Properties

Label 558.2.i.b.109.1
Level $558$
Weight $2$
Character 558.109
Analytic conductor $4.456$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(109,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.i (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 109.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 558.109
Dual form 558.2.i.b.343.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.309017 - 0.951057i) q^{4} +0.618034 q^{5} +(1.19098 - 3.66547i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-0.500000 + 0.363271i) q^{10} +(-0.427051 + 1.31433i) q^{11} +(-0.618034 - 0.449028i) q^{13} +(1.19098 + 3.66547i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-1.23607 - 3.80423i) q^{17} +(2.00000 - 1.45309i) q^{19} +(0.190983 - 0.587785i) q^{20} +(-0.427051 - 1.31433i) q^{22} +(-2.61803 - 8.05748i) q^{23} -4.61803 q^{25} +0.763932 q^{26} +(-3.11803 - 2.26538i) q^{28} +(-1.30902 + 0.951057i) q^{29} +(3.30902 + 4.47777i) q^{31} +1.00000 q^{32} +(3.23607 + 2.35114i) q^{34} +(0.736068 - 2.26538i) q^{35} +6.76393 q^{37} +(-0.763932 + 2.35114i) q^{38} +(0.190983 + 0.587785i) q^{40} +(6.47214 - 4.70228i) q^{41} +(5.85410 - 4.25325i) q^{43} +(1.11803 + 0.812299i) q^{44} +(6.85410 + 4.97980i) q^{46} +(-1.23607 - 0.898056i) q^{47} +(-6.35410 - 4.61653i) q^{49} +(3.73607 - 2.71441i) q^{50} +(-0.618034 + 0.449028i) q^{52} +(-0.736068 - 2.26538i) q^{53} +(-0.263932 + 0.812299i) q^{55} +3.85410 q^{56} +(0.500000 - 1.53884i) q^{58} +(6.54508 + 4.75528i) q^{59} -11.2361 q^{61} +(-5.30902 - 1.67760i) q^{62} +(-0.809017 + 0.587785i) q^{64} +(-0.381966 - 0.277515i) q^{65} +10.9443 q^{67} -4.00000 q^{68} +(0.736068 + 2.26538i) q^{70} +(0.618034 + 1.90211i) q^{71} +(-0.736068 + 2.26538i) q^{73} +(-5.47214 + 3.97574i) q^{74} +(-0.763932 - 2.35114i) q^{76} +(4.30902 + 3.13068i) q^{77} +(-3.50000 - 10.7719i) q^{79} +(-0.500000 - 0.363271i) q^{80} +(-2.47214 + 7.60845i) q^{82} +(5.23607 - 3.80423i) q^{83} +(-0.763932 - 2.35114i) q^{85} +(-2.23607 + 6.88191i) q^{86} -1.38197 q^{88} +(-0.909830 + 2.80017i) q^{89} +(-2.38197 + 1.73060i) q^{91} -8.47214 q^{92} +1.52786 q^{94} +(1.23607 - 0.898056i) q^{95} +(-2.14590 + 6.60440i) q^{97} +7.85410 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - q^{4} - 2 q^{5} + 7 q^{7} - q^{8} - 2 q^{10} + 5 q^{11} + 2 q^{13} + 7 q^{14} - q^{16} + 4 q^{17} + 8 q^{19} + 3 q^{20} + 5 q^{22} - 6 q^{23} - 14 q^{25} + 12 q^{26} - 8 q^{28} - 3 q^{29}+ \cdots + 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) 0 0
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0.618034 0.276393 0.138197 0.990405i \(-0.455869\pi\)
0.138197 + 0.990405i \(0.455869\pi\)
\(6\) 0 0
\(7\) 1.19098 3.66547i 0.450149 1.38542i −0.426587 0.904446i \(-0.640284\pi\)
0.876737 0.480971i \(-0.159716\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) 0 0
\(10\) −0.500000 + 0.363271i −0.158114 + 0.114876i
