Properties

Label 5586.2.a.bp
Level $5586$
Weight $2$
Character orbit 5586.a
Self dual yes
Analytic conductor $44.604$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5586,2,Mod(1,5586)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5586, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5586.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5586 = 2 \cdot 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5586.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,2,2,0,2,0,2,2,0,4,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(44.6044345691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 798)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + \beta q^{5} + q^{6} + q^{8} + q^{9} + \beta q^{10} + 2 q^{11} + q^{12} - \beta q^{13} + \beta q^{15} + q^{16} + q^{18} - q^{19} + \beta q^{20} + 2 q^{22} + ( - \beta + 2) q^{23} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{6} + 2 q^{8} + 2 q^{9} + 4 q^{11} + 2 q^{12} + 2 q^{16} + 2 q^{18} - 2 q^{19} + 4 q^{22} + 4 q^{23} + 2 q^{24} + 6 q^{25} + 2 q^{27} + 4 q^{29} - 8 q^{31} + 2 q^{32}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
1.00000 1.00000 1.00000 −2.82843 1.00000 0 1.00000 1.00000 −2.82843
1.2 1.00000 1.00000 1.00000 2.82843 1.00000 0 1.00000 1.00000 2.82843
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5586.2.a.bp 2
7.b odd 2 1 798.2.a.l 2
21.c even 2 1 2394.2.a.r 2
28.d even 2 1 6384.2.a.bq 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
798.2.a.l 2 7.b odd 2 1
2394.2.a.r 2 21.c even 2 1
5586.2.a.bp 2 1.a even 1 1 trivial
6384.2.a.bq 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5586))\):

\( T_{5}^{2} - 8 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} - 8 \) Copy content Toggle raw display
\( T_{17} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 8 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 8 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 4T - 4 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 68 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$43$ \( (T - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( T^{2} - 4T - 28 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 16 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T - 124 \) Copy content Toggle raw display
$67$ \( (T - 10)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 8T - 16 \) Copy content Toggle raw display
$73$ \( T^{2} - 12T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T + 28 \) Copy content Toggle raw display
$83$ \( T^{2} - 128 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 112 \) Copy content Toggle raw display
show more
show less