + 0.642731i \(0.222199\pi\)
\(30\) 0 0
\(31\) 2.66611 + 4.61784i 0.478848 + 0.829389i 0.999706 0.0242543i \(-0.00772115\pi\)
−0.520858 + 0.853643i \(0.674388\pi\)
\(32\) 0 0
\(33\) −4.50826 2.60284i −0.784787 0.453097i
\(34\) 0 0
\(35\) −1.55761 + 2.13866i −0.263284 + 0.361499i
\(36\) 0 0
\(37\) 3.02810 5.24482i 0.497816 0.862243i −0.502181 0.864763i \(-0.667469\pi\)
0.999997 + 0.00251999i \(0.000802139\pi\)
\(38\) 0 0
\(39\) 14.8454 8.57102i 2.37717 1.37246i
\(40\) 0 0
\(41\) 2.35034i 0.367061i 0.983014 + 0.183531i \(0.0587527\pi\)
−0.983014 + 0.183531i \(0.941247\pi\)
\(42\) 0 0
\(43\) 3.04075i 0.463710i −0.972750 0.231855i \(-0.925521\pi\)
0.972750 0.231855i \(-0.0744795\pi\)
\(44\) 0 0
\(45\) −6.37943 + 3.68317i −0.950990 + 0.549054i
\(46\) 0 0
\(47\) −1.08102 + 1.87238i −0.157683 + 0.273115i −0.934033 0.357187i \(-0.883736\pi\)
0.776350 + 0.630303i \(0.217069\pi\)
\(48\) 0 0
\(49\) −6.84365 1.47122i −0.977664 0.210174i
\(50\) 0 0
\(51\) 12.9949 + 7.50263i 1.81965 + 1.05058i
\(52\) 0 0
\(53\) −2.69786 4.67282i −0.370579 0.641862i 0.619076 0.785331i \(-0.287507\pi\)
−0.989655 + 0.143470i \(0.954174\pi\)
\(54\) 0 0
\(55\) 1.61683 0.218014
\(56\) 0 0
\(57\) 17.2779 2.28851
\(58\) 0 0
\(59\) 3.72375 + 6.44972i 0.484791 + 0.839682i 0.999847 0.0174739i \(-0.00556238\pi\)
−0.515056 + 0.857156i \(0.672229\pi\)
\(60\) 0 0
\(61\) −0.549881 0.317474i −0.0704050 0.0406484i 0.464384 0.885634i \(-0.346276\pi\)
−0.534789 + 0.844985i \(0.679609\pi\)
\(62\) 0 0
\(63\) −15.7541 11.4739i −1.98483 1.44557i
\(64\) 0 0
\(65\) −2.66207 + 4.61084i −0.330189 + 0.571905i
\(66\) 0 0
\(67\) −12.3459 + 7.12793i −1.50830 + 0.870815i −0.508343 + 0.861155i \(0.669742\pi\)
−0.999953 + 0.00966075i \(0.996925\pi\)
\(68\) 0 0
\(69\) 19.0783i 2.29676i
\(70\) 0 0
\(71\) 5.61214i 0.666039i 0.942920 + 0.333019i \(0.108067\pi\)
−0.942920 + 0.333019i \(0.891933\pi\)
\(72\) 0 0
\(73\) 0.645073 0.372433i 0.0755001 0.0435900i −0.461775 0.886997i \(-0.652787\pi\)
0.537275 + 0.843407i \(0.319454\pi\)
\(74\) 0 0
\(75\) 1.60984 2.78832i 0.185888 0.321968i
\(76\) 0 0
\(77\) 1.73539 + 3.90992i 0.197766 + 0.445577i
\(78\) 0 0
\(79\) −0.535453 0.309144i −0.0602432 0.0347814i 0.469576 0.882892i \(-0.344407\pi\)
−0.529819 + 0.848111i \(0.677740\pi\)
\(80\) 0 0
\(81\) −11.5819 20.0605i −1.28688 2.22895i
\(82\) 0 0
\(83\) −3.11383 −0.341787 −0.170894 0.985289i \(-0.554665\pi\)
−0.170894 + 0.985289i \(0.554665\pi\)
\(84\) 0 0
\(85\) −4.66048 −0.505500
\(86\) 0 0
\(87\) −13.2829 23.0066i −1.42408 2.46657i
\(88\) 0 0
\(89\) −1.96739 1.13587i −0.208543 0.120402i 0.392091 0.919926i \(-0.371752\pi\)
−0.600634 + 0.799524i \(0.705085\pi\)
\(90\) 0 0
\(91\) −14.0075 1.48863i −1.46838 0.156050i
\(92\) 0 0
\(93\) 8.58403 14.8680i 0.890122 1.54174i
\(94\) 0 0
\(95\) −4.64738 + 2.68317i −0.476811 + 0.275287i
\(96\) 0 0
\(97\) 4.11527i 0.417843i −0.977932 0.208921i \(-0.933005\pi\)
0.977932 0.208921i \(-0.0669953\pi\)
\(98\) 0 0
\(99\) 11.9101i 1.19701i
\(100\) 0 0
\(101\) −0.154909 + 0.0894366i −0.0154140 + 0.00889927i −0.507687 0.861541i \(-0.669499\pi\)
0.492273 + 0.870441i \(0.336166\pi\)
\(102\) 0 0
\(103\) −5.16904 + 8.95304i −0.509320 + 0.882169i 0.490621 + 0.871373i \(0.336770\pi\)
−0.999942 + 0.0107960i \(0.996563\pi\)
\(104\) 0 0
\(105\) 8.47077 + 0.900220i 0.826663 + 0.0878525i
\(106\) 0 0
\(107\) 0.0940291 + 0.0542877i 0.00909014 + 0.00524819i 0.504538 0.863389i \(-0.331663\pi\)
−0.495448 + 0.868638i \(0.664996\pi\)
\(108\) 0 0
\(109\) −0.210362 0.364357i −0.0201490 0.0348991i 0.855775 0.517348i \(-0.173081\pi\)
−0.875924 + 0.482449i \(0.839747\pi\)
\(110\) 0 0
\(111\) −19.4990 −1.85076
\(112\) 0 0
\(113\) 11.3932 1.07178 0.535889 0.844289i \(-0.319977\pi\)
0.535889 + 0.844289i \(0.319977\pi\)
\(114\) 0 0
\(115\) −2.96277 5.13166i −0.276279 0.478530i
\(116\) 0 0
\(117\) −33.9650 19.6097i −3.14007 1.81292i
\(118\) 0 0
\(119\) −5.00222 11.2702i −0.458553 1.03314i
\(120\) 0 0
\(121\) −4.19292 + 7.26236i −0.381175 + 0.660214i
\(122\) 0 0
\(123\) 6.55351 3.78367i 0.590910 0.341162i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 5.28924i 0.469344i 0.972075 + 0.234672i \(0.0754017\pi\)
−0.972075 + 0.234672i \(0.924598\pi\)
\(128\) 0 0
\(129\) −8.47860 + 4.89512i −0.746499 + 0.430991i
\(130\) 0 0
\(131\) 7.47994 12.9556i 0.653525 1.13194i −0.328736 0.944422i \(-0.606623\pi\)
0.982261 0.187517i \(-0.0600441\pi\)
\(132\) 0 0
\(133\) −11.4768 8.35865i −0.995161 0.724787i
\(134\) 0 0
\(135\) 12.1748 + 7.02910i 1.04784 + 0.604969i
\(136\) 0 0
\(137\) 10.8292 + 18.7568i 0.925203 + 1.60250i 0.791235 + 0.611513i \(0.209439\pi\)
0.133968 + 0.990986i \(0.457228\pi\)
\(138\) 0 0
\(139\) 13.9971 1.18722 0.593610 0.804753i \(-0.297702\pi\)
0.593610 + 0.804753i \(0.297702\pi\)
\(140\) 0 0
\(141\) 6.96109 0.586229
\(142\) 0 0
