Properties

Label 5586.2.a.p
Level $5586$
Weight $2$
Character orbit 5586.a
Self dual yes
Analytic conductor $44.604$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5586 = 2 \cdot 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5586.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.6044345691\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 114)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + O(q^{10}) \) \( q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + 4q^{11} + q^{12} + q^{16} + 2q^{17} - q^{18} - q^{19} - 4q^{22} - 2q^{23} - q^{24} - 5q^{25} + q^{27} - 6q^{29} - 6q^{31} - q^{32} + 4q^{33} - 2q^{34} + q^{36} - 8q^{37} + q^{38} - 10q^{41} - 12q^{43} + 4q^{44} + 2q^{46} - 10q^{47} + q^{48} + 5q^{50} + 2q^{51} + 2q^{53} - q^{54} - q^{57} + 6q^{58} - 4q^{59} + 10q^{61} + 6q^{62} + q^{64} - 4q^{66} + 2q^{68} - 2q^{69} - 16q^{71} - q^{72} + 2q^{73} + 8q^{74} - 5q^{75} - q^{76} + 10q^{79} + q^{81} + 10q^{82} + 16q^{83} + 12q^{86} - 6q^{87} - 4q^{88} + 2q^{89} - 2q^{92} - 6q^{93} + 10q^{94} - q^{96} + 10q^{97} + 4q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 0 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(-1\)
\(19\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5586.2.a.p 1
7.b odd 2 1 114.2.a.a 1
21.c even 2 1 342.2.a.f 1
28.d even 2 1 912.2.a.h 1
35.c odd 2 1 2850.2.a.x 1
35.f even 4 2 2850.2.d.s 2
56.e even 2 1 3648.2.a.j 1
56.h odd 2 1 3648.2.a.bb 1
84.h odd 2 1 2736.2.a.j 1
105.g even 2 1 8550.2.a.a 1
133.c even 2 1 2166.2.a.i 1
399.h odd 2 1 6498.2.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.a.a 1 7.b odd 2 1
342.2.a.f 1 21.c even 2 1
912.2.a.h 1 28.d even 2 1
2166.2.a.i 1 133.c even 2 1
2736.2.a.j 1 84.h odd 2 1
2850.2.a.x 1 35.c odd 2 1
2850.2.d.s 2 35.f even 4 2
3648.2.a.j 1 56.e even 2 1
3648.2.a.bb 1 56.h odd 2 1
5586.2.a.p 1 1.a even 1 1 trivial
6498.2.a.h 1 399.h odd 2 1
8550.2.a.a 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5586))\):

\( T_{5} \)
\( T_{11} - 4 \)
\( T_{13} \)
\( T_{17} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ \( -1 + T \)
$5$ \( T \)
$7$ \( T \)
$11$ \( -4 + T \)
$13$ \( T \)
$17$ \( -2 + T \)
$19$ \( 1 + T \)
$23$ \( 2 + T \)
$29$ \( 6 + T \)
$31$ \( 6 + T \)
$37$ \( 8 + T \)
$41$ \( 10 + T \)
$43$ \( 12 + T \)
$47$ \( 10 + T \)
$53$ \( -2 + T \)
$59$ \( 4 + T \)
$61$ \( -10 + T \)
$67$ \( T \)
$71$ \( 16 + T \)
$73$ \( -2 + T \)
$79$ \( -10 + T \)
$83$ \( -16 + T \)
$89$ \( -2 + T \)
$97$ \( -10 + T \)
show more
show less