\(11\) −0.427051 + 1.31433i −0.128761 + 0.396285i −0.994567 0.104094i \(-0.966806\pi\)
0.865807 + 0.500378i \(0.166806\pi\)
\(12\) 0 0
\(13\) −0.618034 0.449028i −0.171412 0.124538i 0.498772 0.866733i \(-0.333785\pi\)
−0.670184 + 0.742195i \(0.733785\pi\)
\(14\) 1.19098 + 3.66547i 0.318304 + 0.979638i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −1.23607 3.80423i −0.299791 0.922660i −0.981570 0.191103i \(-0.938794\pi\)
0.681780 0.731558i \(-0.261206\pi\)
\(18\) 0 0
\(19\) 2.00000 1.45309i 0.458831 0.333361i −0.334241 0.942488i \(-0.608480\pi\)
0.793073 + 0.609127i \(0.208480\pi\)
\(20\) 0.190983 0.587785i 0.0427051 0.131433i
\(21\) 0 0
\(22\) −0.427051 1.31433i −0.0910476 0.280216i
\(23\) −2.61803 8.05748i −0.545898 1.68010i −0.718846 0.695170i \(-0.755329\pi\)
0.172948 0.984931i \(-0.444671\pi\)
\(24\) 0 0
\(25\) −4.61803 −0.923607
\(26\) 0.763932 0.149819
\(27\) 0 0
\(28\) −3.11803 2.26538i −0.589253 0.428117i
\(29\) −1.30902 + 0.951057i −0.243078 + 0.176607i −0.702654 0.711532i \(-0.748002\pi\)
0.459575 + 0.888139i \(0.348002\pi\)
\(30\) 0 0
\(31\) 3.30902 + 4.47777i 0.594317 + 0.804231i
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 3.23607 + 2.35114i 0.554981 + 0.403217i
\(35\) 0.736068 2.26538i 0.124418 0.382920i
\(36\) 0 0
\(37\) 6.76393 1.11198 0.555992 0.831188i \(-0.312339\pi\)
0.555992 + 0.831188i \(0.312339\pi\)
\(38\) −0.763932 + 2.35114i −0.123926 + 0.381405i
\(39\) 0 0
\(40\) 0.190983 + 0.587785i 0.0301971 + 0.0929370i
\(41\) 6.47214 4.70228i 1.01078 0.734373i 0.0464057 0.998923i \(-0.485223\pi\)
0.964372 + 0.264550i \(0.0852233\pi\)
\(42\) 0 0
\(43\) 5.85410 4.25325i 0.892742 0.648615i −0.0438494 0.999038i \(-0.513962\pi\)
0.936592 + 0.350423i \(0.113962\pi\)
\(44\) 1.11803 + 0.812299i 0.168550 + 0.122459i
\(45\) 0 0
\(46\) 6.85410 + 4.97980i 1.01058 + 0.734231i
\(47\) −1.23607 0.898056i −0.180299 0.130995i 0.493975 0.869476i \(-0.335543\pi\)
−0.674274 + 0.738481i \(0.735543\pi\)
\(48\) 0 0
\(49\) −6.35410 4.61653i −0.907729 0.659504i
\(50\) 3.73607 2.71441i 0.528360 0.383876i
\(51\) 0 0
\(52\) −0.618034 + 0.449028i −0.0857059 + 0.0622690i
\(53\) −0.736068 2.26538i −0.101107 0.311174i 0.887690 0.460441i \(-0.152309\pi\)
−0.988797 + 0.149267i \(0.952309\pi\)
\(54\) 0 0
\(55\) −0.263932 + 0.812299i −0.0355886 + 0.109530i
\(56\) 3.85410 0.515026
\(57\) 0 0
\(58\) 0.500000 1.53884i 0.0656532 0.202060i
\(59\) 6.54508 + 4.75528i 0.852097 + 0.619085i 0.925724 0.378201i \(-0.123457\pi\)
−0.0736261 + 0.997286i \(0.523457\pi\)
\(60\) 0 0
\(61\) −11.2361 −1.43863 −0.719316 0.694683i \(-0.755544\pi\)
−0.719316 + 0.694683i \(0.755544\pi\)
\(62\) −5.30902 1.67760i −0.674246 0.213055i
\(63\) 0 0
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) −0.381966 0.277515i −0.0473771 0.0344214i
\(66\) 0 0
\(67\) 10.9443 1.33706 0.668528 0.743687i \(-0.266925\pi\)