\(143\) 4.30413 + 7.45497i 0.359929 + 0.623416i
\(144\) 0 0
\(145\) 7.14563 + 4.12553i 0.593412 + 0.342607i
\(146\) 0 0
\(147\) 6.91495 + 21.4507i 0.570336 + 1.76923i
\(148\) 0 0
\(149\) 5.15128 8.92228i 0.422010 0.730942i −0.574126 0.818767i \(-0.694658\pi\)
0.996136 + 0.0878247i \(0.0279915\pi\)
\(150\) 0 0
\(151\) 1.46828 0.847712i 0.119487 0.0689858i −0.439065 0.898455i \(-0.644690\pi\)
0.558552 + 0.829469i \(0.311357\pi\)
\(152\) 0 0
\(153\) 34.3307i 2.77547i
\(154\) 0 0
\(155\) 5.33223i 0.428295i
\(156\) 0 0
\(157\) −11.7709 + 6.79593i −0.939420 + 0.542374i −0.889778 0.456393i \(-0.849141\pi\)
−0.0496416 + 0.998767i \(0.515808\pi\)
\(158\) 0 0
\(159\) −8.68623 + 15.0450i −0.688863 + 1.19315i
\(160\) 0 0
\(161\) 9.22966 12.6727i 0.727399 0.998748i
\(162\) 0 0
\(163\) 9.81781 + 5.66832i 0.768990 + 0.443977i 0.832514 0.554003i \(-0.186901\pi\)
−0.0635239 + 0.997980i \(0.520234\pi\)
\(164\) 0 0
\(165\) −2.60284 4.50826i −0.202631 0.350968i
\(166\) 0 0
\(167\) −5.04821 −0.390642 −0.195321 0.980739i \(-0.562575\pi\)
−0.195321 + 0.980739i \(0.562575\pi\)
\(168\) 0 0
\(169\) −15.3465 −1.18050
\(170\) 0 0
\(171\) −19.7651 34.2342i −1.51148 2.61795i
\(172\) 0 0
\(173\) 20.4776 + 11.8227i 1.55688 + 0.898867i 0.997552 + 0.0699224i \(0.0222752\pi\)
0.559331 + 0.828945i \(0.311058\pi\)
\(174\) 0 0
\(175\) −2.41826 + 1.07333i −0.182803 + 0.0811360i
\(176\) 0 0
\(177\) 11.9893 20.7660i 0.901169 1.56087i
\(178\) 0 0
\(179\) 11.4566 6.61449i 0.856309 0.494390i −0.00646563 0.999979i \(-0.502058\pi\)
0.862774 + 0.505589i \(0.168725\pi\)
\(180\) 0 0
\(181\) 15.3043i 1.13756i −0.822490 0.568780i \(-0.807416\pi\)
0.822490 0.568780i \(-0.192584\pi\)
\(182\) 0 0
\(183\) 2.04433i 0.151121i
\(184\) 0 0
\(185\) 5.24482 3.02810i 0.385607 0.222630i
\(186\) 0 0
\(187\) −3.76761 + 6.52570i −0.275515 + 0.477206i
\(188\) 0 0
\(189\) −3.93066 + 36.9862i −0.285914 + 2.69035i
\(190\) 0 0
\(191\) −5.39331 3.11383i −0.390246 0.225309i 0.292021 0.956412i \(-0.405672\pi\)
−0.682267 + 0.731103i \(0.739006\pi\)
\(192\) 0 0
\(193\) −10.5625 18.2948i −0.760305 1.31689i −0.942694 0.333660i \(-0.891716\pi\)
0.182389 0.983226i \(-0.441617\pi\)
\(194\) 0 0
\(195\) 17.1420 1.22757
\(196\) 0 0
\(197\) −6.90157 −0.491717 −0.245858 0.969306i \(-0.579070\pi\)
−0.245858 + 0.969306i \(0.579070\pi\)
\(198\) 0 0
\(199\) 0.170183 + 0.294765i 0.0120639 + 0.0208954i 0.871994 0.489516i \(-0.162827\pi\)
−0.859930 + 0.510411i \(0.829493\pi\)
\(200\) 0 0
\(201\) 39.7500 + 22.9497i 2.80375 + 1.61874i
\(202\) 0 0
\(203\) −2.30699 + 21.7080i −0.161919 + 1.52360i
\(204\) 0 0
\(205\) −1.17517 + 2.03545i −0.0820774 + 0.142162i
\(206\) 0 0
\(207\) 37.8015 21.8247i 2.62739 1.51692i
\(208\) 0 0
\(209\) 8.67648i 0.600164i
\(210\) 0 0
\(211\) 14.1037i 0.970938i 0.874254 + 0.485469i \(0.161351\pi\)
−0.874254 + 0.485469i \(0.838649\pi\)
\(212\) 0 0
\(213\) 15.6485 9.03465i 1.07222 0.619044i
\(214\) 0 0
\(215\) 1.52037 2.63337i 0.103689 0.179594i
\(216\) 0 0
\(217\) −12.8947 + 5.72323i −0.875349 + 0.388518i
\(218\) 0 0
\(219\) −2.07693 1.19912i −0.140346 0.0810287i
\(220\) 0 0
\(221\) −12.4065 21.4887i −0.834554 1.44549i
\(222\) 0 0
\(223\) 19.6411 1.31526 0.657632 0.753339i \(-0.271558\pi\)
0.657632 + 0.753339i \(0.271558\pi\)
\(224\) 0 0
\(225\) −7.36634 −0.491089
\(226\) 0 0
\(227\) −9.19814 15.9316i −0.610502 1.05742i −0.991156 0.132703i \(-0.957634\pi\)
0.380654 0.924718i \(-0.375699\pi\)
\(228\) 0 0
\(229\) −1.00128 0.578091i −0.0661666 0.0382013i 0.466552 0.884494i \(-0.345496\pi\)
−0.532718 + 0.846293i \(0.678829\pi\)
\(230\) 0 0
\(231\) 8.10842 11.1332i 0.533495 0.732510i
\(232\) 0 0
\(233\) −1.23369 + 2.13681i −0.0808217 + 0.139987i −0.903603 0.428371i \(-0.859088\pi\)
0.822781 + 0.568358i \(0.192421\pi\)
\(234\) 0 0
\(235\) −1.87238 + 1.08102i −0.122141 + 0.0705181i
\(236\) 0 0
\(237\) 1.99069i 0.129309i
\(238\) 0 0
\(239\) 4.30458i 0.278440i −0.990261 0.139220i \(-0.955540\pi\)
0.990261 0.139220i \(-0.0444595\pi\)
\(240\) 0 0
\(241\) −24.9319 + 14.3944i −1.60600 + 0.927227i −0.615752 + 0.787940i \(0.711148\pi\)
−0.990252 + 0.139287i \(0.955519\pi\)
\(242\) 0 0
\(243\) −16.2028 + 28.0642i −1.03941 + 1.80032i
\(244\) 0 0
\(245\) −5.19117 4.69593i −0.331651 0.300012i
\(246\) 0 0
\(247\) −24.7433 14.2856i −1.57438 0.908969i
\(248\) 0 0
\(249\) 5.01277 + 8.68237i 0.317671 + 0.550223i
\(250\) 0 0
\(251\) −15.6864 −0.990117 −0.495059 0.868860i \(-0.664853\pi\)
−0.495059 + 0.868860i \(0.664853\pi\)
\(252\) 0 0
\(253\) −9.58061 −0.602328
\(254\) 0 0
\(255\) 7.50263 + 12.9949i 0.469833 + 0.813774i
\(256\) 0 0
\(257\) 21.8310 + 12.6041i 1.36178 + 0.786224i 0.989861 0.142041i \(-0.0453666\pi\)
0.371919 + 0.928265i \(0.378700\pi\)
\(258\) 0 0
\(259\) 12.9521 + 9.43318i 0.804806 + 0.586149i
\(260\) 0 0
\(261\) −30.3900 + 52.6371i −1.88110 + 3.25816i
\(262\) 0 0
