Properties

Label 558.2.i.b.343.1
Level $558$
Weight $2$
Character 558.343
Analytic conductor $4.456$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(109,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.i (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 343.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 558.343
Dual form 558.2.i.b.109.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.309017 + 0.951057i) q^{4} +0.618034 q^{5} +(1.19098 + 3.66547i) q^{7} +(0.309017 - 0.951057i) q^{8} +(-0.500000 - 0.363271i) q^{10} +(-0.427051 - 1.31433i) q^{11} +(-0.618034 + 0.449028i) q^{13} +(1.19098 - 3.66547i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-1.23607 + 3.80423i) q^{17} +(2.00000 + 1.45309i) q^{19} +(0.190983 + 0.587785i) q^{20} +(-0.427051 + 1.31433i) q^{22} +(-2.61803 + 8.05748i) q^{23} -4.61803 q^{25} +0.763932 q^{26} +(-3.11803 + 2.26538i) q^{28} +(-1.30902 - 0.951057i) q^{29} +(3.30902 - 4.47777i) q^{31} +1.00000 q^{32} +(3.23607 - 2.35114i) q^{34} +(0.736068 + 2.26538i) q^{35} +6.76393 q^{37} +(-0.763932 - 2.35114i) q^{38} +(0.190983 - 0.587785i) q^{40} +(6.47214 + 4.70228i) q^{41} +(5.85410 + 4.25325i) q^{43} +(1.11803 - 0.812299i) q^{44} +(6.85410 - 4.97980i) q^{46} +(-1.23607 + 0.898056i) q^{47} +(-6.35410 + 4.61653i) q^{49} +(3.73607 + 2.71441i) q^{50} +(-0.618034 - 0.449028i) q^{52} +(-0.736068 + 2.26538i) q^{53} +(-0.263932 - 0.812299i) q^{55} +3.85410 q^{56} +(0.500000 + 1.53884i) q^{58} +(6.54508 - 4.75528i) q^{59} -11.2361 q^{61} +(-5.30902 + 1.67760i) q^{62} +(-0.809017 - 0.587785i) q^{64} +(-0.381966 + 0.277515i) q^{65} +10.9443 q^{67} -4.00000 q^{68} +(0.736068 - 2.26538i) q^{70} +(0.618034 - 1.90211i) q^{71} +(-0.736068 - 2.26538i) q^{73} +(-5.47214 - 3.97574i) q^{74} +(-0.763932 + 2.35114i) q^{76} +(4.30902 - 3.13068i) q^{77} +(-3.50000 + 10.7719i) q^{79} +(-0.500000 + 0.363271i) q^{80} +(-2.47214 - 7.60845i) q^{82} +(5.23607 + 3.80423i) q^{83} +(-0.763932 + 2.35114i) q^{85} +(-2.23607 - 6.88191i) q^{86} -1.38197 q^{88} +(-0.909830 - 2.80017i) q^{89} +(-2.38197 - 1.73060i) q^{91} -8.47214 q^{92} +1.52786 q^{94} +(1.23607 + 0.898056i) q^{95} +(-2.14590 - 6.60440i) q^{97} +7.85410 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - 2 q^{5} + 7 q^{7} - q^{8} - 2 q^{10} + 5 q^{11} + 2 q^{13} + 7 q^{14} - q^{16} + 4 q^{17} + 8 q^{19} + 3 q^{20} + 5 q^{22} - 6 q^{23} - 14 q^{25} + 12 q^{26} - 8 q^{28} - 3 q^{29}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0 0
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0.618034 0.276393 0.138197 0.990405i \(-0.455869\pi\)
0.138197 + 0.990405i \(0.455869\pi\)
\(6\) 0 0
\(7\) 1.19098 + 3.66547i 0.450149 + 1.38542i 0.876737 + 0.480971i \(0.159716\pi\)
−0.426587 + 0.904446i \(0.640284\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 0 0
\(10\) −0.500000 0.363271i −0.158114 0.114876i
\(11\) −0.427051 1.31433i −0.128761 0.396285i 0.865807 0.500378i \(-0.166806\pi\)
−0.994567 + 0.104094i \(0.966806\pi\)
\(12\) 0 0
\(13\) −0.618034 + 0.449028i −0.171412 + 0.124538i −0.670184 0.742195i \(-0.733785\pi\)
0.498772 + 0.866733i \(0.333785\pi\)
\(14\) 1.19098 3.66547i 0.318304 0.979638i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −1.23607 + 3.80423i −0.299791 + 0.922660i 0.681780 + 0.731558i \(0.261206\pi\)
−0.981570 + 0.191103i \(0.938794\pi\)
\(18\) 0 0
\(19\) 2.00000 + 1.45309i 0.458831 + 0.333361i 0.793073 0.609127i \(-0.208480\pi\)
−0.334241 + 0.942488i \(0.608480\pi\)
\(20\) 0.190983 + 0.587785i 0.0427051 + 0.131433i
\(21\) 0 0
\(22\) −0.427051 + 1.31433i −0.0910476 + 0.280216i
\(23\) −2.61803 + 8.05748i −0.545898 + 1.68010i 0.172948 + 0.984931i \(0.444671\pi\)
−0.718846 + 0.695170i \(0.755329\pi\)
\(24\) 0 0
\(25\) −4.61803 −0.923607
\(26\) 0.763932 0.149819
\(27\) 0 0
\(28\) −3.11803 + 2.26538i −0.589253 + 0.428117i
\(29\) −1.30902 0.951057i −0.243078 0.176607i 0.459575 0.888139i \(-0.348002\pi\)
−0.702654 + 0.711532i \(0.748002\pi\)
\(30\) 0 0
\(31\) 3.30902 4.47777i 0.594317 0.804231i
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.23607 2.35114i 0.554981 0.403217i
\(35\) 0.736068 + 2.26538i 0.124418 + 0.382920i
\(36\) 0 0
\(37\) 6.76393 1.11198 0.555992 0.831188i \(-0.312339\pi\)
0.555992 + 0.831188i \(0.312339\pi\)
\(38\) −0.763932 2.35114i −0.123926 0.381405i
\(39\) 0 0
\(40\) 0.190983 0.587785i 0.0301971 0.0929370i
\(41\) 6.47214 + 4.70228i 1.01078 + 0.734373i 0.964372 0.264550i \(-0.0852233\pi\)
0.0464057 + 0.998923i \(0.485223\pi\)
\(42\) 0 0
\(43\) 5.85410 + 4.25325i 0.892742 + 0.648615i 0.936592 0.350423i \(-0.113962\pi\)
−0.0438494 + 0.999038i \(0.513962\pi\)
\(44\) 1.11803 0.812299i 0.168550 0.122459i
\(45\) 0 0
\(46\) 6.85410 4.97980i 1.01058 0.734231i
\(47\) −1.23607 + 0.898056i −0.180299 + 0.130995i −0.674274 0.738481i \(-0.735543\pi\)
0.493975 + 0.869476i \(0.335543\pi\)
\(48\) 0 0
\(49\) −6.35410 + 4.61653i −0.907729 + 0.659504i
\(50\) 3.73607 + 2.71441i 0.528360 + 0.383876i
\(51\) 0 0
\(52\) −0.618034 0.449028i −0.0857059 0.0622690i
\(53\) −0.736068 + 2.26538i −0.101107 + 0.311174i −0.988797 0.149267i \(-0.952309\pi\)
0.887690 + 0.460441i \(0.152309\pi\)
\(54\) 0 0
\(55\) −0.263932 0.812299i −0.0355886 0.109530i
\(56\) 3.85410 0.515026
\(57\) 0 0
\(58\) 0.500000 + 1.53884i 0.0656532 + 0.202060i
\(59\) 6.54508 4.75528i 0.852097 0.619085i −0.0736261 0.997286i \(-0.523457\pi\)
0.925724 + 0.378201i \(0.123457\pi\)
\(60\) 0 0
\(61\) −11.2361 −1.43863 −0.719316 0.694683i \(-0.755544\pi\)
−0.719316 + 0.694683i \(0.755544\pi\)
\(62\) −5.30902 + 1.67760i −0.674246 + 0.213055i
\(63\) 0 0
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) −0.381966 + 0.277515i −0.0473771 + 0.0344214i
\(66\) 0 0
\(67\) 10.9443 1.33706 0.668528 0.743687i \(-0.266925\pi\)
0.668528 + 0.743687i \(0.266925\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 0.736068 2.26538i 0.0879770 0.270765i
\(71\) 0.618034 1.90211i 0.0733471 0.225739i −0.907662 0.419703i \(-0.862134\pi\)
0.981009 + 0.193963i \(0.0621343\pi\)
\(72\) 0 0
\(73\) −0.736068 2.26538i −0.0861502 0.265143i 0.898696 0.438572i \(-0.144515\pi\)