0.668528 + 0.743687i \(0.266925\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 0.736068 + 2.26538i 0.0879770 + 0.270765i
\(71\) 0.618034 + 1.90211i 0.0733471 + 0.225739i 0.981009 0.193963i \(-0.0621343\pi\)
−0.907662 + 0.419703i \(0.862134\pi\)
\(72\) 0 0
\(73\) −0.736068 + 2.26538i −0.0861502 + 0.265143i −0.984846 0.173428i \(-0.944515\pi\)
0.898696 + 0.438572i \(0.144515\pi\)
\(74\) −5.47214 + 3.97574i −0.636123 + 0.462170i
\(75\) 0 0
\(76\) −0.763932 2.35114i −0.0876290 0.269694i
\(77\) 4.30902 + 3.13068i 0.491058 + 0.356775i
\(78\) 0 0
\(79\) −3.50000 10.7719i −0.393781 1.21193i −0.929907 0.367795i \(-0.880113\pi\)
0.536126 0.844138i \(-0.319887\pi\)
\(80\) −0.500000 0.363271i −0.0559017 0.0406150i
\(81\) 0 0
\(82\) −2.47214 + 7.60845i −0.273002 + 0.840213i
\(83\) 5.23607 3.80423i 0.574733 0.417568i −0.262088 0.965044i \(-0.584411\pi\)
0.836822 + 0.547476i \(0.184411\pi\)
\(84\) 0 0
\(85\) −0.763932 2.35114i −0.0828601 0.255017i
\(86\) −2.23607 + 6.88191i −0.241121 + 0.742095i
\(87\) 0 0
\(88\) −1.38197 −0.147318
\(89\) −0.909830 + 2.80017i −0.0964418 + 0.296817i −0.987627 0.156823i \(-0.949875\pi\)
0.891185 + 0.453640i \(0.149875\pi\)
\(90\) 0 0
\(91\) −2.38197 + 1.73060i −0.249698 + 0.181416i
\(92\) −8.47214 −0.883281
\(93\) 0 0
\(94\) 1.52786 0.157587
\(95\) 1.23607 0.898056i 0.126818 0.0921386i
\(96\) 0 0
\(97\) −2.14590 + 6.60440i −0.217883 + 0.670575i 0.781053 + 0.624464i \(0.214683\pi\)
−0.998936 + 0.0461105i \(0.985317\pi\)
\(98\) 7.85410 0.793384
\(99\) 0 0
\(100\) −1.42705 + 4.39201i −0.142705 + 0.439201i
\(101\) −3.13525 9.64932i −0.311970 0.960143i −0.976984 0.213313i \(-0.931575\pi\)
0.665014 0.746831i \(-0.268425\pi\)
\(102\) 0 0
\(103\) −7.23607 + 5.25731i −0.712991 + 0.518018i −0.884137 0.467227i \(-0.845253\pi\)
0.171146 + 0.985246i \(0.445253\pi\)
\(104\) 0.236068 0.726543i 0.0231484 0.0712434i
\(105\) 0 0
\(106\) 1.92705 + 1.40008i 0.187172 + 0.135988i
\(107\) 6.04508 + 18.6049i 0.584400 + 1.79860i 0.601665 + 0.798749i \(0.294504\pi\)
−0.0172645 + 0.999851i \(0.505496\pi\)
\(108\) 0 0
\(109\) −3.23607 2.35114i −0.309959 0.225198i 0.421920 0.906633i \(-0.361356\pi\)
−0.731879 + 0.681435i \(0.761356\pi\)
\(110\) −0.263932 0.812299i −0.0251649 0.0774497i
\(111\) 0 0
\(112\) −3.11803 + 2.26538i −0.294627 + 0.214059i
\(113\) −3.76393 + 11.5842i −0.354081 + 1.08975i 0.602460 + 0.798149i \(0.294187\pi\)
−0.956540 + 0.291600i \(0.905813\pi\)
\(114\) 0 0
\(115\) −1.61803 4.97980i −0.150882 0.464368i
\(116\) 0.500000 + 1.53884i 0.0464238 + 0.142878i
\(117\) 0 0
\(118\) −8.09017 −0.744761
\(119\) −15.4164 −1.41322
\(120\) 0 0
\(121\) 7.35410 + 5.34307i 0.668555 + 0.485733i
\(122\) 9.09017 6.60440i 0.822985 0.597934i
\(123\) 0 0
\(124\) 5.28115 1.76336i 0.474262 0.158354i
\(125\) −5.94427 −0.531672
\(126\) 0 0
\(127\) 6.39919 + 4.64928i 0.567836 + 0.412557i 0.834318 0.551283i \(-0.185861\pi\)
−0.266482 + 0.963840i \(0.585861\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 0 0