\(263\) 13.8970 8.02345i 0.856927 0.494747i −0.00605512 0.999982i \(-0.501927\pi\)
0.862982 + 0.505235i \(0.168594\pi\)
\(264\) 0 0
\(265\) 5.39571i 0.331456i
\(266\) 0 0
\(267\) 7.31431i 0.447628i
\(268\) 0 0
\(269\) −2.57670 + 1.48766i −0.157104 + 0.0907040i −0.576491 0.817104i \(-0.695578\pi\)
0.419387 + 0.907808i \(0.362245\pi\)
\(270\) 0 0
\(271\) 8.68150 15.0368i 0.527364 0.913421i −0.472128 0.881530i \(-0.656514\pi\)
0.999491 0.0318904i \(-0.0101528\pi\)
\(272\) 0 0
\(273\) 18.3990 + 41.4538i 1.11356 + 2.50890i
\(274\) 0 0
\(275\) 1.40022 + 0.808417i 0.0844364 + 0.0487494i
\(276\) 0 0
\(277\) 11.1292 + 19.2764i 0.668691 + 1.15821i 0.978270 + 0.207333i \(0.0664785\pi\)
−0.309579 + 0.950874i \(0.600188\pi\)
\(278\) 0 0
\(279\) −39.2790 −2.35157
\(280\) 0 0
\(281\) −32.6620 −1.94845 −0.974226 0.225573i \(-0.927575\pi\)
−0.974226 + 0.225573i \(0.927575\pi\)
\(282\) 0 0
\(283\) −4.39573 7.61363i −0.261299 0.452584i 0.705288 0.708921i \(-0.250818\pi\)
−0.966587 + 0.256337i \(0.917484\pi\)
\(284\) 0 0
\(285\) 14.9631 + 8.63894i 0.886336 + 0.511727i
\(286\) 0 0
\(287\) −6.18359 0.657153i −0.365006 0.0387905i
\(288\) 0 0
\(289\) 2.36004 4.08771i 0.138826 0.240454i
\(290\) 0 0
\(291\) −11.4747 + 6.62493i −0.672660 + 0.388360i
\(292\) 0 0
\(293\) 7.59186i 0.443521i −0.975101 0.221761i \(-0.928820\pi\)
0.975101 0.221761i \(-0.0711804\pi\)
\(294\) 0 0
\(295\) 7.44750i 0.433610i
\(296\) 0 0
\(297\) 19.6846 11.3649i 1.14221 0.659458i
\(298\) 0 0
\(299\) 15.7742 27.3217i 0.912245 1.58005i
\(300\) 0 0
\(301\) 8.00002 + 0.850191i 0.461113 + 0.0490042i
\(302\) 0 0
\(303\) 0.498756 + 0.287957i 0.0286528 + 0.0165427i
\(304\) 0 0
\(305\) −0.317474 0.549881i −0.0181785 0.0314861i
\(306\) 0 0
\(307\) −19.2802 −1.10038 −0.550189 0.835040i \(-0.685444\pi\)
−0.550189 + 0.835040i \(0.685444\pi\)
\(308\) 0 0
\(309\) 33.2853 1.89353
\(310\) 0 0
\(311\) 6.11946 + 10.5992i 0.347003 + 0.601027i 0.985716 0.168419i \(-0.0538661\pi\)
−0.638713 + 0.769445i \(0.720533\pi\)
\(312\) 0 0
\(313\) −6.34922 3.66572i −0.358879 0.207199i 0.309710 0.950831i \(-0.399768\pi\)
−0.668589 + 0.743632i \(0.733101\pi\)
\(314\) 0 0
\(315\) −7.90649 17.8137i −0.445480 1.00369i
\(316\) 0 0
\(317\) 13.4673 23.3261i 0.756400 1.31012i −0.188276 0.982116i \(-0.560290\pi\)
0.944675 0.328007i \(-0.106377\pi\)
\(318\) 0 0
\(319\) 11.5533 6.67030i 0.646861 0.373465i
\(320\) 0 0
\(321\) 0.349578i 0.0195116i
\(322\) 0 0
\(323\) 25.0097i 1.39158i
\(324\) 0 0
\(325\) −4.61084 + 2.66207i −0.255764 + 0.147665i
\(326\) 0 0
\(327\) −0.677297 + 1.17311i −0.0374546 + 0.0648733i
\(328\) 0 0
\(329\) −4.62387 3.36762i −0.254922 0.185663i
\(330\) 0 0
\(331\) −2.75467 1.59041i −0.151410 0.0874168i 0.422381 0.906419i \(-0.361195\pi\)
−0.573791 + 0.819002i \(0.694528\pi\)
\(332\) 0 0
\(333\) 22.3060 + 38.6351i 1.22236 + 2.11719i
\(334\) 0 0
\(335\) −14.2559 −0.778881
\(336\) 0 0
\(337\) −6.57720 −0.358283 −0.179141 0.983823i \(-0.557332\pi\)
−0.179141 + 0.983823i \(0.557332\pi\)
\(338\) 0 0
\(339\) −18.3411 31.7678i −0.996154 1.72539i
\(340\) 0 0
\(341\) 7.46629 + 4.31066i 0.404322 + 0.233436i
\(342\) 0 0
\(343\) 5.78415 17.5939i 0.312315 0.949979i
\(344\) 0 0
\(345\) −9.53916 + 16.5223i −0.513571 + 0.889531i
\(346\) 0 0
\(347\) 25.3335 14.6263i 1.35997 0.785182i 0.370354 0.928891i \(-0.379236\pi\)
0.989620 + 0.143709i \(0.0459029\pi\)
\(348\) 0 0
\(349\) 28.9652i 1.55047i −0.631673 0.775235i \(-0.717631\pi\)
0.631673 0.775235i \(-0.282369\pi\)
\(350\) 0 0
\(351\) 74.8479i 3.99508i
\(352\) 0 0
\(353\) −2.49898 + 1.44279i −0.133007 + 0.0767918i −0.565027 0.825072i \(-0.691134\pi\)
0.432020 + 0.901864i \(0.357801\pi\)
\(354\) 0 0
\(355\) −2.80607 + 4.86026i −0.148931 + 0.257956i
\(356\) 0 0
\(357\) −23.3723 + 32.0911i −1.23699 + 1.69844i
\(358\) 0 0
\(359\) 27.2434 + 15.7290i 1.43785 + 0.830145i 0.997700 0.0677778i \(-0.0215909\pi\)
0.440153 + 0.897923i \(0.354924\pi\)
\(360\) 0 0
\(361\) −4.89878 8.48493i −0.257830 0.446575i
\(362\) 0 0
\(363\) 26.9997 1.41712
\(364\) 0 0
\(365\) 0.744866 0.0389881
\(366\) 0 0
\(367\) 15.9862 + 27.6889i 0.834472 + 1.44535i 0.894460 + 0.447148i \(0.147560\pi\)
−0.0599880 + 0.998199i \(0.519106\pi\)
\(368\) 0 0
\(369\) −14.9938 8.65669i −0.780548 0.450649i
\(370\) 0 0
\(371\) 13.0482 5.79137i 0.677430 0.300673i
\(372\) 0 0
\(373\) 17.1833 29.7623i 0.889717 1.54104i 0.0495076 0.998774i \(-0.484235\pi\)
0.840210 0.542262i \(-0.182432\pi\)
\(374\) 0 0
\(375\) 2.78832 1.60984i 0.143988 0.0831318i
\(376\) 0 0
\(377\) 43.9298i 2.26250i
\(378\) 0 0
\(379\) 28.7064i 1.47455i 0.675595 + 0.737273i \(0.263887\pi\)
−0.675595 + 0.737273i \(0.736113\pi\)
\(380\) 0 0
\(381\) 14.7481 8.51483i 0.755569 0.436228i
\(382\) 0 0
\(383\) 3.87359 6.70926i 0.197931 0.342827i −0.749926 0.661521i \(-0.769911\pi\)
0.947858 + 0.318694i \(0.103244\pi\)