−0.984846 + 0.173428i \(0.944515\pi\)
\(74\) −5.47214 3.97574i −0.636123 0.462170i
\(75\) 0 0
\(76\) −0.763932 + 2.35114i −0.0876290 + 0.269694i
\(77\) 4.30902 3.13068i 0.491058 0.356775i
\(78\) 0 0
\(79\) −3.50000 + 10.7719i −0.393781 + 1.21193i 0.536126 + 0.844138i \(0.319887\pi\)
−0.929907 + 0.367795i \(0.880113\pi\)
\(80\) −0.500000 + 0.363271i −0.0559017 + 0.0406150i
\(81\) 0 0
\(82\) −2.47214 7.60845i −0.273002 0.840213i
\(83\) 5.23607 + 3.80423i 0.574733 + 0.417568i 0.836822 0.547476i \(-0.184411\pi\)
−0.262088 + 0.965044i \(0.584411\pi\)
\(84\) 0 0
\(85\) −0.763932 + 2.35114i −0.0828601 + 0.255017i
\(86\) −2.23607 6.88191i −0.241121 0.742095i
\(87\) 0 0
\(88\) −1.38197 −0.147318
\(89\) −0.909830 2.80017i −0.0964418 0.296817i 0.891185 0.453640i \(-0.149875\pi\)
−0.987627 + 0.156823i \(0.949875\pi\)
\(90\) 0 0
\(91\) −2.38197 1.73060i −0.249698 0.181416i
\(92\) −8.47214 −0.883281
\(93\) 0 0
\(94\) 1.52786 0.157587
\(95\) 1.23607 + 0.898056i 0.126818 + 0.0921386i
\(96\) 0 0
\(97\) −2.14590 6.60440i −0.217883 0.670575i −0.998936 0.0461105i \(-0.985317\pi\)
0.781053 0.624464i \(-0.214683\pi\)
\(98\) 7.85410 0.793384
\(99\) 0 0
\(100\) −1.42705 4.39201i −0.142705 0.439201i
\(101\) −3.13525 + 9.64932i −0.311970 + 0.960143i 0.665014 + 0.746831i \(0.268425\pi\)
−0.976984 + 0.213313i \(0.931575\pi\)
\(102\) 0 0
\(103\) −7.23607 5.25731i −0.712991 0.518018i 0.171146 0.985246i \(-0.445253\pi\)
−0.884137 + 0.467227i \(0.845253\pi\)
\(104\) 0.236068 + 0.726543i 0.0231484 + 0.0712434i
\(105\) 0 0
\(106\) 1.92705 1.40008i 0.187172 0.135988i
\(107\) 6.04508 18.6049i 0.584400 1.79860i −0.0172645 0.999851i \(-0.505496\pi\)
0.601665 0.798749i \(-0.294504\pi\)
\(108\) 0 0
\(109\) −3.23607 + 2.35114i −0.309959 + 0.225198i −0.731879 0.681435i \(-0.761356\pi\)
0.421920 + 0.906633i \(0.361356\pi\)
\(110\) −0.263932 + 0.812299i −0.0251649 + 0.0774497i
\(111\) 0 0
\(112\) −3.11803 2.26538i −0.294627 0.214059i
\(113\) −3.76393 11.5842i −0.354081 1.08975i −0.956540 0.291600i \(-0.905813\pi\)
0.602460 0.798149i \(-0.294187\pi\)
\(114\) 0 0
\(115\) −1.61803 + 4.97980i −0.150882 + 0.464368i
\(116\) 0.500000 1.53884i 0.0464238 0.142878i
\(117\) 0 0
\(118\) −8.09017 −0.744761
\(119\) −15.4164 −1.41322
\(120\) 0 0
\(121\) 7.35410 5.34307i 0.668555 0.485733i
\(122\) 9.09017 + 6.60440i 0.822985 + 0.597934i
\(123\) 0 0
\(124\) 5.28115 + 1.76336i 0.474262 + 0.158354i
\(125\) −5.94427 −0.531672
\(126\) 0 0
\(127\) 6.39919 4.64928i 0.567836 0.412557i −0.266482 0.963840i \(-0.585861\pi\)
0.834318 + 0.551283i \(0.185861\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 0 0
\(130\) 0.472136 0.0414091
\(131\) −5.26393 16.2007i −0.459912 1.41546i −0.865270 0.501305i \(-0.832853\pi\)
0.405359 0.914158i \(-0.367147\pi\)
\(132\) 0 0
\(133\) −2.94427 + 9.06154i −0.255301 + 0.785735i
\(134\) −8.85410 6.43288i −0.764878 0.555716i
\(135\) 0 0
\(136\) 3.23607 + 2.35114i 0.277491 + 0.201609i
\(137\) −13.7082 + 9.95959i −1.17117 + 0.850905i −0.991149 0.132757i \(-0.957617\pi\)
−0.180022 + 0.983663i \(0.557617\pi\)
\(138\) 0 0
\(139\) −3.85410 + 2.80017i −0.326901 + 0.237507i −0.739114 0.673580i \(-0.764756\pi\)
0.412214 + 0.911087i \(0.364756\pi\)
\(140\) −1.92705 + 1.40008i −0.162866 + 0.118329i
\(141\) 0 0
\(142\) −1.61803 + 1.17557i −0.135782 + 0.0986517i
\(143\) 0.854102 + 0.620541i 0.0714236 + 0.0518923i
\(144\) 0 0
\(145\) −0.809017 0.587785i −0.0671852 0.0488129i
\(146\) −0.736068 + 2.26538i −0.0609174 + 0.187485i
\(147\) 0 0
\(148\) 2.09017 + 6.43288i 0.171811 + 0.528780i
\(149\) 15.3262 1.25557 0.627787 0.778385i \(-0.283961\pi\)
0.627787 + 0.778385i \(0.283961\pi\)
\(150\) 0 0
\(151\) −7.28115 22.4091i −0.592532 1.82363i −0.566647 0.823961i \(-0.691760\pi\)
−0.0258846 0.999665i \(-0.508240\pi\)
\(152\) 2.00000 1.45309i 0.162221 0.117861i
\(153\) 0 0
\(154\) −5.32624 −0.429200
\(155\) 2.04508 2.76741i 0.164265 0.222284i
\(156\) 0 0
\(157\) −18.7984 13.6578i −1.50027 1.09001i −0.970272 0.242016i \(-0.922191\pi\)
−0.530001 0.847997i \(-0.677809\pi\)
\(158\) 9.16312 6.65740i 0.728979 0.529634i
\(159\) 0 0
\(160\) 0.618034 0.0488599
\(161\) −32.6525 −2.57338
\(162\) 0 0
\(163\) 3.56231 10.9637i 0.279021 0.858739i −0.709106 0.705102i \(-0.750901\pi\)
0.988127 0.153637i \(-0.0490988\pi\)
\(164\) −2.47214 + 7.60845i −0.193041 + 0.594120i
\(165\) 0 0
\(166\) −2.00000 6.15537i −0.155230 0.477749i
\(167\) 16.1803 + 11.7557i 1.25207 + 0.909684i 0.998340 0.0575908i \(-0.0183419\pi\)
0.253732 + 0.967275i \(0.418342\pi\)
\(168\) 0 0
\(169\) −3.83688 + 11.8087i −0.295145 + 0.908362i
\(170\) 2.00000 1.45309i 0.153393 0.111447i
\(171\) 0 0
\(172\) −2.23607 + 6.88191i −0.170499 + 0.524741i
\(173\) −6.69098 + 4.86128i −0.508706 + 0.369597i −0.812332 0.583195i \(-0.801803\pi\)
0.303626 + 0.952791i \(0.401803\pi\)
\(174\) 0 0
\(175\) −5.50000 16.9273i −0.415761 1.27958i
\(176\) 1.11803 + 0.812299i 0.0842750 + 0.0612294i
\(177\) 0 0
\(178\) −0.909830 + 2.80017i −0.0681946 + 0.209882i
\(179\) 1.79180 + 5.51458i 0.133925 + 0.412179i 0.995421 0.0955849i \(-0.0304722\pi\)
−0.861496 + 0.507764i \(0.830472\pi\)
\(180\) 0 0
\(181\) 6.94427 0.516164 0.258082 0.966123i \(-0.416910\pi\)
0.258082 + 0.966123i \(0.416910\pi\)
\(182\) 0.909830 + 2.80017i 0.0674411 + 0.207562i
\(183\) 0 0
\(184\) 6.85410 + 4.97980i 0.505291 + 0.367115i
\(185\) 4.18034 0.307345
\(186\) 0 0
\(187\) 5.52786 0.404237
\(188\) −1.23607 0.898056i −0.0901495 0.0654975i
\(189\) 0 0
\(190\) −0.472136 1.45309i −0.0342523 0.105418i
\(191\) −8.29180 −0.599973 −0.299987 0.953943i \(-0.596982\pi\)
−0.299987 + 0.953943i \(0.596982\pi\)
\(192\) 0 0
\(193\) −2.44427 7.52270i −0.175943 0.541495i 0.823733 0.566978i \(-0.191888\pi\)
−0.999675 + 0.0254829i \(0.991888\pi\)
\(194\) −2.14590 + 6.60440i −0.154067 + 0.474168i
\(195\) 0 0
\(196\) −6.35410 4.61653i −0.453864 0.329752i
\(197\) 5.51722 + 16.9803i 0.393086 + 1.20979i 0.930442 + 0.366438i \(0.119423\pi\)
−0.537357 + 0.843355i \(0.680577\pi\)
\(198\) 0 0
\(199\) 3.30902 2.40414i 0.234570 0.170425i −0.464291 0.885683i \(-0.653691\pi\)