\(130\) 0.472136 0.0414091
\(131\) −5.26393 + 16.2007i −0.459912 + 1.41546i 0.405359 + 0.914158i \(0.367147\pi\)
−0.865270 + 0.501305i \(0.832853\pi\)
\(132\) 0 0
\(133\) −2.94427 9.06154i −0.255301 0.785735i
\(134\) −8.85410 + 6.43288i −0.764878 + 0.555716i
\(135\) 0 0
\(136\) 3.23607 2.35114i 0.277491 0.201609i
\(137\) −13.7082 9.95959i −1.17117 0.850905i −0.180022 0.983663i \(-0.557617\pi\)
−0.991149 + 0.132757i \(0.957617\pi\)
\(138\) 0 0
\(139\) −3.85410 2.80017i −0.326901 0.237507i 0.412214 0.911087i \(-0.364756\pi\)
−0.739114 + 0.673580i \(0.764756\pi\)
\(140\) −1.92705 1.40008i −0.162866 0.118329i
\(141\) 0 0
\(142\) −1.61803 1.17557i −0.135782 0.0986517i
\(143\) 0.854102 0.620541i 0.0714236 0.0518923i
\(144\) 0 0
\(145\) −0.809017 + 0.587785i −0.0671852 + 0.0488129i
\(146\) −0.736068 2.26538i −0.0609174 0.187485i
\(147\) 0 0
\(148\) 2.09017 6.43288i 0.171811 0.528780i
\(149\) 15.3262 1.25557 0.627787 0.778385i \(-0.283961\pi\)
0.627787 + 0.778385i \(0.283961\pi\)
\(150\) 0 0
\(151\) −7.28115 + 22.4091i −0.592532 + 1.82363i −0.0258846 + 0.999665i \(0.508240\pi\)
−0.566647 + 0.823961i \(0.691760\pi\)
\(152\) 2.00000 + 1.45309i 0.162221 + 0.117861i
\(153\) 0 0
\(154\) −5.32624 −0.429200
\(155\) 2.04508 + 2.76741i 0.164265 + 0.222284i
\(156\) 0 0
\(157\) −18.7984 + 13.6578i −1.50027 + 1.09001i −0.530001 + 0.847997i \(0.677809\pi\)
−0.970272 + 0.242016i \(0.922191\pi\)
\(158\) 9.16312 + 6.65740i 0.728979 + 0.529634i
\(159\) 0 0
\(160\) 0.618034 0.0488599
\(161\) −32.6525 −2.57338
\(162\) 0 0
\(163\) 3.56231 + 10.9637i 0.279021 + 0.858739i 0.988127 + 0.153637i \(0.0490988\pi\)
−0.709106 + 0.705102i \(0.750901\pi\)
\(164\) −2.47214 7.60845i −0.193041 0.594120i
\(165\) 0 0
\(166\) −2.00000 + 6.15537i −0.155230 + 0.477749i
\(167\) 16.1803 11.7557i 1.25207 0.909684i 0.253732 0.967275i \(-0.418342\pi\)
0.998340 + 0.0575908i \(0.0183419\pi\)
\(168\) 0 0
\(169\) −3.83688 11.8087i −0.295145 0.908362i
\(170\) 2.00000 + 1.45309i 0.153393 + 0.111447i
\(171\) 0 0
\(172\) −2.23607 6.88191i −0.170499 0.524741i
\(173\) −6.69098 4.86128i −0.508706 0.369597i 0.303626 0.952791i \(-0.401803\pi\)
−0.812332 + 0.583195i \(0.801803\pi\)
\(174\) 0 0
\(175\) −5.50000 + 16.9273i −0.415761 + 1.27958i
\(176\) 1.11803 0.812299i 0.0842750 0.0612294i
\(177\) 0 0
\(178\) −0.909830 2.80017i −0.0681946 0.209882i
\(179\) 1.79180 5.51458i 0.133925 0.412179i −0.861496 0.507764i \(-0.830472\pi\)
0.995421 + 0.0955849i \(0.0304722\pi\)
\(180\) 0 0
\(181\) 6.94427 0.516164 0.258082 0.966123i \(-0.416910\pi\)
0.258082 + 0.966123i \(0.416910\pi\)
\(182\) 0.909830 2.80017i 0.0674411 0.207562i
\(183\) 0 0
\(184\) 6.85410 4.97980i 0.505291 0.367115i
\(185\) 4.18034 0.307345
\(186\) 0 0
\(187\) 5.52786 0.404237
\(188\) −1.23607 + 0.898056i −0.0901495 + 0.0654975i
\(189\) 0 0
\(190\) −0.472136 + 1.45309i −0.0342523 + 0.105418i