\(384\) 0 0
\(385\) −0.452066 + 4.25379i −0.0230394 + 0.216793i
\(386\) 0 0
\(387\) 19.3983 + 11.1996i 0.986069 + 0.569307i
\(388\) 0 0
\(389\) 10.2230 + 17.7067i 0.518325 + 0.897765i 0.999773 + 0.0212909i \(0.00677760\pi\)
−0.481448 + 0.876475i \(0.659889\pi\)
\(390\) 0 0
\(391\) 27.6158 1.39659
\(392\) 0 0
\(393\) −48.1660 −2.42965
\(394\) 0 0
\(395\) −0.309144 0.535453i −0.0155547 0.0269416i
\(396\) 0 0
\(397\) −27.8565 16.0829i −1.39808 0.807180i −0.403885 0.914810i \(-0.632341\pi\)
−0.994191 + 0.107630i \(0.965674\pi\)
\(398\) 0 0
\(399\) −4.83088 + 45.4570i −0.241847 + 2.27570i
\(400\) 0 0
\(401\) 11.1471 19.3073i 0.556660 0.964163i −0.441113 0.897452i \(-0.645416\pi\)
0.997772 0.0667110i \(-0.0212506\pi\)
\(402\) 0 0
\(403\) −24.5861 + 14.1948i −1.22472 + 0.707092i
\(404\) 0 0
\(405\) 23.1639i 1.15102i
\(406\) 0 0
\(407\) 9.79186i 0.485365i
\(408\) 0 0
\(409\) 3.45876 1.99691i 0.171024 0.0987410i −0.412044 0.911164i \(-0.635185\pi\)
0.583069 + 0.812423i \(0.301852\pi\)
\(410\) 0 0
\(411\) 34.8666 60.3908i 1.71984 2.97886i
\(412\) 0 0
\(413\) −18.0100 + 7.99361i −0.886212 + 0.393340i
\(414\) 0 0
\(415\) −2.69666 1.55691i −0.132374 0.0764259i
\(416\) 0 0
\(417\) −22.5331 39.0285i −1.10345 1.91123i
\(418\) 0 0
\(419\) 32.9704 1.61071 0.805354 0.592794i \(-0.201975\pi\)
0.805354 + 0.592794i \(0.201975\pi\)
\(420\) 0 0
\(421\) 24.0036 1.16986 0.584931 0.811083i \(-0.301121\pi\)
0.584931 + 0.811083i \(0.301121\pi\)
\(422\) 0 0
\(423\) −7.96317 13.7926i −0.387182 0.670620i
\(424\) 0 0
\(425\) −4.03609 2.33024i −0.195779 0.113033i
\(426\) 0 0
\(427\) 0.989000 1.35794i 0.0478611 0.0657151i
\(428\) 0 0
\(429\) 13.8579 24.0026i 0.669067 1.15886i
\(430\) 0 0
\(431\) −6.94578 + 4.01015i −0.334566 + 0.193162i −0.657867 0.753134i \(-0.728541\pi\)
0.323300 + 0.946296i \(0.395208\pi\)
\(432\) 0 0
\(433\) 14.0389i 0.674665i 0.941386 + 0.337333i \(0.109525\pi\)
−0.941386 + 0.337333i \(0.890475\pi\)
\(434\) 0 0
\(435\) 26.5658i 1.27373i
\(436\) 0 0
\(437\) 27.5382 15.8992i 1.31733 0.760562i
\(438\) 0 0
\(439\) 9.93780 17.2128i 0.474305 0.821521i −0.525262 0.850941i \(-0.676033\pi\)
0.999567 + 0.0294199i \(0.00936601\pi\)
\(440\) 0 0
\(441\) 34.5918 38.2399i 1.64723 1.82095i
\(442\) 0 0
\(443\) −3.93609 2.27250i −0.187009 0.107970i 0.403572 0.914948i \(-0.367768\pi\)
−0.590582 + 0.806978i \(0.701102\pi\)
\(444\) 0 0
\(445\) −1.13587 1.96739i −0.0538456 0.0932634i
\(446\) 0 0
\(447\) −33.1710 −1.56893
\(448\) 0 0
\(449\) −6.12285 −0.288955 −0.144477 0.989508i \(-0.546150\pi\)
−0.144477 + 0.989508i \(0.546150\pi\)
\(450\) 0 0
\(451\) 1.90005 + 3.29099i 0.0894701 + 0.154967i
\(452\) 0 0
\(453\) −4.72739 2.72936i −0.222112 0.128237i
\(454\) 0 0
\(455\) −11.3865 8.29293i −0.533808 0.388778i
\(456\) 0 0
\(457\) −2.62269 + 4.54262i −0.122684 + 0.212495i −0.920825 0.389975i \(-0.872484\pi\)
0.798141 + 0.602470i \(0.205817\pi\)
\(458\) 0 0
\(459\) −56.7402 + 32.7590i −2.64841 + 1.52906i
\(460\) 0 0
\(461\) 12.4847i 0.581473i −0.956803 0.290736i \(-0.906100\pi\)
0.956803 0.290736i \(-0.0939002\pi\)
\(462\) 0 0
\(463\) 2.48748i 0.115603i 0.998328 + 0.0578014i \(0.0184090\pi\)
−0.998328 + 0.0578014i \(0.981591\pi\)
\(464\) 0 0
\(465\) 14.8680 8.58403i 0.689486 0.398075i
\(466\) 0 0
\(467\) −13.9669 + 24.1914i −0.646311 + 1.11944i 0.337686 + 0.941259i \(0.390356\pi\)
−0.983997 + 0.178185i \(0.942978\pi\)
\(468\) 0 0
\(469\) −15.3012 34.4743i −0.706544 1.59188i
\(470\) 0 0
\(471\) 37.8985 + 21.8807i 1.74627 + 1.00821i
\(472\) 0 0
\(473\) −2.45819 4.25772i −0.113028 0.195770i
\(474\) 0 0
\(475\) −5.36634 −0.246224
\(476\) 0 0
\(477\) 39.7466 1.81987
\(478\) 0 0
\(479\) −3.29237 5.70255i −0.150432 0.260556i 0.780954 0.624588i \(-0.214733\pi\)
−0.931386 + 0.364032i \(0.881400\pi\)
\(480\) 0 0
\(481\) 27.9242 + 16.1220i 1.27323 + 0.735101i
\(482\) 0 0
\(483\) −50.1938 5.33428i −2.28390 0.242718i
\(484\) 0 0
\(485\) 2.05764 3.56393i 0.0934324 0.161830i
\(486\) 0 0
\(487\) 1.65409 0.954988i 0.0749539 0.0432746i −0.462055 0.886851i \(-0.652888\pi\)
0.537009 + 0.843577i \(0.319554\pi\)
\(488\) 0 0
\(489\) 36.5003i 1.65060i
\(490\) 0 0
\(491\) 1.49744i 0.0675784i −0.999429 0.0337892i \(-0.989243\pi\)
0.999429 0.0337892i \(-0.0107575\pi\)
\(492\) 0 0
\(493\) −33.3021 + 19.2270i −1.49985 + 0.865939i
\(494\) 0 0
\(495\) −5.95507 + 10.3145i −0.267661 + 0.463602i
\(496\) 0 0
\(497\) −14.7652 1.56915i −0.662309 0.0703861i
\(498\) 0 0
\(499\) −36.1503 20.8714i −1.61831 0.934333i −0.987357 0.158513i \(-0.949330\pi\)
−0.630955 0.775819i \(-0.717337\pi\)
\(500\) 0 0
\(501\) 8.12681 + 14.0761i 0.363079 + 0.628872i
\(502\) 0 0
\(503\) 19.9860 0.891130 0.445565 0.895250i \(-0.353003\pi\)
0.445565 + 0.895250i \(0.353003\pi\)
\(504\) 0 0
\(505\) −0.178873 −0.00795975
\(506\) 0 0
\(507\) 24.7054 + 42.7910i 1.09721 + 1.90042i