0.698861 + 0.715258i \(0.253691\pi\)
\(200\) −1.42705 + 4.39201i −0.100908 + 0.310562i
\(201\) 0 0
\(202\) 8.20820 5.96361i 0.577527 0.419598i
\(203\) 1.92705 5.93085i 0.135252 0.416264i
\(204\) 0 0
\(205\) 4.00000 + 2.90617i 0.279372 + 0.202976i
\(206\) 2.76393 + 8.50651i 0.192572 + 0.592677i
\(207\) 0 0
\(208\) 0.236068 0.726543i 0.0163684 0.0503767i
\(209\) 1.05573 3.24920i 0.0730262 0.224752i
\(210\) 0 0
\(211\) −11.7082 −0.806026 −0.403013 0.915194i \(-0.632037\pi\)
−0.403013 + 0.915194i \(0.632037\pi\)
\(212\) −2.38197 −0.163594
\(213\) 0 0
\(214\) −15.8262 + 11.4984i −1.08186 + 0.786017i
\(215\) 3.61803 + 2.62866i 0.246748 + 0.179273i
\(216\) 0 0
\(217\) 20.3541 + 6.79615i 1.38173 + 0.461353i
\(218\) 4.00000 0.270914
\(219\) 0 0
\(220\) 0.690983 0.502029i 0.0465861 0.0338468i
\(221\) −0.944272 2.90617i −0.0635186 0.195490i
\(222\) 0 0
\(223\) 28.2148 1.88940 0.944701 0.327934i \(-0.106352\pi\)
0.944701 + 0.327934i \(0.106352\pi\)
\(224\) 1.19098 + 3.66547i 0.0795759 + 0.244909i
\(225\) 0 0
\(226\) −3.76393 + 11.5842i −0.250373 + 0.770569i
\(227\) 9.11803 + 6.62464i 0.605185 + 0.439693i 0.847716 0.530451i \(-0.177977\pi\)
−0.242530 + 0.970144i \(0.577977\pi\)
\(228\) 0 0
\(229\) 12.4721 + 9.06154i 0.824182 + 0.598803i 0.917907 0.396795i \(-0.129878\pi\)
−0.0937254 + 0.995598i \(0.529878\pi\)
\(230\) 4.23607 3.07768i 0.279318 0.202936i
\(231\) 0 0
\(232\) −1.30902 + 0.951057i −0.0859412 + 0.0624399i
\(233\) 18.0902 13.1433i 1.18513 0.861045i 0.192386 0.981319i \(-0.438378\pi\)
0.992741 + 0.120275i \(0.0383775\pi\)
\(234\) 0 0
\(235\) −0.763932 + 0.555029i −0.0498334 + 0.0362061i
\(236\) 6.54508 + 4.75528i 0.426049 + 0.309543i
\(237\) 0 0
\(238\) 12.4721 + 9.06154i 0.808448 + 0.587372i
\(239\) 7.61803 23.4459i 0.492770 1.51659i −0.327634 0.944805i \(-0.606251\pi\)
0.820404 0.571784i \(-0.193749\pi\)
\(240\) 0 0
\(241\) −5.80902 17.8783i −0.374192 1.15164i −0.944022 0.329881i \(-0.892991\pi\)
0.569831 0.821762i \(-0.307009\pi\)
\(242\) −9.09017 −0.584338
\(243\) 0 0
\(244\) −3.47214 10.6861i −0.222281 0.684110i
\(245\) −3.92705 + 2.85317i −0.250890 + 0.182282i
\(246\) 0 0
\(247\) −1.88854 −0.120165
\(248\) −3.23607 4.53077i −0.205491 0.287704i
\(249\) 0 0
\(250\) 4.80902 + 3.49396i 0.304149 + 0.220977i
\(251\) 17.2984 12.5680i 1.09186 0.793285i 0.112151 0.993691i \(-0.464226\pi\)
0.979713 + 0.200406i \(0.0642261\pi\)
\(252\) 0 0
\(253\) 11.7082 0.736088
\(254\) −7.90983 −0.496307
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −0.562306 + 1.73060i −0.0350757 + 0.107952i −0.967061 0.254543i \(-0.918075\pi\)
0.931986 + 0.362495i \(0.118075\pi\)
\(258\) 0 0
\(259\) 8.05573 + 24.7930i 0.500559 + 1.54056i
\(260\) −0.381966 0.277515i −0.0236885 0.0172107i
\(261\) 0 0
\(262\) −5.26393 + 16.2007i −0.325207 + 1.00088i
\(263\) 4.70820 3.42071i 0.290320 0.210930i −0.433086 0.901353i \(-0.642575\pi\)
0.723406 + 0.690423i \(0.242575\pi\)
\(264\) 0 0
\(265\) −0.454915 + 1.40008i −0.0279452 + 0.0860065i
\(266\) 7.70820 5.60034i 0.472620 0.343379i
\(267\) 0 0
\(268\) 3.38197 + 10.4086i 0.206586 + 0.635808i
\(269\) −5.20820 3.78398i −0.317550 0.230713i 0.417579 0.908640i \(-0.362879\pi\)
−0.735129 + 0.677927i \(0.762879\pi\)
\(270\) 0 0
\(271\) −6.13525 + 18.8824i −0.372690 + 1.14702i 0.572334 + 0.820021i \(0.306038\pi\)
−0.945024 + 0.327002i \(0.893962\pi\)
\(272\) −1.23607 3.80423i −0.0749476 0.230665i
\(273\) 0 0
\(274\) 16.9443 1.02364
\(275\) 1.97214 + 6.06961i 0.118924 + 0.366011i
\(276\) 0 0
\(277\) −11.4721 8.33499i −0.689294 0.500801i 0.187134 0.982334i \(-0.440080\pi\)
−0.876428 + 0.481533i \(0.840080\pi\)
\(278\) 4.76393 0.285722
\(279\) 0 0
\(280\) 2.38197 0.142350
\(281\) −14.4721 10.5146i −0.863335 0.627250i 0.0654550 0.997856i \(-0.479150\pi\)
−0.928790 + 0.370606i \(0.879150\pi\)
\(282\) 0 0
\(283\) 10.0000 + 30.7768i 0.594438 + 1.82949i 0.557502 + 0.830175i \(0.311760\pi\)
0.0369359 + 0.999318i \(0.488240\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −0.326238 1.00406i −0.0192909 0.0593711i
\(287\) −9.52786 + 29.3238i −0.562412 + 1.73093i
\(288\) 0 0
\(289\) 0.809017 + 0.587785i 0.0475892 + 0.0345756i
\(290\) 0.309017 + 0.951057i 0.0181461 + 0.0558480i
\(291\) 0 0
\(292\) 1.92705 1.40008i 0.112772 0.0819337i
\(293\) 0.145898 0.449028i 0.00852345 0.0262325i −0.946704 0.322104i \(-0.895610\pi\)
0.955228 + 0.295871i \(0.0956100\pi\)
\(294\) 0 0
\(295\) 4.04508 2.93893i 0.235514 0.171111i
\(296\) 2.09017 6.43288i 0.121489 0.373904i
\(297\) 0 0
\(298\) −12.3992 9.00854i −0.718266 0.521851i
\(299\) −2.00000 6.15537i −0.115663 0.355974i
\(300\) 0 0
\(301\) −8.61803 + 26.5236i −0.496735 + 1.52879i
\(302\) −7.28115 + 22.4091i −0.418983 + 1.28950i
\(303\) 0 0
\(304\) −2.47214 −0.141787
\(305\) −6.94427 −0.397628
\(306\) 0 0
\(307\) −0.381966 + 0.277515i −0.0218000 + 0.0158386i −0.598632 0.801024i \(-0.704289\pi\)
0.576832 + 0.816863i \(0.304289\pi\)
\(308\) 4.30902 + 3.13068i 0.245529 + 0.178387i
\(309\) 0 0
\(310\) −3.28115 + 1.03681i −0.186357 + 0.0588870i
\(311\) 29.1246 1.65151 0.825753 0.564032i \(-0.190751\pi\)
0.825753 + 0.564032i \(0.190751\pi\)
\(312\) 0 0
\(313\) −4.38197 + 3.18368i −0.247683 + 0.179952i −0.704699 0.709506i \(-0.748918\pi\)
0.457016 + 0.889458i \(0.348918\pi\)
\(314\) 7.18034 + 22.0988i 0.405210 + 1.24711i
\(315\) 0 0
\(316\) −11.3262 −0.637151
\(317\) −7.56231 23.2744i −0.424741 1.30722i −0.903242 0.429132i \(-0.858819\pi\)
0.478500 0.878087i \(-0.341181\pi\)
\(318\) 0 0
\(319\) −0.690983 + 2.12663i −0.0386876 + 0.119068i
\(320\) −0.500000 0.363271i −0.0279508 0.0203075i
\(321\) 0 0
\(322\) 26.4164 + 19.1926i 1.47213 + 1.06956i
\(323\) −8.00000 + 5.81234i −0.445132 + 0.323407i
\(324\) 0 0
\(325\) 2.85410 2.07363i 0.158317 0.115024i
\(326\) −9.32624 + 6.77591i −0.516533 + 0.375283i
\(327\) 0 0
\(328\) 6.47214 4.70228i 0.357364 0.259640i
\(329\) −4.76393 3.46120i −0.262644 0.190822i
\(330\) 0 0
\(331\) −21.7082 15.7719i −1.19319 0.866904i −0.199593 0.979879i \(-0.563962\pi\)
−0.993598 + 0.112975i \(0.963962\pi\)