\(191\) −8.29180 −0.599973 −0.299987 0.953943i \(-0.596982\pi\)
−0.299987 + 0.953943i \(0.596982\pi\)
\(192\) 0 0
\(193\) −2.44427 + 7.52270i −0.175943 + 0.541495i −0.999675 0.0254829i \(-0.991888\pi\)
0.823733 + 0.566978i \(0.191888\pi\)
\(194\) −2.14590 6.60440i −0.154067 0.474168i
\(195\) 0 0
\(196\) −6.35410 + 4.61653i −0.453864 + 0.329752i
\(197\) 5.51722 16.9803i 0.393086 1.20979i −0.537357 0.843355i \(-0.680577\pi\)
0.930442 0.366438i \(-0.119423\pi\)
\(198\) 0 0
\(199\) 3.30902 + 2.40414i 0.234570 + 0.170425i 0.698861 0.715258i \(-0.253691\pi\)
−0.464291 + 0.885683i \(0.653691\pi\)
\(200\) −1.42705 4.39201i −0.100908 0.310562i
\(201\) 0 0
\(202\) 8.20820 + 5.96361i 0.577527 + 0.419598i
\(203\) 1.92705 + 5.93085i 0.135252 + 0.416264i
\(204\) 0 0
\(205\) 4.00000 2.90617i 0.279372 0.202976i
\(206\) 2.76393 8.50651i 0.192572 0.592677i
\(207\) 0 0
\(208\) 0.236068 + 0.726543i 0.0163684 + 0.0503767i
\(209\) 1.05573 + 3.24920i 0.0730262 + 0.224752i
\(210\) 0 0
\(211\) −11.7082 −0.806026 −0.403013 0.915194i \(-0.632037\pi\)
−0.403013 + 0.915194i \(0.632037\pi\)
\(212\) −2.38197 −0.163594
\(213\) 0 0
\(214\) −15.8262 11.4984i −1.08186 0.786017i
\(215\) 3.61803 2.62866i 0.246748 0.179273i
\(216\) 0 0
\(217\) 20.3541 6.79615i 1.38173 0.461353i
\(218\) 4.00000 0.270914
\(219\) 0 0
\(220\) 0.690983 + 0.502029i 0.0465861 + 0.0338468i
\(221\) −0.944272 + 2.90617i −0.0635186 + 0.195490i
\(222\) 0 0
\(223\) 28.2148 1.88940 0.944701 0.327934i \(-0.106352\pi\)
0.944701 + 0.327934i \(0.106352\pi\)
\(224\) 1.19098 3.66547i 0.0795759 0.244909i
\(225\) 0 0
\(226\) −3.76393 11.5842i −0.250373 0.770569i
\(227\) 9.11803 6.62464i 0.605185 0.439693i −0.242530 0.970144i \(-0.577977\pi\)
0.847716 + 0.530451i \(0.177977\pi\)
\(228\) 0 0
\(229\) 12.4721 9.06154i 0.824182 0.598803i −0.0937254 0.995598i \(-0.529878\pi\)
0.917907 + 0.396795i \(0.129878\pi\)
\(230\) 4.23607 + 3.07768i 0.279318 + 0.202936i
\(231\) 0 0
\(232\) −1.30902 0.951057i −0.0859412 0.0624399i
\(233\) 18.0902 + 13.1433i 1.18513 + 0.861045i 0.992741 0.120275i \(-0.0383775\pi\)
0.192386 + 0.981319i \(0.438378\pi\)
\(234\) 0 0
\(235\) −0.763932 0.555029i −0.0498334 0.0362061i
\(236\) 6.54508 4.75528i 0.426049 0.309543i
\(237\) 0 0
\(238\) 12.4721 9.06154i 0.808448 0.587372i
\(239\) 7.61803 + 23.4459i 0.492770 + 1.51659i 0.820404 + 0.571784i \(0.193749\pi\)
−0.327634 + 0.944805i \(0.606251\pi\)
\(240\) 0 0
\(241\) −5.80902 + 17.8783i −0.374192 + 1.15164i 0.569831 + 0.821762i \(0.307009\pi\)
−0.944022 + 0.329881i \(0.892991\pi\)
\(242\) −9.09017 −0.584338
\(243\) 0 0
\(244\) −3.47214 + 10.6861i −0.222281 + 0.684110i
\(245\) −3.92705 2.85317i −0.250890 0.182282i
\(246\) 0 0
\(247\) −1.88854 −0.120165
\(248\) −3.23607 + 4.53077i −0.205491 + 0.287704i
\(249\) 0 0
\(250\) 4.80902 3.49396i 0.304149 0.220977i
\(251\) 17.2984 + 12.5680i 1.09186 + 0.793285i 0.979713 0.200406i \(-0.0642261\pi\)
