Properties

 Label 5586.2.a.p Level $5586$ Weight $2$ Character orbit 5586.a Self dual yes Analytic conductor $44.604$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [5586,2,Mod(1,5586)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(5586, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("5586.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$5586 = 2 \cdot 3 \cdot 7^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 5586.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$44.6044345691$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 114) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 + q^3 + q^4 - q^6 - q^8 + q^9 $$q - q^{2} + q^{3} + q^{4} - q^{6} - q^{8} + q^{9} + 4 q^{11} + q^{12} + q^{16} + 2 q^{17} - q^{18} - q^{19} - 4 q^{22} - 2 q^{23} - q^{24} - 5 q^{25} + q^{27} - 6 q^{29} - 6 q^{31} - q^{32} + 4 q^{33} - 2 q^{34} + q^{36} - 8 q^{37} + q^{38} - 10 q^{41} - 12 q^{43} + 4 q^{44} + 2 q^{46} - 10 q^{47} + q^{48} + 5 q^{50} + 2 q^{51} + 2 q^{53} - q^{54} - q^{57} + 6 q^{58} - 4 q^{59} + 10 q^{61} + 6 q^{62} + q^{64} - 4 q^{66} + 2 q^{68} - 2 q^{69} - 16 q^{71} - q^{72} + 2 q^{73} + 8 q^{74} - 5 q^{75} - q^{76} + 10 q^{79} + q^{81} + 10 q^{82} + 16 q^{83} + 12 q^{86} - 6 q^{87} - 4 q^{88} + 2 q^{89} - 2 q^{92} - 6 q^{93} + 10 q^{94} - q^{96} + 10 q^{97} + 4 q^{99}+O(q^{100})$$ q - q^2 + q^3 + q^4 - q^6 - q^8 + q^9 + 4 * q^11 + q^12 + q^16 + 2 * q^17 - q^18 - q^19 - 4 * q^22 - 2 * q^23 - q^24 - 5 * q^25 + q^27 - 6 * q^29 - 6 * q^31 - q^32 + 4 * q^33 - 2 * q^34 + q^36 - 8 * q^37 + q^38 - 10 * q^41 - 12 * q^43 + 4 * q^44 + 2 * q^46 - 10 * q^47 + q^48 + 5 * q^50 + 2 * q^51 + 2 * q^53 - q^54 - q^57 + 6 * q^58 - 4 * q^59 + 10 * q^61 + 6 * q^62 + q^64 - 4 * q^66 + 2 * q^68 - 2 * q^69 - 16 * q^71 - q^72 + 2 * q^73 + 8 * q^74 - 5 * q^75 - q^76 + 10 * q^79 + q^81 + 10 * q^82 + 16 * q^83 + 12 * q^86 - 6 * q^87 - 4 * q^88 + 2 * q^89 - 2 * q^92 - 6 * q^93 + 10 * q^94 - q^96 + 10 * q^97 + 4 * q^99

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 1.00000 1.00000 0 −1.00000 0 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$7$$ $$-1$$
$$19$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5586.2.a.p 1
7.b odd 2 1 114.2.a.a 1
21.c even 2 1 342.2.a.f 1
28.d even 2 1 912.2.a.h 1
35.c odd 2 1 2850.2.a.x 1
35.f even 4 2 2850.2.d.s 2
56.e even 2 1 3648.2.a.j 1
56.h odd 2 1 3648.2.a.bb 1
84.h odd 2 1 2736.2.a.j 1
105.g even 2 1 8550.2.a.a 1
133.c even 2 1 2166.2.a.i 1
399.h odd 2 1 6498.2.a.h 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
114.2.a.a 1 7.b odd 2 1
342.2.a.f 1 21.c even 2 1
912.2.a.h 1 28.d even 2 1
2166.2.a.i 1 133.c even 2 1
2736.2.a.j 1 84.h odd 2 1
2850.2.a.x 1 35.c odd 2 1
2850.2.d.s 2 35.f even 4 2
3648.2.a.j 1 56.e even 2 1
3648.2.a.bb 1 56.h odd 2 1
5586.2.a.p 1 1.a even 1 1 trivial
6498.2.a.h 1 399.h odd 2 1
8550.2.a.a 1 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(5586))$$:

 $$T_{5}$$ T5 $$T_{11} - 4$$ T11 - 4 $$T_{13}$$ T13 $$T_{17} - 2$$ T17 - 2

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 4$$
$13$ $$T$$
$17$ $$T - 2$$
$19$ $$T + 1$$
$23$ $$T + 2$$
$29$ $$T + 6$$
$31$ $$T + 6$$
$37$ $$T + 8$$
$41$ $$T + 10$$
$43$ $$T + 12$$
$47$ $$T + 10$$
$53$ $$T - 2$$
$59$ $$T + 4$$
$61$ $$T - 10$$
$67$ $$T$$
$71$ $$T + 16$$
$73$ $$T - 2$$
$79$ $$T - 10$$
$83$ $$T - 16$$
$89$ $$T - 2$$
$97$ $$T - 10$$