\(332\) −2.00000 + 6.15537i −0.109764 + 0.337820i
\(333\) 0 0
\(334\) −6.18034 19.0211i −0.338173 1.04079i
\(335\) 6.76393 0.369553
\(336\) 0 0
\(337\) 7.85410 + 24.1724i 0.427840 + 1.31676i 0.900248 + 0.435377i \(0.143385\pi\)
−0.472408 + 0.881380i \(0.656615\pi\)
\(338\) 10.0451 7.29818i 0.546381 0.396969i
\(339\) 0 0
\(340\) −2.47214 −0.134070
\(341\) −7.29837 2.43690i −0.395229 0.131965i
\(342\) 0 0
\(343\) −2.66312 1.93487i −0.143795 0.104473i
\(344\) 5.85410 4.25325i 0.315632 0.229320i
\(345\) 0 0
\(346\) 8.27051 0.444625
\(347\) 15.5623 0.835428 0.417714 0.908578i \(-0.362831\pi\)
0.417714 + 0.908578i \(0.362831\pi\)
\(348\) 0 0
\(349\) 5.38197 16.5640i 0.288090 0.886650i −0.697365 0.716716i \(-0.745644\pi\)
0.985455 0.169934i \(-0.0543555\pi\)
\(350\) −5.50000 + 16.9273i −0.293987 + 0.904800i
\(351\) 0 0
\(352\) −0.427051 1.31433i −0.0227619 0.0700539i
\(353\) −1.23607 0.898056i −0.0657893 0.0477987i 0.554405 0.832247i \(-0.312946\pi\)
−0.620194 + 0.784449i \(0.712946\pi\)
\(354\) 0 0
\(355\) 0.381966 1.17557i 0.0202727 0.0623928i
\(356\) 2.38197 1.73060i 0.126244 0.0917216i
\(357\) 0 0
\(358\) 1.79180 5.51458i 0.0946994 0.291455i
\(359\) 11.4721 8.33499i 0.605476 0.439904i −0.242342 0.970191i \(-0.577916\pi\)
0.847818 + 0.530287i \(0.177916\pi\)
\(360\) 0 0
\(361\) −3.98278 12.2577i −0.209620 0.645144i
\(362\) −5.61803 4.08174i −0.295277 0.214532i
\(363\) 0 0
\(364\) 0.909830 2.80017i 0.0476881 0.146769i
\(365\) −0.454915 1.40008i −0.0238113 0.0732838i
\(366\) 0 0
\(367\) −6.20163 −0.323722 −0.161861 0.986814i \(-0.551750\pi\)
−0.161861 + 0.986814i \(0.551750\pi\)
\(368\) −2.61803 8.05748i −0.136474 0.420025i
\(369\) 0 0
\(370\) −3.38197 2.45714i −0.175820 0.127741i
\(371\) −9.18034 −0.476619
\(372\) 0 0
\(373\) 26.9443 1.39512 0.697561 0.716526i \(-0.254269\pi\)
0.697561 + 0.716526i \(0.254269\pi\)
\(374\) −4.47214 3.24920i −0.231249 0.168012i
\(375\) 0 0
\(376\) 0.472136 + 1.45309i 0.0243486 + 0.0749371i
\(377\) 1.23607 0.0636607
\(378\) 0 0
\(379\) 5.47214 + 16.8415i 0.281085 + 0.865090i 0.987545 + 0.157337i \(0.0502909\pi\)
−0.706460 + 0.707753i \(0.749709\pi\)
\(380\) −0.472136 + 1.45309i −0.0242201 + 0.0745417i
\(381\) 0 0
\(382\) 6.70820 + 4.87380i 0.343222 + 0.249365i
\(383\) 7.23607 + 22.2703i 0.369746 + 1.13796i 0.946956 + 0.321365i \(0.104142\pi\)
−0.577210 + 0.816596i \(0.695858\pi\)
\(384\) 0 0
\(385\) 2.66312 1.93487i 0.135725 0.0986101i
\(386\) −2.44427 + 7.52270i −0.124410 + 0.382895i
\(387\) 0 0
\(388\) 5.61803 4.08174i 0.285212 0.207219i
\(389\) −10.2082 + 31.4176i −0.517576 + 1.59294i 0.260968 + 0.965347i \(0.415958\pi\)
−0.778545 + 0.627589i \(0.784042\pi\)
\(390\) 0 0
\(391\) −27.4164 19.9192i −1.38651 1.00736i
\(392\) 2.42705 + 7.46969i 0.122585 + 0.377277i
\(393\) 0 0
\(394\) 5.51722 16.9803i 0.277954 0.855453i
\(395\) −2.16312 + 6.65740i −0.108838 + 0.334970i
\(396\) 0 0
\(397\) −11.5967 −0.582024 −0.291012 0.956719i \(-0.593992\pi\)
−0.291012 + 0.956719i \(0.593992\pi\)
\(398\) −4.09017 −0.205022
\(399\) 0 0
\(400\) 3.73607 2.71441i 0.186803 0.135721i
\(401\) −20.0902 14.5964i −1.00326 0.728908i −0.0404715 0.999181i \(-0.512886\pi\)
−0.962784 + 0.270273i \(0.912886\pi\)
\(402\) 0 0
\(403\) −0.0344419 + 4.25325i −0.00171567 + 0.211870i
\(404\) −10.1459 −0.504777
\(405\) 0 0
\(406\) −5.04508 + 3.66547i −0.250383 + 0.181914i
\(407\) −2.88854 8.89002i −0.143180 0.440662i
\(408\) 0 0
\(409\) −37.0344 −1.83124 −0.915618 0.402050i \(-0.868298\pi\)
−0.915618 + 0.402050i \(0.868298\pi\)
\(410\) −1.52786 4.70228i −0.0754558 0.232229i
\(411\) 0 0
\(412\) 2.76393 8.50651i 0.136169 0.419086i
\(413\) 25.2254 + 18.3273i 1.24126 + 0.901830i
\(414\) 0 0
\(415\) 3.23607 + 2.35114i 0.158852 + 0.115413i
\(416\) −0.618034 + 0.449028i −0.0303016 + 0.0220154i
\(417\) 0 0
\(418\) −2.76393 + 2.00811i −0.135188 + 0.0982201i
\(419\) 21.8262 15.8577i 1.06628 0.774699i 0.0910413 0.995847i \(-0.470980\pi\)
0.975240 + 0.221148i \(0.0709805\pi\)
\(420\) 0 0
\(421\) 13.7082 9.95959i 0.668097 0.485401i −0.201291 0.979532i \(-0.564514\pi\)
0.869388 + 0.494131i \(0.164514\pi\)
\(422\) 9.47214 + 6.88191i 0.461096 + 0.335006i
\(423\) 0 0
\(424\) 1.92705 + 1.40008i 0.0935859 + 0.0679941i
\(425\) 5.70820 17.5680i 0.276889 0.852175i
\(426\) 0 0
\(427\) −13.3820 41.1855i −0.647599 1.99310i
\(428\) 19.5623 0.945580
\(429\) 0 0
\(430\) −1.38197 4.25325i −0.0666443 0.205110i
\(431\) −12.9443 + 9.40456i −0.623504 + 0.453002i −0.854144 0.520037i \(-0.825918\pi\)
0.230640 + 0.973039i \(0.425918\pi\)
\(432\) 0 0
\(433\) 20.6869 0.994150 0.497075 0.867708i \(-0.334407\pi\)
0.497075 + 0.867708i \(0.334407\pi\)
\(434\) −12.4721 17.4620i −0.598682 0.838205i
\(435\) 0 0
\(436\) −3.23607 2.35114i −0.154980 0.112599i
\(437\) −16.9443 + 12.3107i −0.810554 + 0.588902i
\(438\) 0 0
\(439\) 27.3262 1.30421 0.652105 0.758129i \(-0.273886\pi\)
0.652105 + 0.758129i \(0.273886\pi\)
\(440\) −0.854102 −0.0407177
\(441\) 0 0
\(442\) −0.944272 + 2.90617i −0.0449144 + 0.138232i
\(443\) −4.55573 + 14.0211i −0.216449 + 0.666162i 0.782598 + 0.622527i \(0.213894\pi\)
−0.999048 + 0.0436351i \(0.986106\pi\)
\(444\) 0 0
\(445\) −0.562306 1.73060i −0.0266559 0.0820383i
\(446\) −22.8262 16.5842i −1.08085 0.785286i
\(447\) 0 0
\(448\) 1.19098 3.66547i 0.0562687 0.173177i
\(449\) 3.23607 2.35114i 0.152719 0.110957i −0.508801 0.860884i \(-0.669911\pi\)
0.661521 + 0.749927i \(0.269911\pi\)
\(450\) 0 0
\(451\) 3.41641 10.5146i 0.160872 0.495114i
\(452\) 9.85410 7.15942i 0.463498 0.336751i
\(453\) 0 0
\(454\) −3.48278 10.7189i −0.163455 0.503063i
\(455\) −1.47214 1.06957i −0.0690148 0.0501422i
\(456\) 0 0
\(457\) 1.71885 5.29007i 0.0804043 0.247459i −0.902772 0.430120i \(-0.858471\pi\)
0.983176 + 0.182661i \(0.0584712\pi\)
\(458\) −4.76393 14.6619i −0.222604 0.685104i
\(459\) 0 0
\(460\) −5.23607 −0.244133
\(461\) −2.97214 9.14729i −0.138426 0.426032i 0.857681 0.514182i \(-0.171904\pi\)
−0.996107 + 0.0881502i \(0.971904\pi\)
\(462\) 0 0
\(463\) −13.7082 9.95959i −0.637074 0.462862i 0.221770 0.975099i \(-0.428817\pi\)