0.112151 + 0.993691i \(0.464226\pi\)
\(252\) 0 0
\(253\) 11.7082 0.736088
\(254\) −7.90983 −0.496307
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −0.562306 1.73060i −0.0350757 0.107952i 0.931986 0.362495i \(-0.118075\pi\)
−0.967061 + 0.254543i \(0.918075\pi\)
\(258\) 0 0
\(259\) 8.05573 24.7930i 0.500559 1.54056i
\(260\) −0.381966 + 0.277515i −0.0236885 + 0.0172107i
\(261\) 0 0
\(262\) −5.26393 16.2007i −0.325207 1.00088i
\(263\) 4.70820 + 3.42071i 0.290320 + 0.210930i 0.723406 0.690423i \(-0.242575\pi\)
−0.433086 + 0.901353i \(0.642575\pi\)
\(264\) 0 0
\(265\) −0.454915 1.40008i −0.0279452 0.0860065i
\(266\) 7.70820 + 5.60034i 0.472620 + 0.343379i
\(267\) 0 0
\(268\) 3.38197 10.4086i 0.206586 0.635808i
\(269\) −5.20820 + 3.78398i −0.317550 + 0.230713i −0.735129 0.677927i \(-0.762879\pi\)
0.417579 + 0.908640i \(0.362879\pi\)
\(270\) 0 0
\(271\) −6.13525 18.8824i −0.372690 1.14702i −0.945024 0.327002i \(-0.893962\pi\)
0.572334 0.820021i \(-0.306038\pi\)
\(272\) −1.23607 + 3.80423i −0.0749476 + 0.230665i
\(273\) 0 0
\(274\) 16.9443 1.02364
\(275\) 1.97214 6.06961i 0.118924 0.366011i
\(276\) 0 0
\(277\) −11.4721 + 8.33499i −0.689294 + 0.500801i −0.876428 0.481533i \(-0.840080\pi\)
0.187134 + 0.982334i \(0.440080\pi\)
\(278\) 4.76393 0.285722
\(279\) 0 0
\(280\) 2.38197 0.142350
\(281\) −14.4721 + 10.5146i −0.863335 + 0.627250i −0.928790 0.370606i \(-0.879150\pi\)
0.0654550 + 0.997856i \(0.479150\pi\)
\(282\) 0 0
\(283\) 10.0000 30.7768i 0.594438 1.82949i 0.0369359 0.999318i \(-0.488240\pi\)
0.557502 0.830175i \(-0.311760\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) −0.326238 + 1.00406i −0.0192909 + 0.0593711i
\(287\) −9.52786 29.3238i −0.562412 1.73093i
\(288\) 0 0
\(289\) 0.809017 0.587785i 0.0475892 0.0345756i
\(290\) 0.309017 0.951057i 0.0181461 0.0558480i
\(291\) 0 0
\(292\) 1.92705 + 1.40008i 0.112772 + 0.0819337i
\(293\) 0.145898 + 0.449028i 0.00852345 + 0.0262325i 0.955228 0.295871i \(-0.0956100\pi\)
−0.946704 + 0.322104i \(0.895610\pi\)
\(294\) 0 0
\(295\) 4.04508 + 2.93893i 0.235514 + 0.171111i
\(296\) 2.09017 + 6.43288i 0.121489 + 0.373904i
\(297\) 0 0
\(298\) −12.3992 + 9.00854i −0.718266 + 0.521851i
\(299\) −2.00000 + 6.15537i −0.115663 + 0.355974i
\(300\) 0 0
\(301\) −8.61803 26.5236i −0.496735 1.52879i
\(302\) −7.28115 22.4091i −0.418983 1.28950i
\(303\) 0 0
\(304\) −2.47214 −0.141787
\(305\) −6.94427 −0.397628
\(306\) 0 0
\(307\) −0.381966 0.277515i −0.0218000 0.0158386i 0.576832 0.816863i \(-0.304289\pi\)
−0.598632 + 0.801024i \(0.704289\pi\)
\(308\) 4.30902 3.13068i 0.245529 0.178387i
\(309\) 0 0
\(310\) −3.28115 1.03681i −0.186357 0.0588870i
\(311\) 29.1246 1.65151 0.825753 0.564032i \(-0.190751\pi\)
0.825753 + 0.564032i \(0.190751\pi\)
\(312\) 0 0
\(313\) −4.38197 3.18368i −0.247683 0.179952i 0.457016 0.889458i \(-0.348918\pi\)
−0.704699 + 0.709506i \(0.748918\pi\)
\(314\) 7.18034 22.0988i 0.405210 1.24711i