\(508\) 0 0
\(509\) −19.8929 11.4851i −0.881736 0.509070i −0.0105053 0.999945i \(-0.503344\pi\)
−0.871230 + 0.490875i \(0.836677\pi\)
\(510\) 0 0
\(511\) 0.799486 + 1.80128i 0.0353672 + 0.0796838i
\(512\) 0 0
\(513\) −37.7205 + 65.3338i −1.66540 + 2.88456i
\(514\) 0 0
\(515\) −8.95304 + 5.16904i −0.394518 + 0.227775i
\(516\) 0 0
\(517\) 3.49567i 0.153739i
\(518\) 0 0
\(519\) 76.1309i 3.34178i
\(520\) 0 0
\(521\) −34.8762 + 20.1358i −1.52795 + 0.882165i −0.528507 + 0.848929i \(0.677248\pi\)
−0.999448 + 0.0332363i \(0.989419\pi\)
\(522\) 0 0
\(523\) 11.1304 19.2784i 0.486697 0.842984i −0.513186 0.858277i \(-0.671535\pi\)
0.999883 + 0.0152934i \(0.00486823\pi\)
\(524\) 0 0
\(525\) 6.88579 + 5.01500i 0.300521 + 0.218872i
\(526\) 0 0
\(527\) −21.5214 12.4254i −0.937486 0.541258i
\(528\) 0 0
\(529\) 6.05598 + 10.4893i 0.263303 + 0.456055i
\(530\) 0 0
\(531\) −54.8608 −2.38075
\(532\) 0 0
\(533\) −12.5135 −0.542022
\(534\) 0 0
\(535\) 0.0542877 + 0.0940291i 0.00234706 + 0.00406523i
\(536\) 0 0
\(537\) −36.8867 21.2965i −1.59178 0.919013i
\(538\) 0 0
\(539\) −10.7720 + 3.47250i −0.463982 + 0.149571i
\(540\) 0 0
\(541\) 0.320401 0.554951i 0.0137751 0.0238592i −0.859056 0.511882i \(-0.828948\pi\)
0.872831 + 0.488023i \(0.162282\pi\)
\(542\) 0 0
\(543\) −42.6734 + 24.6375i −1.83129 + 1.05730i
\(544\) 0 0
\(545\) 0.420724i 0.0180218i
\(546\) 0 0
\(547\) 21.9754i 0.939598i 0.882773 + 0.469799i \(0.155674\pi\)
−0.882773 + 0.469799i \(0.844326\pi\)
\(548\) 0 0
\(549\) 4.05061 2.33862i 0.172876 0.0998098i
\(550\) 0 0
\(551\) −22.1390 + 38.3458i −0.943152 + 1.63359i
\(552\) 0 0
\(553\) 0.963051 1.32231i 0.0409531 0.0562302i
\(554\) 0 0
\(555\) −16.8866 9.74950i −0.716798 0.413843i
\(556\) 0 0
\(557\) 0.438633 + 0.759735i 0.0185855 + 0.0321910i 0.875169 0.483818i \(-0.160750\pi\)
−0.856583 + 0.516009i \(0.827417\pi\)
\(558\) 0 0
\(559\) 16.1894 0.684738
\(560\) 0 0
\(561\) 24.2610 1.02430
\(562\) 0 0
\(563\) 8.69342 + 15.0575i 0.366384 + 0.634596i 0.988997 0.147934i \(-0.0472623\pi\)
−0.622613 + 0.782530i \(0.713929\pi\)
\(564\) 0 0
\(565\) 9.86676 + 5.69658i 0.415098 + 0.239657i
\(566\) 0 0
\(567\) 56.0162 24.8625i 2.35246 1.04412i
\(568\) 0 0
\(569\) 14.7391 25.5289i 0.617897 1.07023i −0.371972 0.928244i \(-0.621318\pi\)
0.989869 0.141985i \(-0.0453485\pi\)
\(570\) 0 0
\(571\) 16.5518 9.55619i 0.692672 0.399914i −0.111940 0.993715i \(-0.535707\pi\)
0.804612 + 0.593801i \(0.202373\pi\)
\(572\) 0 0
\(573\) 20.0511i 0.837645i
\(574\) 0 0
\(575\) 5.92553i 0.247112i
\(576\) 0 0
\(577\) −9.56733 + 5.52370i −0.398293 + 0.229955i −0.685747 0.727840i \(-0.740524\pi\)
0.287454 + 0.957794i \(0.407191\pi\)
\(578\) 0 0
\(579\) −34.0078 + 58.9033i −1.41332 + 2.44794i
\(580\) 0 0
\(581\) 0.870624 8.19229i 0.0361196 0.339873i
\(582\) 0 0
\(583\) −7.55518 4.36199i −0.312904 0.180655i
\(584\) 0 0
\(585\) −19.6097 33.9650i −0.810762 1.40428i
\(586\) 0 0
\(587\) −8.71924 −0.359881 −0.179941 0.983677i \(-0.557591\pi\)
−0.179941 + 0.983677i \(0.557591\pi\)
\(588\) 0 0
\(589\) −28.6145 −1.17904
\(590\) 0 0
\(591\) 11.1104 + 19.2438i 0.457022 + 0.791585i
\(592\) 0 0
\(593\) 5.61937 + 3.24435i 0.230760 + 0.133229i 0.610923 0.791690i \(-0.290799\pi\)
−0.380163 + 0.924920i \(0.624132\pi\)
\(594\) 0 0
\(595\) 1.30307 12.2614i 0.0534205 0.502669i
\(596\) 0 0
\(597\) 0.547934 0.949050i 0.0224255 0.0388420i
\(598\) 0 0
\(599\) −4.63126 + 2.67386i −0.189228 + 0.109251i −0.591621 0.806216i \(-0.701512\pi\)
0.402393 + 0.915467i \(0.368179\pi\)
\(600\) 0 0
\(601\) 28.4122i 1.15896i 0.814988 + 0.579478i \(0.196744\pi\)
−0.814988 + 0.579478i \(0.803256\pi\)
\(602\) 0 0
\(603\) 105.013i 4.27648i
\(604\) 0 0
\(605\) −7.26236 + 4.19292i −0.295257 + 0.170467i
\(606\) 0 0
\(607\) 4.08802 7.08065i 0.165927 0.287395i −0.771057 0.636766i \(-0.780272\pi\)
0.936984 + 0.349372i \(0.113605\pi\)
\(608\) 0 0
\(609\) 64.2429 28.5138i 2.60325 1.15544i
\(610\) 0 0
\(611\) −9.96884 5.75551i −0.403296 0.232843i
\(612\) 0 0
\(613\) 12.1355 + 21.0194i 0.490150 + 0.848964i 0.999936 0.0113371i \(-0.00360880\pi\)
−0.509786 + 0.860301i \(0.670275\pi\)
\(614\) 0 0
\(615\) 7.56734 0.305145
\(616\) 0 0
\(617\) 34.2542 1.37902 0.689511 0.724275i \(-0.257825\pi\)
0.689511 + 0.724275i \(0.257825\pi\)
\(618\) 0 0
\(619\) −16.9691 29.3914i −0.682047 1.18134i −0.974355 0.225015i \(-0.927757\pi\)
0.292309 0.956324i \(-0.405577\pi\)
\(620\) 0 0
\(621\) −72.1419 41.6512i −2.89496 1.67140i
\(622\) 0 0
\(623\) 3.53850 4.85850i 0.141767 0.194652i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 24.1928 13.9677i 0.966169 0.557818i
\(628\) 0 0
\(629\) 28.2248i 1.12540i
\(630\) 0 0
\(631\) 15.1185i 0.601857i 0.953647 + 0.300929i \(0.0972966\pi\)
−0.953647 + 0.300929i \(0.902703\pi\)
\(632\) 0 0
\(633\) 39.3256 22.7047i 1.56305 0.902430i
\(634\) 0 0