−0.858844 + 0.512238i \(0.828817\pi\)
\(464\) 1.61803 0.0751153
\(465\) 0 0
\(466\) −22.3607 −1.03584
\(467\) −33.9615 24.6745i −1.57155 1.14180i −0.925653 0.378374i \(-0.876483\pi\)
−0.645898 0.763424i \(-0.723517\pi\)
\(468\) 0 0
\(469\) 13.0344 + 40.1159i 0.601875 + 1.85238i
\(470\) 0.944272 0.0435560
\(471\) 0 0
\(472\) −2.50000 7.69421i −0.115072 0.354155i
\(473\) 3.09017 9.51057i 0.142086 0.437296i
\(474\) 0 0
\(475\) −9.23607 6.71040i −0.423780 0.307894i
\(476\) −4.76393 14.6619i −0.218354 0.672026i
\(477\) 0 0
\(478\) −19.9443 + 14.4904i −0.912230 + 0.662774i
\(479\) −1.76393 + 5.42882i −0.0805961 + 0.248049i −0.983233 0.182353i \(-0.941628\pi\)
0.902637 + 0.430403i \(0.141628\pi\)
\(480\) 0 0
\(481\) −4.18034 + 3.03719i −0.190607 + 0.138484i
\(482\) −5.80902 + 17.8783i −0.264593 + 0.814335i
\(483\) 0 0
\(484\) 7.35410 + 5.34307i 0.334277 + 0.242867i
\(485\) −1.32624 4.08174i −0.0602214 0.185342i
\(486\) 0 0
\(487\) −2.00000 + 6.15537i −0.0906287 + 0.278926i −0.986090 0.166213i \(-0.946846\pi\)
0.895461 + 0.445140i \(0.146846\pi\)
\(488\) −3.47214 + 10.6861i −0.157176 + 0.483739i
\(489\) 0 0
\(490\) 4.85410 0.219286
\(491\) −25.5279 −1.15206 −0.576028 0.817430i \(-0.695398\pi\)
−0.576028 + 0.817430i \(0.695398\pi\)
\(492\) 0 0
\(493\) 5.23607 3.80423i 0.235821 0.171334i
\(494\) 1.52786 + 1.11006i 0.0687419 + 0.0499439i
\(495\) 0 0
\(496\) −0.0450850 + 5.56758i −0.00202437 + 0.249992i
\(497\) 7.70820 0.345760
\(498\) 0 0
\(499\) −7.61803 + 5.53483i −0.341030 + 0.247773i −0.745096 0.666957i \(-0.767597\pi\)
0.404066 + 0.914730i \(0.367597\pi\)
\(500\) −1.83688 5.65334i −0.0821478 0.252825i
\(501\) 0 0
\(502\) −21.3820 −0.954324
\(503\) 8.52786 + 26.2461i 0.380239 + 1.17025i 0.939876 + 0.341517i \(0.110941\pi\)
−0.559637 + 0.828738i \(0.689059\pi\)
\(504\) 0 0
\(505\) −1.93769 + 5.96361i −0.0862263 + 0.265377i
\(506\) −9.47214 6.88191i −0.421088 0.305938i
\(507\) 0 0
\(508\) 6.39919 + 4.64928i 0.283918 + 0.206279i
\(509\) −3.61803 + 2.62866i −0.160367 + 0.116513i −0.665074 0.746777i \(-0.731600\pi\)
0.504708 + 0.863290i \(0.331600\pi\)
\(510\) 0 0
\(511\) 7.42705 5.39607i 0.328553 0.238708i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 0 0
\(514\) 1.47214 1.06957i 0.0649331 0.0471767i
\(515\) −4.47214 3.24920i −0.197066 0.143177i
\(516\) 0 0
\(517\) 1.70820 + 1.24108i 0.0751267 + 0.0545828i
\(518\) 8.05573 24.7930i 0.353948 1.08934i
\(519\) 0 0
\(520\) 0.145898 + 0.449028i 0.00639805 + 0.0196912i
\(521\) −10.2918 −0.450892 −0.225446 0.974256i \(-0.572384\pi\)
−0.225446 + 0.974256i \(0.572384\pi\)
\(522\) 0 0
\(523\) −2.56231 7.88597i −0.112042 0.344829i 0.879277 0.476311i \(-0.158026\pi\)
−0.991319 + 0.131482i \(0.958026\pi\)
\(524\) 13.7812 10.0126i 0.602032 0.437402i
\(525\) 0 0
\(526\) −5.81966 −0.253749
\(527\) 12.9443 + 18.1231i 0.563861 + 0.789454i
\(528\) 0 0
\(529\) −39.4615 28.6705i −1.71572 1.24654i
\(530\) 1.19098 0.865300i 0.0517330 0.0375862i
\(531\) 0 0
\(532\) −9.52786 −0.413085
\(533\) −6.11146 −0.264717
\(534\) 0 0
\(535\) 3.73607 11.4984i 0.161524 0.497121i
\(536\) 3.38197 10.4086i 0.146079 0.449584i
\(537\) 0 0
\(538\) 1.98936 + 6.12261i 0.0857673 + 0.263965i
\(539\) 8.78115 + 6.37988i 0.378231 + 0.274801i
\(540\) 0 0
\(541\) −0.472136 + 1.45309i −0.0202987 + 0.0624730i −0.960693 0.277614i \(-0.910456\pi\)
0.940394 + 0.340087i \(0.110456\pi\)
\(542\) 16.0623 11.6699i 0.689935 0.501267i
\(543\) 0 0
\(544\) −1.23607 + 3.80423i −0.0529960 + 0.163105i
\(545\) −2.00000 + 1.45309i −0.0856706 + 0.0622433i
\(546\) 0 0
\(547\) 11.4721 + 35.3076i 0.490513 + 1.50964i 0.823834 + 0.566831i \(0.191831\pi\)
−0.333321 + 0.942813i \(0.608169\pi\)
\(548\) −13.7082 9.95959i −0.585585 0.425453i
\(549\) 0 0
\(550\) 1.97214 6.06961i 0.0840922 0.258809i
\(551\) −1.23607 3.80423i −0.0526583 0.162065i
\(552\) 0 0
\(553\) −43.6525 −1.85629
\(554\) 4.38197 + 13.4863i 0.186172 + 0.572978i
\(555\) 0 0
\(556\) −3.85410 2.80017i −0.163450 0.118754i
\(557\) 30.5066 1.29261 0.646303 0.763081i \(-0.276314\pi\)
0.646303 + 0.763081i \(0.276314\pi\)
\(558\) 0 0
\(559\) −5.52786 −0.233804
\(560\) −1.92705 1.40008i −0.0814328 0.0591644i
\(561\) 0 0
\(562\) 5.52786 + 17.0130i 0.233179 + 0.717651i
\(563\) −6.32624 −0.266619 −0.133310 0.991074i \(-0.542560\pi\)
−0.133310 + 0.991074i \(0.542560\pi\)
\(564\) 0 0
\(565\) −2.32624 7.15942i −0.0978656 0.301199i
\(566\) 10.0000 30.7768i 0.420331 1.29365i
\(567\) 0 0
\(568\) −1.61803 1.17557i −0.0678912 0.0493258i
\(569\) 11.2361 + 34.5811i 0.471040 + 1.44971i 0.851224 + 0.524802i \(0.175861\pi\)
−0.380184 + 0.924911i \(0.624139\pi\)
\(570\) 0 0
\(571\) −2.14590 + 1.55909i −0.0898030 + 0.0652457i −0.631781 0.775147i \(-0.717676\pi\)
0.541978 + 0.840393i \(0.317676\pi\)
\(572\) −0.326238 + 1.00406i −0.0136407 + 0.0419817i
\(573\) 0 0
\(574\) 24.9443 18.1231i 1.04115 0.756443i
\(575\) 12.0902 37.2097i 0.504195 1.55175i
\(576\) 0 0
\(577\) 21.2082 + 15.4087i 0.882909 + 0.641471i 0.934020 0.357222i \(-0.116276\pi\)
−0.0511104 + 0.998693i \(0.516276\pi\)
\(578\) −0.309017 0.951057i −0.0128534 0.0395587i
\(579\) 0 0
\(580\) 0.309017 0.951057i 0.0128312 0.0394905i
\(581\) −7.70820 + 23.7234i −0.319790 + 0.984213i
\(582\) 0 0
\(583\) 3.29180 0.136332
\(584\) −2.38197 −0.0985665
\(585\) 0 0
\(586\) −0.381966 + 0.277515i −0.0157789 + 0.0114640i
\(587\) 1.40983 + 1.02430i 0.0581899 + 0.0422774i 0.616500 0.787355i \(-0.288550\pi\)
−0.558310 + 0.829632i \(0.688550\pi\)
\(588\) 0 0
\(589\) 13.1246 4.14725i 0.540790 0.170885i
\(590\) −5.00000 −0.205847
\(591\) 0 0
\(592\) −5.47214 + 3.97574i −0.224903 + 0.163402i
\(593\) −4.67376 14.3844i −0.191928 0.590695i −0.999999 0.00160883i \(-0.999488\pi\)
0.808070 0.589086i \(-0.200512\pi\)
\(594\) 0 0
\(595\) −9.52786 −0.390604
\(596\) 4.73607 + 14.5761i 0.193997 + 0.597061i
\(597\) 0 0
\(598\) −2.00000 + 6.15537i −0.0817861 + 0.251712i
\(599\) −15.4721 11.2412i −0.632174 0.459302i 0.224978 0.974364i \(-0.427769\pi\)
−0.857153 + 0.515062i \(0.827769\pi\)
\(600\) 0 0
\(601\) 1.02786 + 0.746787i 0.0419274 + 0.0304621i 0.608552 0.793514i \(-0.291751\pi\)