\(315\) 0 0
\(316\) −11.3262 −0.637151
\(317\) −7.56231 + 23.2744i −0.424741 + 1.30722i 0.478500 + 0.878087i \(0.341181\pi\)
−0.903242 + 0.429132i \(0.858819\pi\)
\(318\) 0 0
\(319\) −0.690983 2.12663i −0.0386876 0.119068i
\(320\) −0.500000 + 0.363271i −0.0279508 + 0.0203075i
\(321\) 0 0
\(322\) 26.4164 19.1926i 1.47213 1.06956i
\(323\) −8.00000 5.81234i −0.445132 0.323407i
\(324\) 0 0
\(325\) 2.85410 + 2.07363i 0.158317 + 0.115024i
\(326\) −9.32624 6.77591i −0.516533 0.375283i
\(327\) 0 0
\(328\) 6.47214 + 4.70228i 0.357364 + 0.259640i
\(329\) −4.76393 + 3.46120i −0.262644 + 0.190822i
\(330\) 0 0
\(331\) −21.7082 + 15.7719i −1.19319 + 0.866904i −0.993598 0.112975i \(-0.963962\pi\)
−0.199593 + 0.979879i \(0.563962\pi\)
\(332\) −2.00000 6.15537i −0.109764 0.337820i
\(333\) 0 0
\(334\) −6.18034 + 19.0211i −0.338173 + 1.04079i
\(335\) 6.76393 0.369553
\(336\) 0 0
\(337\) 7.85410 24.1724i 0.427840 1.31676i −0.472408 0.881380i \(-0.656615\pi\)
0.900248 0.435377i \(-0.143385\pi\)
\(338\) 10.0451 + 7.29818i 0.546381 + 0.396969i
\(339\) 0 0
\(340\) −2.47214 −0.134070
\(341\) −7.29837 + 2.43690i −0.395229 + 0.131965i
\(342\) 0 0
\(343\) −2.66312 + 1.93487i −0.143795 + 0.104473i
\(344\) 5.85410 + 4.25325i 0.315632 + 0.229320i
\(345\) 0 0
\(346\) 8.27051 0.444625
\(347\) 15.5623 0.835428 0.417714 0.908578i \(-0.362831\pi\)
0.417714 + 0.908578i \(0.362831\pi\)
\(348\) 0 0
\(349\) 5.38197 + 16.5640i 0.288090 + 0.886650i 0.985455 + 0.169934i \(0.0543555\pi\)
−0.697365 + 0.716716i \(0.745644\pi\)
\(350\) −5.50000 16.9273i −0.293987 0.904800i
\(351\) 0 0
\(352\) −0.427051 + 1.31433i −0.0227619 + 0.0700539i
\(353\) −1.23607 + 0.898056i −0.0657893 + 0.0477987i −0.620194 0.784449i \(-0.712946\pi\)
0.554405 + 0.832247i \(0.312946\pi\)
\(354\) 0 0
\(355\) 0.381966 + 1.17557i 0.0202727 + 0.0623928i
\(356\) 2.38197 + 1.73060i 0.126244 + 0.0917216i
\(357\) 0 0
\(358\) 1.79180 + 5.51458i 0.0946994 + 0.291455i
\(359\) 11.4721 + 8.33499i 0.605476 + 0.439904i 0.847818 0.530287i \(-0.177916\pi\)
−0.242342 + 0.970191i \(0.577916\pi\)
\(360\) 0 0
\(361\) −3.98278 + 12.2577i −0.209620 + 0.645144i
\(362\) −5.61803 + 4.08174i −0.295277 + 0.214532i
\(363\) 0 0
\(364\) 0.909830 + 2.80017i 0.0476881 + 0.146769i
\(365\) −0.454915 + 1.40008i −0.0238113 + 0.0732838i
\(366\) 0 0
\(367\) −6.20163 −0.323722 −0.161861 0.986814i \(-0.551750\pi\)
−0.161861 + 0.986814i \(0.551750\pi\)
\(368\) −2.61803 + 8.05748i −0.136474 + 0.420025i
\(369\) 0 0
\(370\) −3.38197 + 2.45714i −0.175820 + 0.127741i
\(371\) −9.18034 −0.476619
\(372\) 0 0
\(373\) 26.9443 1.39512 0.697561 0.716526i \(-0.254269\pi\)
0.697561 + 0.716526i \(0.254269\pi\)
\(374\) −4.47214 + 3.24920i −0.231249 + 0.168012i
\(375\) 0 0
\(376\) 0.472136 1.45309i 0.0243486 0.0749371i
\(377\) 1.23607 0.0636607
\(378\) 0 0
\(379\) 5.47214 16.8415i 0.281085 0.865090i −0.706460 0.707753i \(-0.749709\pi\)