\(635\) −2.64462 + 4.58062i −0.104949 + 0.181776i
\(636\) 0 0
\(637\) 7.83296 36.4366i 0.310353 1.44367i
\(638\) 0 0
\(639\) −35.8023 20.6705i −1.41632 0.817711i
\(640\) 0 0
\(641\) −11.9914 20.7696i −0.473630 0.820352i 0.525914 0.850538i \(-0.323723\pi\)
−0.999544 + 0.0301859i \(0.990390\pi\)
\(642\) 0 0
\(643\) 8.12044 0.320239 0.160119 0.987098i \(-0.448812\pi\)
0.160119 + 0.987098i \(0.448812\pi\)
\(644\) 0 0
\(645\) −9.79024 −0.385490
\(646\) 0 0
\(647\) 3.47447 + 6.01796i 0.136596 + 0.236590i 0.926206 0.377018i \(-0.123051\pi\)
−0.789610 + 0.613609i \(0.789717\pi\)
\(648\) 0 0
\(649\) 10.4281 + 6.02069i 0.409340 + 0.236333i
\(650\) 0 0
\(651\) 36.7166 + 26.7411i 1.43904 + 1.04807i
\(652\) 0 0
\(653\) −2.93521 + 5.08394i −0.114864 + 0.198950i −0.917725 0.397216i \(-0.869976\pi\)
0.802862 + 0.596166i \(0.203310\pi\)
\(654\) 0 0
\(655\) 12.9556 7.47994i 0.506219 0.292265i
\(656\) 0 0
\(657\) 5.48693i 0.214066i
\(658\) 0 0
\(659\) 27.6988i 1.07899i 0.841988 + 0.539496i \(0.181385\pi\)
−0.841988 + 0.539496i \(0.818615\pi\)
\(660\) 0 0
\(661\) 2.06615 1.19289i 0.0803639 0.0463981i −0.459280 0.888292i \(-0.651892\pi\)
0.539643 + 0.841894i \(0.318559\pi\)
\(662\) 0 0
\(663\) −39.9451 + 69.1869i −1.55134 + 2.68700i
\(664\) 0 0
\(665\) −5.75984 12.9772i −0.223357 0.503233i
\(666\) 0 0
\(667\) −42.3417 24.4460i −1.63948 0.946552i
\(668\) 0 0
\(669\) −31.6190 54.7657i −1.22246 2.11736i
\(670\) 0 0
\(671\) −1.02661 −0.0396317
\(672\) 0 0
\(673\) 43.3982 1.67288 0.836440 0.548059i \(-0.184633\pi\)
0.836440 + 0.548059i \(0.184633\pi\)
\(674\) 0 0
\(675\) 7.02910 + 12.1748i 0.270550 + 0.468607i
\(676\) 0 0
\(677\) 31.2191 + 18.0243i 1.19985 + 0.692731i 0.960521 0.278208i \(-0.0897404\pi\)
0.239325 + 0.970939i \(0.423074\pi\)
\(678\) 0 0
\(679\) 10.8270 + 1.15063i 0.415503 + 0.0441570i
\(680\) 0 0
\(681\) −29.6151 + 51.2948i −1.13485 + 1.96562i
\(682\) 0 0
\(683\) 22.6823 13.0956i 0.867914 0.501091i 0.00125979 0.999999i \(-0.499599\pi\)
0.866655 + 0.498909i \(0.166266\pi\)
\(684\) 0 0
\(685\) 21.6584i 0.827527i
\(686\) 0 0
\(687\) 3.72254i 0.142024i
\(688\) 0 0
\(689\) 24.8788 14.3638i 0.947806 0.547216i
\(690\) 0 0
\(691\) 6.74749 11.6870i 0.256687 0.444595i −0.708666 0.705545i \(-0.750702\pi\)
0.965352 + 0.260950i \(0.0840358\pi\)
\(692\) 0 0
\(693\) −31.3348 3.33007i −1.19031 0.126499i
\(694\) 0 0
\(695\) 12.1219 + 6.99856i 0.459808 + 0.265470i
\(696\) 0 0
\(697\) −5.47686 9.48619i −0.207451 0.359315i
\(698\) 0 0
\(699\) 7.94417 0.300476
\(700\) 0 0
\(701\) −14.6264 −0.552432 −0.276216 0.961096i \(-0.589081\pi\)
−0.276216 + 0.961096i \(0.589081\pi\)
\(702\) 0 0
\(703\) 16.2498 + 28.1454i 0.612872 + 1.06153i
\(704\) 0 0
\(705\) 6.02848 + 3.48054i 0.227046 + 0.131085i
\(706\) 0 0
\(707\) −0.191990 0.432561i −0.00722051 0.0162681i
\(708\) 0 0
\(709\) −3.63183 + 6.29051i −0.136396 + 0.236245i −0.926130 0.377205i \(-0.876885\pi\)
0.789734 + 0.613450i \(0.210219\pi\)
\(710\) 0 0
\(711\) 3.94433 2.27726i 0.147924 0.0854039i
\(712\) 0 0
\(713\) 31.5963i 1.18329i
\(714\) 0 0
\(715\) 8.60826i 0.321931i
\(716\) 0 0
\(717\) −12.0026 + 6.92968i −0.448244 + 0.258794i
\(718\) 0 0
\(719\) 10.0297 17.3719i 0.374043 0.647862i −0.616140 0.787636i \(-0.711305\pi\)
0.990183 + 0.139775i \(0.0446379\pi\)
\(720\) 0 0
\(721\) −22.1096 16.1027i −0.823405 0.599695i
\(722\) 0 0
\(723\) 80.2727 + 46.3455i 2.98537 + 1.72361i
\(724\) 0 0
\(725\) 4.12553 + 7.14563i 0.153218 + 0.265382i
\(726\) 0 0
\(727\) 20.9849 0.778287 0.389144 0.921177i \(-0.372771\pi\)
0.389144 + 0.921177i \(0.372771\pi\)
\(728\) 0 0
\(729\) 34.8443 1.29053
\(730\) 0 0
\(731\) 7.08568 + 12.2728i 0.262073 + 0.453924i
\(732\) 0 0
\(733\) 11.8703 + 6.85334i 0.438441 + 0.253134i 0.702936 0.711253i \(-0.251872\pi\)
−0.264495 + 0.964387i \(0.585205\pi\)
\(734\) 0 0
\(735\) −4.73684 + 22.0344i −0.174721 + 0.812749i
\(736\) 0 0
\(737\) −11.5247 + 19.9613i −0.424517 + 0.735285i
\(738\) 0 0
\(739\) 0.459385 0.265226i 0.0168987 0.00975649i −0.491527 0.870862i \(-0.663561\pi\)
0.508426 + 0.861106i \(0.330228\pi\)
\(740\) 0 0
\(741\) 91.9899i 3.37933i
\(742\) 0 0
\(743\) 22.8953i 0.839946i −0.907537 0.419973i \(-0.862040\pi\)
0.907537 0.419973i \(-0.137960\pi\)
\(744\) 0 0
\(745\) 8.92228 5.15128i 0.326887 0.188728i
\(746\) 0 0
\(747\) 11.4688 19.8645i 0.419620 0.726803i
\(748\) 0 0
\(749\) −0.169118 + 0.232206i −0.00617944 + 0.00848462i
\(750\) 0 0
\(751\) 8.89236 + 5.13401i 0.324487 + 0.187343i 0.653391 0.757021i \(-0.273346\pi\)
−0.328904 + 0.944363i \(0.606679\pi\)
\(752\) 0 0
\(753\) 25.2526 + 43.7388i 0.920256 + 1.59393i
\(754\) 0 0
\(755\) 1.69542 0.0617028
\(756\) 0 0
\(757\) 24.3589 0.885340 0.442670 0.896685i \(-0.354031\pi\)
0.442670 + 0.896685i \(0.354031\pi\)
\(758\) 0 0
\(759\) 15.4232 + 26.7138i 0.559828 + 0.969651i
\(760\) 0 0