−0.566624 + 0.823976i \(0.691751\pi\)
\(602\) 22.5623 16.3925i 0.919571 0.668107i
\(603\) 0 0
\(604\) 19.0623 13.8496i 0.775634 0.563531i
\(605\) 4.54508 3.30220i 0.184784 0.134253i
\(606\) 0 0
\(607\) 16.5451 12.0207i 0.671544 0.487905i −0.198997 0.980000i \(-0.563769\pi\)
0.870542 + 0.492095i \(0.163769\pi\)
\(608\) 2.00000 + 1.45309i 0.0811107 + 0.0589304i
\(609\) 0 0
\(610\) 5.61803 + 4.08174i 0.227468 + 0.165265i
\(611\) 0.360680 1.11006i 0.0145915 0.0449081i
\(612\) 0 0
\(613\) −8.61803 26.5236i −0.348079 1.07128i −0.959915 0.280292i \(-0.909569\pi\)
0.611836 0.790985i \(-0.290431\pi\)
\(614\) 0.472136 0.0190539
\(615\) 0 0
\(616\) −1.64590 5.06555i −0.0663151 0.204097i
\(617\) 2.94427 2.13914i 0.118532 0.0861185i −0.526940 0.849902i \(-0.676661\pi\)
0.645472 + 0.763784i \(0.276661\pi\)
\(618\) 0 0
\(619\) 8.18034 0.328796 0.164398 0.986394i \(-0.447432\pi\)
0.164398 + 0.986394i \(0.447432\pi\)
\(620\) 3.26393 + 1.08981i 0.131083 + 0.0437680i
\(621\) 0 0
\(622\) −23.5623 17.1190i −0.944762 0.686410i
\(623\) 9.18034 6.66991i 0.367803 0.267224i
\(624\) 0 0
\(625\) 19.4164 0.776656
\(626\) 5.41641 0.216483
\(627\) 0 0
\(628\) 7.18034 22.0988i 0.286527 0.881839i
\(629\) −8.36068 + 25.7315i −0.333362 + 1.02598i
\(630\) 0 0
\(631\) 8.89919 + 27.3889i 0.354271 + 1.09033i 0.956431 + 0.291959i \(0.0943070\pi\)
−0.602160 + 0.798376i \(0.705693\pi\)
\(632\) 9.16312 + 6.65740i 0.364489 + 0.264817i
\(633\) 0 0
\(634\) −7.56231 + 23.2744i −0.300338 + 0.924344i
\(635\) 3.95492 2.87341i 0.156946 0.114028i
\(636\) 0 0
\(637\) 1.85410 5.70634i 0.0734622 0.226093i
\(638\) 1.80902 1.31433i 0.0716197 0.0520347i
\(639\) 0 0
\(640\) 0.190983 + 0.587785i 0.00754927 + 0.0232343i
\(641\) −21.0902 15.3229i −0.833012 0.605218i 0.0873981 0.996173i \(-0.472145\pi\)
−0.920410 + 0.390955i \(0.872145\pi\)
\(642\) 0 0
\(643\) −3.18034 + 9.78808i −0.125420 + 0.386004i −0.993977 0.109585i \(-0.965048\pi\)
0.868557 + 0.495589i \(0.165048\pi\)
\(644\) −10.0902 31.0543i −0.397608 1.22371i
\(645\) 0 0
\(646\) 9.88854 0.389060
\(647\) −5.50658 16.9475i −0.216486 0.666275i −0.999045 0.0436985i \(-0.986086\pi\)
0.782559 0.622577i \(-0.213914\pi\)
\(648\) 0 0
\(649\) −9.04508 6.57164i −0.355051 0.257959i
\(650\) −3.52786 −0.138374
\(651\) 0 0
\(652\) 11.5279 0.451466
\(653\) 32.4336 + 23.5644i 1.26923 + 0.922147i 0.999171 0.0406984i \(-0.0129583\pi\)
0.270054 + 0.962845i \(0.412958\pi\)
\(654\) 0 0
\(655\) −3.25329 10.0126i −0.127117 0.391224i
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) 1.81966 + 5.60034i 0.0709377 + 0.218324i
\(659\) −5.31966 + 16.3722i −0.207225 + 0.637772i 0.792390 + 0.610015i \(0.208836\pi\)
−0.999615 + 0.0277569i \(0.991164\pi\)
\(660\) 0 0
\(661\) 10.1803 + 7.39645i 0.395969 + 0.287689i 0.767897 0.640573i \(-0.221303\pi\)
−0.371928 + 0.928262i \(0.621303\pi\)
\(662\) 8.29180 + 25.5195i 0.322270 + 0.991844i
\(663\) 0 0
\(664\) 5.23607 3.80423i 0.203199 0.147633i
\(665\) −1.81966 + 5.60034i −0.0705634 + 0.217172i
\(666\) 0 0
\(667\) 11.0902 8.05748i 0.429413 0.311987i
\(668\) −6.18034 + 19.0211i −0.239125 + 0.735950i
\(669\) 0 0
\(670\) −5.47214 3.97574i −0.211407 0.153596i
\(671\) 4.79837 + 14.7679i 0.185239 + 0.570108i
\(672\) 0 0
\(673\) 3.62868 11.1679i 0.139875 0.430492i −0.856441 0.516245i \(-0.827330\pi\)
0.996316 + 0.0857529i \(0.0273296\pi\)
\(674\) 7.85410 24.1724i 0.302529 0.931088i
\(675\) 0 0
\(676\) −12.4164 −0.477554
\(677\) 18.1459 0.697404 0.348702 0.937234i \(-0.386623\pi\)
0.348702 + 0.937234i \(0.386623\pi\)
\(678\) 0 0
\(679\) 21.6525 15.7314i 0.830946 0.603717i
\(680\) 2.00000 + 1.45309i 0.0766965 + 0.0557233i
\(681\) 0 0
\(682\) 4.47214 + 6.26137i 0.171247 + 0.239760i
\(683\) −22.8328 −0.873673 −0.436837 0.899541i \(-0.643901\pi\)
−0.436837 + 0.899541i \(0.643901\pi\)
\(684\) 0 0
\(685\) −8.47214 + 6.15537i −0.323704 + 0.235184i
\(686\) 1.01722 + 3.13068i 0.0388377 + 0.119530i
\(687\) 0 0
\(688\) −7.23607 −0.275873
\(689\) −0.562306 1.73060i −0.0214221 0.0659306i
\(690\) 0 0
\(691\) −6.67376 + 20.5397i −0.253882 + 0.781368i 0.740166 + 0.672424i \(0.234747\pi\)
−0.994048 + 0.108944i \(0.965253\pi\)
\(692\) −6.69098 4.86128i −0.254353 0.184798i
\(693\) 0 0
\(694\) −12.5902 9.14729i −0.477916 0.347227i
\(695\) −2.38197 + 1.73060i −0.0903531 + 0.0656454i
\(696\) 0 0
\(697\) −25.8885 + 18.8091i −0.980599 + 0.712447i
\(698\) −14.0902 + 10.2371i −0.533321 + 0.387480i
\(699\) 0 0
\(700\) 14.3992 10.4616i 0.544238 0.395412i
\(701\) 12.5623 + 9.12705i 0.474472 + 0.344724i 0.799181 0.601090i \(-0.205267\pi\)
−0.324710 + 0.945814i \(0.605267\pi\)
\(702\) 0 0
\(703\) 13.5279 + 9.82857i 0.510213 + 0.370691i
\(704\) −0.427051 + 1.31433i −0.0160951 + 0.0495356i
\(705\) 0 0
\(706\) 0.472136 + 1.45309i 0.0177691 + 0.0546876i
\(707\) −39.1033 −1.47063
\(708\) 0 0
\(709\) 3.34752 + 10.3026i 0.125719 + 0.386923i 0.994031 0.109095i \(-0.0347951\pi\)
−0.868312 + 0.496018i \(0.834795\pi\)
\(710\) −1.00000 + 0.726543i −0.0375293 + 0.0272667i
\(711\) 0 0
\(712\) −2.94427 −0.110341
\(713\) 27.4164 + 38.3853i 1.02675 + 1.43754i
\(714\) 0 0
\(715\) 0.527864 + 0.383516i 0.0197410 + 0.0143427i
\(716\) −4.69098 + 3.40820i −0.175310 + 0.127370i
\(717\) 0 0
\(718\) −14.1803 −0.529206
\(719\) −18.6525 −0.695620 −0.347810 0.937565i \(-0.613075\pi\)
−0.347810 + 0.937565i \(0.613075\pi\)
\(720\) 0 0
\(721\) 10.6525 32.7849i 0.396719 1.22098i
\(722\) −3.98278 + 12.2577i −0.148224 + 0.456186i
\(723\) 0 0
\(724\) 2.14590 + 6.60440i 0.0797517 + 0.245450i
\(725\) 6.04508 + 4.39201i 0.224509 + 0.163115i
\(726\) 0 0
\(727\) −10.0451 + 30.9156i −0.372552 + 1.14660i 0.572564 + 0.819860i \(0.305949\pi\)
−0.945116 + 0.326736i \(0.894051\pi\)
\(728\) −2.38197 + 1.73060i −0.0882815 + 0.0641403i
\(729\) 0 0
\(730\) −0.454915 + 1.40008i −0.0168372 + 0.0518195i
\(731\) −23.4164 + 17.0130i −0.866087 + 0.629249i
\(732\) 0 0
\(733\) 7.23607 + 22.2703i 0.267270 + 0.822573i 0.991162 + 0.132659i \(0.0423516\pi\)
−0.723891 + 0.689914i \(0.757648\pi\)
\(734\) 5.01722 + 3.64522i 0.185189 + 0.134548i
