Defining parameters
Level: | \( N \) | \(=\) | \( 5586 = 2 \cdot 3 \cdot 7^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 5586.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 58 \) | ||
Sturm bound: | \(2240\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(5\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5586))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1152 | 124 | 1028 |
Cusp forms | 1089 | 124 | 965 |
Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(64\) | \(7\) | \(57\) | \(61\) | \(7\) | \(54\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(76\) | \(10\) | \(66\) | \(72\) | \(10\) | \(62\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(78\) | \(8\) | \(70\) | \(74\) | \(8\) | \(66\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(69\) | \(5\) | \(64\) | \(65\) | \(5\) | \(60\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(72\) | \(8\) | \(64\) | \(68\) | \(8\) | \(60\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(72\) | \(7\) | \(65\) | \(68\) | \(7\) | \(61\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(71\) | \(8\) | \(63\) | \(67\) | \(8\) | \(59\) | \(4\) | \(0\) | \(4\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(74\) | \(8\) | \(66\) | \(70\) | \(8\) | \(62\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(76\) | \(10\) | \(66\) | \(72\) | \(10\) | \(62\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(68\) | \(5\) | \(63\) | \(64\) | \(5\) | \(59\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(69\) | \(7\) | \(62\) | \(65\) | \(7\) | \(58\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(74\) | \(10\) | \(64\) | \(70\) | \(10\) | \(60\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(76\) | \(5\) | \(71\) | \(72\) | \(5\) | \(67\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(72\) | \(12\) | \(60\) | \(68\) | \(12\) | \(56\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(70\) | \(10\) | \(60\) | \(66\) | \(10\) | \(56\) | \(4\) | \(0\) | \(4\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(71\) | \(4\) | \(67\) | \(67\) | \(4\) | \(63\) | \(4\) | \(0\) | \(4\) | |||
Plus space | \(+\) | \(560\) | \(48\) | \(512\) | \(529\) | \(48\) | \(481\) | \(31\) | \(0\) | \(31\) | ||||||
Minus space | \(-\) | \(592\) | \(76\) | \(516\) | \(560\) | \(76\) | \(484\) | \(32\) | \(0\) | \(32\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5586))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5586))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5586)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(266))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(294))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(798))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(931))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1862))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2793))\)\(^{\oplus 2}\)