\(761\) −13.0418 7.52970i −0.472766 0.272951i 0.244631 0.969616i \(-0.421333\pi\)
−0.717397 + 0.696665i \(0.754666\pi\)
\(762\) 0 0
\(763\) 1.01742 0.451574i 0.0368330 0.0163481i
\(764\) 0 0
\(765\) 17.1653 29.7312i 0.620614 1.07493i
\(766\) 0 0
\(767\) −34.3392 + 19.8258i −1.23992 + 0.715867i
\(768\) 0 0
\(769\) 14.6137i 0.526985i 0.964661 + 0.263492i \(0.0848744\pi\)
−0.964661 + 0.263492i \(0.915126\pi\)
\(770\) 0 0
\(771\) 81.1625i 2.92300i
\(772\) 0 0
\(773\) −33.6718 + 19.4404i −1.21109 + 0.699223i −0.962997 0.269513i \(-0.913137\pi\)
−0.248093 + 0.968736i \(0.579804\pi\)
\(774\) 0 0
\(775\) −2.66611 + 4.61784i −0.0957696 + 0.165878i
\(776\) 0 0
\(777\) 5.45191 51.3006i 0.195586 1.84040i
\(778\) 0 0
\(779\) −10.9229 6.30635i −0.391354 0.225949i
\(780\) 0 0
\(781\) 4.53695 + 7.85824i 0.162345 + 0.281190i
\(782\) 0 0
\(783\) 115.995 4.14533
\(784\) 0 0
\(785\) −13.5919 −0.485114
\(786\) 0 0
\(787\) −3.07615 5.32805i −0.109653 0.189925i 0.805977 0.591947i \(-0.201641\pi\)
−0.915630 + 0.402023i \(0.868307\pi\)
\(788\) 0 0
\(789\) −44.7439 25.8329i −1.59293 0.919677i
\(790\) 0 0
\(791\) −3.18552 + 29.9747i −0.113264 + 1.06578i
\(792\) 0 0
\(793\) 1.69028 2.92764i 0.0600235 0.103964i
\(794\) 0 0
\(795\) −15.0450 + 8.68623i −0.533591 + 0.308069i
\(796\) 0 0
\(797\) 47.2913i 1.67514i 0.546327 + 0.837572i \(0.316026\pi\)
−0.546327 + 0.837572i \(0.683974\pi\)
\(798\) 0 0
\(799\) 10.0762i 0.356469i
\(800\) 0 0
\(801\) 14.4925 8.36724i 0.512066 0.295642i
\(802\) 0 0
\(803\) 0.602163 1.04298i 0.0212499 0.0368058i
\(804\) 0 0
\(805\) 14.3295 6.36004i 0.505047 0.224162i
\(806\) 0 0
\(807\) 8.29614 + 4.78978i 0.292038 + 0.168608i
\(808\) 0 0
\(809\) 13.9998 + 24.2484i 0.492208 + 0.852529i 0.999960 0.00897419i \(-0.00285661\pi\)
−0.507752 + 0.861503i \(0.669523\pi\)
\(810\) 0 0
\(811\) −12.1609 −0.427026 −0.213513 0.976940i \(-0.568491\pi\)
−0.213513 + 0.976940i \(0.568491\pi\)
\(812\) 0 0
\(813\) −55.9033 −1.96061
\(814\) 0 0
\(815\) 5.66832 + 9.81781i 0.198552 + 0.343903i
\(816\) 0 0
\(817\) 14.1315 + 8.15884i 0.494400 + 0.285442i
\(818\) 0 0
\(819\) 61.0885 83.8769i 2.13460 2.93090i
\(820\) 0 0
\(821\) 9.22766 15.9828i 0.322048 0.557803i −0.658863 0.752263i \(-0.728962\pi\)
0.980910 + 0.194460i \(0.0622956\pi\)
\(822\) 0 0
\(823\) −26.1593 + 15.1031i −0.911855 + 0.526460i −0.881028 0.473065i \(-0.843148\pi\)
−0.0308275 + 0.999525i \(0.509814\pi\)
\(824\) 0 0
\(825\) 5.20569i 0.181239i
\(826\) 0 0
\(827\) 3.28320i 0.114168i −0.998369 0.0570841i \(-0.981820\pi\)
0.998369 0.0570841i \(-0.0181803\pi\)
\(828\) 0 0
\(829\) 32.6939 18.8758i 1.13550 0.655584i 0.190191 0.981747i \(-0.439089\pi\)
0.945314 + 0.326163i \(0.105756\pi\)
\(830\) 0 0
\(831\) 35.8326 62.0638i 1.24302 2.15297i
\(832\) 0 0
\(833\) 31.0499 10.0094i 1.07582 0.346805i
\(834\) 0 0
\(835\) −4.37188 2.52411i −0.151295 0.0873503i
\(836\) 0 0
\(837\) 37.4807 + 64.9186i 1.29552 + 2.24391i
\(838\) 0 0
\(839\) −41.6604 −1.43828 −0.719139 0.694866i \(-0.755464\pi\)
−0.719139 + 0.694866i \(0.755464\pi\)
\(840\) 0 0
\(841\) 39.0800 1.34759
\(842\) 0 0
\(843\) 52.5806 + 91.0723i 1.81097 + 3.13670i
\(844\) 0 0
\(845\) −13.2905 7.67325i −0.457206 0.263968i
\(846\) 0 0
\(847\) −17.9345 13.0619i −0.616235 0.448811i
\(848\) 0 0
\(849\) −14.1529 + 24.5135i −0.485725 + 0.841300i
\(850\) 0 0
\(851\) −31.0783 + 17.9431i −1.06535 + 0.615081i
\(852\) 0 0
\(853\) 14.9474i 0.511791i −0.966705 0.255895i \(-0.917630\pi\)
0.966705 0.255895i \(-0.0823702\pi\)
\(854\) 0 0
\(855\) 39.5302i 1.35191i
\(856\) 0 0
\(857\) −50.5400 + 29.1793i −1.72641 + 0.996746i −0.822901 + 0.568185i \(0.807646\pi\)
−0.903513 + 0.428561i \(0.859021\pi\)
\(858\) 0 0
\(859\) −12.6277 + 21.8717i −0.430850 + 0.746254i −0.996947 0.0780847i \(-0.975120\pi\)
0.566097 + 0.824339i \(0.308453\pi\)
\(860\) 0 0
\(861\) 8.12224 + 18.2998i 0.276805 + 0.623654i
\(862\) 0 0
\(863\) −13.7889 7.96102i −0.469379 0.270996i 0.246601 0.969117i \(-0.420686\pi\)
−0.715980 + 0.698121i \(0.754020\pi\)
\(864\) 0 0
\(865\) 11.8227 + 20.4776i 0.401986 + 0.696259i
\(866\) 0 0
\(867\) −15.1972 −0.516122
\(868\) 0 0
\(869\) −0.999670 −0.0339115
\(870\) 0 0
\(871\) −37.9501 65.7315i −1.28589 2.22723i
\(872\) 0 0
\(873\) 26.2531 + 15.1572i 0.888533 + 0.512995i
\(874\) 0 0
\(875\) −2.63094 0.279599i −0.0889419 0.00945218i
\(876\) 0 0
\(877\) −10.4854 + 18.1613i −0.354068 + 0.613264i −0.986958 0.160978i \(-0.948535\pi\)
0.632890 + 0.774242i \(0.281869\pi\)
\(878\) 0 0
\(879\) −21.1686 + 12.2217i −0.713998 + 0.412227i
\(880\) 0 0
\(881\) 18.5802i 0.625984i 0.949756 + 0.312992i \(0.101331\pi\)
−0.949756 + 0.312992i \(0.898669\pi\)
\(882\) 0 0
\(883\) 41.4967i 1.39648i 0.715865 + 0.698238i \(0.246032\pi\)
−0.715865 + 0.698238i \(0.753968\pi\)
\(884\) 0 0
\(885\) 20.7660 11.9893i 0.698043 0.403015i
\(886\) 0 0