\(735\) 0 0
\(736\) −2.61803 + 8.05748i −0.0965020 + 0.297003i
\(737\) −4.67376 14.3844i −0.172160 0.529855i
\(738\) 0 0
\(739\) −31.1246 −1.14494 −0.572469 0.819927i \(-0.694014\pi\)
−0.572469 + 0.819927i \(0.694014\pi\)
\(740\) 1.29180 + 3.97574i 0.0474874 + 0.146151i
\(741\) 0 0
\(742\) 7.42705 + 5.39607i 0.272656 + 0.198096i
\(743\) −34.6525 −1.27128 −0.635638 0.771987i \(-0.719263\pi\)
−0.635638 + 0.771987i \(0.719263\pi\)
\(744\) 0 0
\(745\) 9.47214 0.347032
\(746\) −21.7984 15.8374i −0.798095 0.579850i
\(747\) 0 0
\(748\) 1.70820 + 5.25731i 0.0624581 + 0.192226i
\(749\) 75.3951 2.75488
\(750\) 0 0
\(751\) −10.7639 33.1280i −0.392781 1.20886i −0.930676 0.365845i \(-0.880780\pi\)
0.537894 0.843012i \(-0.319220\pi\)
\(752\) 0.472136 1.45309i 0.0172170 0.0529886i
\(753\) 0 0
\(754\) −1.00000 0.726543i −0.0364179 0.0264591i
\(755\) −4.50000 13.8496i −0.163772 0.504038i
\(756\) 0 0
\(757\) −9.76393 + 7.09391i −0.354876 + 0.257833i −0.750912 0.660403i \(-0.770386\pi\)
0.396036 + 0.918235i \(0.370386\pi\)
\(758\) 5.47214 16.8415i 0.198757 0.611711i
\(759\) 0 0
\(760\) 1.23607 0.898056i 0.0448369 0.0325759i
\(761\) 6.96556 21.4378i 0.252501 0.777119i −0.741810 0.670610i \(-0.766033\pi\)
0.994312 0.106509i \(-0.0339674\pi\)
\(762\) 0 0
\(763\) −12.4721 9.06154i −0.451522 0.328050i
\(764\) −2.56231 7.88597i −0.0927010 0.285304i
\(765\) 0 0
\(766\) 7.23607 22.2703i 0.261450 0.804660i
\(767\) −1.90983 + 5.87785i −0.0689600 + 0.212237i
\(768\) 0 0
\(769\) 24.4721 0.882488 0.441244 0.897387i \(-0.354537\pi\)
0.441244 + 0.897387i \(0.354537\pi\)
\(770\) −3.29180 −0.118628
\(771\) 0 0
\(772\) 6.39919 4.64928i 0.230312 0.167331i
\(773\) 14.6803 + 10.6659i 0.528015 + 0.383625i 0.819615 0.572915i \(-0.194187\pi\)
−0.291600 + 0.956540i \(0.594187\pi\)
\(774\) 0 0
\(775\) −15.2812 + 20.6785i −0.548915 + 0.742793i
\(776\) −6.94427 −0.249285
\(777\) 0 0
\(778\) 26.7254 19.4172i 0.958153 0.696139i
\(779\) 6.11146 + 18.8091i 0.218966 + 0.673907i
\(780\) 0 0
\(781\) −2.76393 −0.0989013
\(782\) 10.4721 + 32.2299i 0.374483 + 1.15254i
\(783\) 0 0
\(784\) 2.42705 7.46969i 0.0866804 0.266775i
\(785\) −11.6180 8.44100i −0.414665 0.301272i
\(786\) 0 0
\(787\) 8.61803 + 6.26137i 0.307200 + 0.223194i 0.730694 0.682705i \(-0.239197\pi\)
−0.423494 + 0.905899i \(0.639197\pi\)
\(788\) −14.4443 + 10.4944i −0.514556 + 0.373847i
\(789\) 0 0
\(790\) 5.66312 4.11450i 0.201485 0.146387i
\(791\) 37.9787 27.5932i 1.35037 0.981099i
\(792\) 0 0
\(793\) 6.94427 5.04531i 0.246598 0.179164i
\(794\) 9.38197 + 6.81640i 0.332954 + 0.241905i
\(795\) 0 0
\(796\) 3.30902 + 2.40414i 0.117285 + 0.0852125i
\(797\) −6.97214 + 21.4580i −0.246966 + 0.760082i 0.748341 + 0.663314i \(0.230851\pi\)
−0.995307 + 0.0967684i \(0.969149\pi\)
\(798\) 0 0
\(799\) −1.88854 5.81234i −0.0668119 0.205626i
\(800\) −4.61803 −0.163272
\(801\) 0 0
\(802\) 7.67376 + 23.6174i 0.270970 + 0.833960i
\(803\) −2.66312 + 1.93487i −0.0939794 + 0.0682801i
\(804\) 0 0
\(805\) −20.1803 −0.711264
\(806\) 2.52786 3.42071i 0.0890402 0.120489i
\(807\) 0 0
\(808\) 8.20820 + 5.96361i 0.288764 + 0.209799i
\(809\) 2.61803 1.90211i 0.0920452 0.0668747i −0.540811 0.841144i \(-0.681883\pi\)
0.632856 + 0.774270i \(0.281883\pi\)
\(810\) 0 0
\(811\) 44.0689 1.54747 0.773734 0.633511i \(-0.218387\pi\)
0.773734 + 0.633511i \(0.218387\pi\)
\(812\) 6.23607 0.218843
\(813\) 0 0
\(814\) −2.88854 + 8.89002i −0.101243 + 0.311595i
\(815\) 2.20163 6.77591i 0.0771196 0.237350i
\(816\) 0 0
\(817\) 5.52786 + 17.0130i 0.193395 + 0.595210i
\(818\) 29.9615 + 21.7683i 1.04758 + 0.761111i
\(819\) 0 0
\(820\) −1.52786 + 4.70228i −0.0533553 + 0.164211i
\(821\) 22.3992 16.2740i 0.781737 0.567965i −0.123763 0.992312i \(-0.539496\pi\)
0.905500 + 0.424347i \(0.139496\pi\)
\(822\) 0 0
\(823\) −0.0278640 + 0.0857567i −0.000971280 + 0.00298929i −0.951541 0.307522i \(-0.900500\pi\)
0.950570 + 0.310511i \(0.100500\pi\)
\(824\) −7.23607 + 5.25731i −0.252080 + 0.183147i
\(825\) 0 0
\(826\) −9.63525 29.6543i −0.335253 1.03180i
\(827\) 14.1180 + 10.2574i 0.490932 + 0.356683i 0.805543 0.592538i \(-0.201874\pi\)
−0.314611 + 0.949221i \(0.601874\pi\)
\(828\) 0 0
\(829\) −13.7984 + 42.4670i −0.479237 + 1.47494i 0.360919 + 0.932597i \(0.382463\pi\)
−0.840157 + 0.542344i \(0.817537\pi\)
\(830\) −1.23607 3.80423i −0.0429045 0.132047i
\(831\) 0 0
\(832\) 0.763932 0.0264846
\(833\) −9.70820 29.8788i −0.336369 1.03524i
\(834\) 0 0
\(835\) 10.0000 + 7.26543i 0.346064 + 0.251430i
\(836\) 3.41641 0.118159
\(837\) 0 0
\(838\) −26.9787 −0.931964
\(839\) 25.8885 + 18.8091i 0.893772 + 0.649363i 0.936859 0.349708i \(-0.113719\pi\)
−0.0430869 + 0.999071i \(0.513719\pi\)
\(840\) 0 0
\(841\) −8.15248 25.0907i −0.281120 0.865198i
\(842\) −16.9443 −0.583938
\(843\) 0 0
\(844\) −3.61803 11.1352i −0.124538 0.383288i
\(845\) −2.37132 + 7.29818i −0.0815760 + 0.251065i
\(846\) 0 0
\(847\) 28.3435 + 20.5927i 0.973893 + 0.707575i
\(848\) −0.736068 2.26538i −0.0252767 0.0777936i
\(849\) 0 0
\(850\) −14.9443 + 10.8576i −0.512584 + 0.372414i
\(851\) −17.7082 + 54.5002i −0.607029 + 1.86824i
\(852\) 0 0
\(853\) 23.4721 17.0535i 0.803671 0.583901i −0.108318 0.994116i \(-0.534546\pi\)
0.911989 + 0.410215i \(0.134546\pi\)
\(854\) −13.3820 + 41.1855i −0.457921 + 1.40934i
\(855\) 0 0
\(856\) −15.8262 11.4984i −0.540930 0.393008i
\(857\) −14.4377 44.4347i −0.493182 1.51786i −0.819771 0.572692i \(-0.805899\pi\)
0.326588 0.945167i \(-0.394101\pi\)
\(858\) 0 0
\(859\) −2.25735 + 6.94742i −0.0770199 + 0.237043i −0.982152 0.188087i \(-0.939771\pi\)
0.905133 + 0.425130i \(0.139771\pi\)
\(860\) −1.38197 + 4.25325i −0.0471246 + 0.145035i
\(861\) 0 0
\(862\) 16.0000 0.544962
\(863\) −45.7771 −1.55827 −0.779135 0.626856i \(-0.784341\pi\)
−0.779135 + 0.626856i \(0.784341\pi\)
\(864\) 0 0
\(865\) −4.13525 + 3.00444i −0.140603 + 0.102154i
\(866\) −16.7361 12.1595i −0.568715 0.413195i
\(867\) 0 0
\(868\) −0.173762 + 21.4580i −0.00589787 + 0.728333i
\(869\) 15.6525 0.530974
\(870\) 0 0
\(871\) −6.76393 + 4.91428i −0.229187 + 0.166514i