\(887\) 18.9466 32.8165i 0.636165 1.10187i −0.350102 0.936712i \(-0.613853\pi\)
0.986267 0.165159i \(-0.0528136\pi\)
\(888\) 0 0
\(889\) −13.9157 1.47887i −0.466716 0.0495997i
\(890\) 0 0
\(891\) −32.4345 18.7261i −1.08660 0.627348i
\(892\) 0 0
\(893\) −5.80112 10.0478i −0.194127 0.336238i
\(894\) 0 0
\(895\) 13.2290 0.442196
\(896\) 0 0
\(897\) −101.576 −3.39151
\(898\) 0 0
\(899\) 21.9983 + 38.1021i 0.733683 + 1.27078i
\(900\) 0 0
\(901\) 21.7776 + 12.5733i 0.725517 + 0.418878i
\(902\) 0 0
\(903\) −10.5081 23.6753i −0.349689 0.787865i
\(904\) 0 0
\(905\) 7.65215 13.2539i 0.254366 0.440575i
\(906\) 0 0
\(907\) −45.2780 + 26.1413i −1.50343 + 0.868007i −0.503440 + 0.864030i \(0.667932\pi\)
−0.999992 + 0.00397669i \(0.998734\pi\)
\(908\) 0 0
\(909\) 1.31764i 0.0437034i
\(910\) 0 0
\(911\) 7.69892i 0.255077i −0.991834 0.127538i \(-0.959292\pi\)
0.991834 0.127538i \(-0.0407076\pi\)
\(912\) 0 0
\(913\) −4.36005 + 2.51727i −0.144296 + 0.0833096i
\(914\) 0 0
\(915\) −1.02216 + 1.77044i −0.0337917 + 0.0585289i
\(916\) 0 0
\(917\) 31.9941 + 23.3016i 1.05654 + 0.769488i
\(918\) 0 0
\(919\) 38.7913 + 22.3962i 1.27961 + 0.738781i 0.976776 0.214263i \(-0.0687350\pi\)
0.302831 + 0.953044i \(0.402068\pi\)
\(920\) 0 0
\(921\) 31.0380 + 53.7594i 1.02274 + 1.77143i
\(922\) 0 0
\(923\) −29.8799 −0.983507
\(924\) 0 0
\(925\) 6.05619 0.199126
\(926\) 0 0
\(927\) −38.0769 65.9511i −1.25061 2.16612i
\(928\) 0 0
\(929\) 23.2991 + 13.4518i 0.764420 + 0.441338i 0.830880 0.556451i \(-0.187837\pi\)
−0.0664604 + 0.997789i \(0.521171\pi\)
\(930\) 0 0
\(931\) 25.2000 27.8575i 0.825895 0.912994i
\(932\) 0 0
\(933\) 19.7027 34.1261i 0.645038 1.11724i
\(934\) 0 0
\(935\) −6.52570 + 3.76761i −0.213413 + 0.123214i
\(936\) 0 0
\(937\) 30.0574i 0.981933i −0.871178 0.490967i \(-0.836644\pi\)
0.871178 0.490967i \(-0.163356\pi\)
\(938\) 0 0
\(939\) 23.6049i 0.770317i
\(940\) 0 0
\(941\) 21.1093 12.1875i 0.688144 0.397300i −0.114773 0.993392i \(-0.536614\pi\)
0.802916 + 0.596092i \(0.203281\pi\)
\(942\) 0 0
\(943\) 6.96351 12.0611i 0.226763 0.392765i
\(944\) 0 0
\(945\) −21.8972 + 30.0657i −0.712315 + 0.978037i
\(946\) 0 0
\(947\) 46.9659 + 27.1158i 1.52619 + 0.881144i 0.999517 + 0.0310743i \(0.00989286\pi\)
0.526670 + 0.850070i \(0.323440\pi\)
\(948\) 0 0
\(949\) 1.98289 + 3.43446i 0.0643672 + 0.111487i
\(950\) 0 0
\(951\) −86.7209 −2.81212
\(952\) 0 0
\(953\) 5.63583 0.182562 0.0912812 0.995825i \(-0.470904\pi\)
0.0912812 + 0.995825i \(0.470904\pi\)
\(954\) 0 0
\(955\) −3.11383 5.39331i −0.100761 0.174523i
\(956\) 0 0
\(957\) −37.1979 21.4762i −1.20244 0.694228i
\(958\) 0 0
\(959\) −52.3757 + 23.2466i −1.69130 + 0.750672i
\(960\) 0 0
\(961\) 1.28368 2.22340i 0.0414091 0.0717227i
\(962\) 0 0
\(963\) −0.692650 + 0.399902i −0.0223203 + 0.0128867i
\(964\) 0 0
\(965\) 21.1250i 0.680037i
\(966\) 0 0
\(967\) 1.59534i 0.0513027i −0.999671 0.0256513i \(-0.991834\pi\)
0.999671 0.0256513i \(-0.00816597\pi\)
\(968\) 0 0
\(969\) −69.7352 + 40.2616i −2.24022 + 1.29339i
\(970\) 0 0
\(971\) −6.62035 + 11.4668i −0.212457 + 0.367986i −0.952483 0.304592i \(-0.901480\pi\)
0.740026 + 0.672578i \(0.234813\pi\)
\(972\) 0 0
\(973\) −3.91358 + 36.8255i −0.125464 + 1.18057i
\(974\) 0 0
\(975\) 14.8454 + 8.57102i 0.475434 + 0.274492i
\(976\) 0 0
\(977\) −3.00596 5.20648i −0.0961693 0.166570i 0.813927 0.580968i \(-0.197326\pi\)
−0.910096 + 0.414397i \(0.863992\pi\)
\(978\) 0 0
\(979\) −3.67304 −0.117391
\(980\) 0 0
\(981\) 3.09919 0.0989495
\(982\) 0 0
\(983\) 9.68346 + 16.7722i 0.308854 + 0.534952i 0.978112 0.208079i \(-0.0667211\pi\)
−0.669258 + 0.743030i \(0.733388\pi\)
\(984\) 0 0
\(985\) −5.97694 3.45079i −0.190441 0.109951i
\(986\) 0 0
\(987\) −1.94631 + 18.3142i −0.0619519 + 0.582946i
\(988\) 0 0
\(989\) −9.00903 + 15.6041i −0.286471 + 0.496182i
\(990\) 0 0
\(991\) −21.6772 + 12.5153i −0.688599 + 0.397563i −0.803087 0.595862i \(-0.796811\pi\)
0.114488 + 0.993425i \(0.463477\pi\)
\(992\) 0 0
\(993\) 10.2412i 0.324995i
\(994\) 0 0
\(995\) 0.340366i 0.0107903i
\(996\) 0 0
\(997\) 6.28460 3.62841i 0.199035 0.114913i −0.397170 0.917745i \(-0.630008\pi\)
0.596205 + 0.802832i \(0.296674\pi\)
\(998\) 0 0
\(999\) 42.5696 73.7327i 1.34684 2.33280i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.bs.c.271.1 yes 12
4.3 odd 2 560.2.bs.b.271.6 yes 12
7.2 even 3 3920.2.k.d.2351.11 12
7.3 odd 6 560.2.bs.b.31.6 12
7.5 odd 6 3920.2.k.e.2351.2 12
28.3 even 6 inner 560.2.bs.c.31.1 yes 12
28.19 even 6 3920.2.k.d.2351.12 12
28.23 odd 6 3920.2.k.e.2351.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.bs.b.31.6 12 7.3 odd 6
560.2.bs.b.271.6 yes 12 4.3 odd 2
560.2.bs.c.31.1 yes 12 28.3 even 6 inner
560.2.bs.c.271.1 yes 12 1.1 even 1 trivial
3920.2.k.d.2351.11 12 7.2 even 3
3920.2.k.d.2351.12 12 28.19 even 6
3920.2.k.e.2351.1 12 28.23 odd 6
3920.2.k.e.2351.2 12 7.5 odd 6