\(872\) 1.23607 + 3.80423i 0.0418585 + 0.128827i
\(873\) 0 0
\(874\) 20.9443 0.708451
\(875\) −7.07953 21.7885i −0.239332 0.736587i
\(876\) 0 0
\(877\) −6.27051 + 19.2986i −0.211740 + 0.651669i 0.787629 + 0.616150i \(0.211308\pi\)
−0.999369 + 0.0355191i \(0.988692\pi\)
\(878\) −22.1074 16.0620i −0.746088 0.542065i
\(879\) 0 0
\(880\) 0.690983 + 0.502029i 0.0232930 + 0.0169234i
\(881\) 9.32624 6.77591i 0.314209 0.228286i −0.419491 0.907759i \(-0.637792\pi\)
0.733700 + 0.679473i \(0.237792\pi\)
\(882\) 0 0
\(883\) 27.0902 19.6822i 0.911657 0.662357i −0.0297765 0.999557i \(-0.509480\pi\)
0.941433 + 0.337199i \(0.109480\pi\)
\(884\) 2.47214 1.79611i 0.0831469 0.0604098i
\(885\) 0 0
\(886\) 11.9271 8.66551i 0.400697 0.291123i
\(887\) −40.0689 29.1117i −1.34538 0.977477i −0.999227 0.0392991i \(-0.987487\pi\)
−0.346154 0.938178i \(-0.612513\pi\)
\(888\) 0 0
\(889\) 24.6631 + 17.9188i 0.827174 + 0.600977i
\(890\) −0.562306 + 1.73060i −0.0188485 + 0.0580098i
\(891\) 0 0
\(892\) 8.71885 + 26.8339i 0.291929 + 0.898464i
\(893\) −3.77709 −0.126395
\(894\) 0 0
\(895\) 1.10739 + 3.40820i 0.0370160 + 0.113924i
\(896\) −3.11803 + 2.26538i −0.104166 + 0.0756812i
\(897\) 0 0
\(898\) −4.00000 −0.133482
\(899\) −8.59017 + 2.71441i −0.286498 + 0.0905307i
\(900\) 0 0
\(901\) −7.70820 5.60034i −0.256798 0.186574i
\(902\) −8.94427 + 6.49839i −0.297812 + 0.216373i
\(903\) 0 0
\(904\) −12.1803 −0.405112
\(905\) 4.29180 0.142664
\(906\) 0 0
\(907\) −9.41641 + 28.9807i −0.312667 + 0.962289i 0.664038 + 0.747699i \(0.268841\pi\)
−0.976704 + 0.214590i \(0.931159\pi\)
\(908\) −3.48278 + 10.7189i −0.115580 + 0.355719i
\(909\) 0 0
\(910\) 0.562306 + 1.73060i 0.0186403 + 0.0573688i
\(911\) 18.4721 + 13.4208i 0.612009 + 0.444651i 0.850121 0.526587i \(-0.176529\pi\)
−0.238112 + 0.971238i \(0.576529\pi\)
\(912\) 0 0
\(913\) 2.76393 8.50651i 0.0914728 0.281524i
\(914\) −4.50000 + 3.26944i −0.148847 + 0.108144i
\(915\) 0 0
\(916\) −4.76393 + 14.6619i −0.157405 + 0.484442i
\(917\) 53.1140 38.5896i 1.75398 1.27434i
\(918\) 0 0
\(919\) 8.00000 + 24.6215i 0.263896 + 0.812187i 0.991946 + 0.126663i \(0.0404268\pi\)
−0.728050 + 0.685524i \(0.759573\pi\)
\(920\) 4.23607 + 3.07768i 0.139659 + 0.101468i
\(921\) 0 0
\(922\) −2.97214 + 9.14729i −0.0978821 + 0.301250i
\(923\) 0.472136 + 1.45309i 0.0155405 + 0.0478289i
\(924\) 0 0
\(925\) −31.2361 −1.02704
\(926\) 5.23607 + 16.1150i 0.172068 + 0.529570i
\(927\) 0 0
\(928\) −1.30902 0.951057i −0.0429706 0.0312200i
\(929\) −1.23607 −0.0405541 −0.0202770 0.999794i \(-0.506455\pi\)
−0.0202770 + 0.999794i \(0.506455\pi\)
\(930\) 0 0
\(931\) −19.4164 −0.636347
\(932\) 18.0902 + 13.1433i 0.592563 + 0.430522i
\(933\) 0 0
\(934\) 12.9721 + 39.9241i 0.424461 + 1.30636i
\(935\) 3.41641 0.111728
\(936\) 0 0
\(937\) −4.38854 13.5065i −0.143367 0.441240i 0.853430 0.521208i \(-0.174518\pi\)
−0.996797 + 0.0799678i \(0.974518\pi\)
\(938\) 13.0344 40.1159i 0.425590 1.30983i
\(939\) 0 0
\(940\) −0.763932 0.555029i −0.0249167 0.0181031i
\(941\) −1.73607 5.34307i −0.0565942 0.174179i 0.918764 0.394808i \(-0.129189\pi\)
−0.975358 + 0.220629i \(0.929189\pi\)
\(942\) 0 0
\(943\) −54.8328 + 39.8384i −1.78560 + 1.29732i
\(944\) −2.50000 + 7.69421i −0.0813681 + 0.250425i
\(945\) 0 0
\(946\) −8.09017 + 5.87785i −0.263034 + 0.191105i
\(947\) 10.3885 31.9727i 0.337582 1.03897i −0.627854 0.778331i \(-0.716066\pi\)
0.965436 0.260640i \(-0.0839336\pi\)
\(948\) 0 0
\(949\) 1.47214 + 1.06957i 0.0477876 + 0.0347197i
\(950\) 3.52786 + 10.8576i 0.114459 + 0.352269i
\(951\) 0 0
\(952\) −4.76393 + 14.6619i −0.154400 + 0.475194i
\(953\) 16.8328 51.8061i 0.545268 1.67816i −0.175083 0.984554i \(-0.556019\pi\)
0.720351 0.693610i \(-0.243981\pi\)
\(954\) 0 0
\(955\) −5.12461 −0.165829
\(956\) 24.6525 0.797318
\(957\) 0 0
\(958\) 4.61803 3.35520i 0.149202 0.108402i
\(959\) −52.8328 38.3853i −1.70606 1.23953i
\(960\) 0 0
\(961\) −9.10081 29.6340i −0.293575 0.955936i
\(962\) 5.16718 0.166597
\(963\) 0 0
\(964\) 15.2082 11.0494i 0.489823 0.355877i
\(965\) −1.51064 4.64928i −0.0486293 0.149666i
\(966\) 0 0
\(967\) 16.9443 0.544891 0.272446 0.962171i \(-0.412168\pi\)
0.272446 + 0.962171i \(0.412168\pi\)
\(968\) −2.80902 8.64527i −0.0902852 0.277869i
\(969\) 0 0
\(970\) −1.32624 + 4.08174i −0.0425829 + 0.131057i
\(971\) 28.7254 + 20.8702i 0.921843 + 0.669758i 0.943982 0.329997i \(-0.107048\pi\)
−0.0221393 + 0.999755i \(0.507048\pi\)
\(972\) 0 0
\(973\) −14.8541 10.7921i −0.476201 0.345980i
\(974\) 5.23607 3.80423i 0.167774 0.121895i
\(975\) 0 0
\(976\) 9.09017 6.60440i 0.290969 0.211402i
\(977\) −23.3262 + 16.9475i −0.746272 + 0.542199i −0.894669 0.446729i \(-0.852589\pi\)
0.148397 + 0.988928i \(0.452589\pi\)
\(978\) 0 0
\(979\) −3.29180 + 2.39163i −0.105206 + 0.0764368i
\(980\) −3.92705 2.85317i −0.125445 0.0911412i
\(981\) 0 0
\(982\) 20.6525 + 15.0049i 0.659047 + 0.478826i
\(983\) −6.23607 + 19.1926i −0.198900 + 0.612150i 0.801009 + 0.598652i \(0.204297\pi\)
−0.999909 + 0.0134983i \(0.995703\pi\)
\(984\) 0 0
\(985\) 3.40983 + 10.4944i 0.108646 + 0.334379i
\(986\) −6.47214 −0.206115
\(987\) 0 0
\(988\) −0.583592 1.79611i −0.0185665 0.0571419i
\(989\) −49.5967 + 36.0341i −1.57708 + 1.14582i
\(990\) 0 0
\(991\) −22.5623 −0.716715 −0.358358 0.933584i \(-0.616663\pi\)
−0.358358 + 0.933584i \(0.616663\pi\)
\(992\) 3.30902 4.47777i 0.105061 0.142169i
\(993\) 0 0
\(994\) −6.23607 4.53077i −0.197796 0.143707i
\(995\) 2.04508 1.48584i 0.0648336 0.0471043i
\(996\) 0 0
\(997\) 44.8328 1.41987 0.709935 0.704267i \(-0.248724\pi\)
0.709935 + 0.704267i \(0.248724\pi\)
\(998\) 9.41641 0.298071
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.i.b.343.1 4
3.2 odd 2 186.2.f.a.157.1 yes 4
31.16 even 5 inner 558.2.i.b.109.1 4
93.35 odd 10 5766.2.a.q.1.1 2
93.47 odd 10 186.2.f.a.109.1 4
93.89 even 10 5766.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.f.a.109.1 4 93.47 odd 10
186.2.f.a.157.1 yes 4 3.2 odd 2
558.2.i.b.109.1 4 31.16 even 5 inner
558.2.i.b.343.1 4 1.1 even 1 trivial
5766.2.a.m.1.1 2 93.89 even 10
5766.2.a.q.1.1 2 93.35 odd 10