0.987545 0.157337i \(-0.0502909\pi\)
\(380\) −0.472136 1.45309i −0.0242201 0.0745417i
\(381\) 0 0
\(382\) 6.70820 4.87380i 0.343222 0.249365i
\(383\) 7.23607 22.2703i 0.369746 1.13796i −0.577210 0.816596i \(-0.695858\pi\)
0.946956 0.321365i \(-0.104142\pi\)
\(384\) 0 0
\(385\) 2.66312 + 1.93487i 0.135725 + 0.0986101i
\(386\) −2.44427 7.52270i −0.124410 0.382895i
\(387\) 0 0
\(388\) 5.61803 + 4.08174i 0.285212 + 0.207219i
\(389\) −10.2082 31.4176i −0.517576 1.59294i −0.778545 0.627589i \(-0.784042\pi\)
0.260968 0.965347i \(-0.415958\pi\)
\(390\) 0 0
\(391\) −27.4164 + 19.9192i −1.38651 + 1.00736i
\(392\) 2.42705 7.46969i 0.122585 0.377277i
\(393\) 0 0
\(394\) 5.51722 + 16.9803i 0.277954 + 0.855453i
\(395\) −2.16312 6.65740i −0.108838 0.334970i
\(396\) 0 0
\(397\) −11.5967 −0.582024 −0.291012 0.956719i \(-0.593992\pi\)
−0.291012 + 0.956719i \(0.593992\pi\)
\(398\) −4.09017 −0.205022
\(399\) 0 0
\(400\) 3.73607 + 2.71441i 0.186803 + 0.135721i
\(401\) −20.0902 + 14.5964i −1.00326 + 0.728908i −0.962784 0.270273i \(-0.912886\pi\)
−0.0404715 + 0.999181i \(0.512886\pi\)
\(402\) 0 0
\(403\) −0.0344419 4.25325i −0.00171567 0.211870i
\(404\) −10.1459 −0.504777
\(405\) 0 0
\(406\) −5.04508 3.66547i −0.250383 0.181914i
\(407\) −2.88854 + 8.89002i −0.143180 + 0.440662i
\(408\) 0 0
\(409\) −37.0344 −1.83124 −0.915618 0.402050i \(-0.868298\pi\)
−0.915618 + 0.402050i \(0.868298\pi\)
\(410\) −1.52786 + 4.70228i −0.0754558 + 0.232229i
\(411\) 0 0
\(412\) 2.76393 + 8.50651i 0.136169 + 0.419086i
\(413\) 25.2254 18.3273i 1.24126 0.901830i
\(414\) 0 0
\(415\) 3.23607 2.35114i 0.158852 0.115413i
\(416\) −0.618034 0.449028i −0.0303016 0.0220154i
\(417\) 0 0
\(418\) −2.76393 2.00811i −0.135188 0.0982201i
\(419\) 21.8262 + 15.8577i 1.06628 + 0.774699i 0.975240 0.221148i \(-0.0709805\pi\)
0.0910413 + 0.995847i \(0.470980\pi\)
\(420\) 0 0
\(421\) 13.7082 + 9.95959i 0.668097 + 0.485401i 0.869388 0.494131i \(-0.164514\pi\)
−0.201291 + 0.979532i \(0.564514\pi\)
\(422\) 9.47214 6.88191i 0.461096 0.335006i
\(423\) 0 0
\(424\) 1.92705 1.40008i 0.0935859 0.0679941i
\(425\) 5.70820 + 17.5680i 0.276889 + 0.852175i
\(426\) 0 0
\(427\) −13.3820 + 41.1855i −0.647599 + 1.99310i
\(428\) 19.5623 0.945580
\(429\) 0 0
\(430\) −1.38197 + 4.25325i −0.0666443 + 0.205110i
\(431\) −12.9443 9.40456i −0.623504 0.453002i 0.230640 0.973039i \(-0.425918\pi\)
−0.854144 + 0.520037i \(0.825918\pi\)
\(432\) 0 0
\(433\) 20.6869 0.994150 0.497075 0.867708i \(-0.334407\pi\)
0.497075 + 0.867708i \(0.334407\pi\)
\(434\) −12.4721 + 17.4620i −0.598682 + 0.838205i
\(435\) 0 0
\(436\) −3.23607 + 2.35114i −0.154980 + 0.112599i
\(437\) −16.9443 12.3107i −0.810554 0.588902i
\(438\) 0 0
\(439\) 27.3262 1.30421 0.652105 0.758129i \(-0.273886\pi\)
0.652105 + 0.758129i \(0.273886\pi\)
\(440\) −0.854102 −0.0407177
\(441\) 0 0
\(442\) −0.944272 2.90617i −0.0449144 0.138232i
\(443\) −4.55573 14.0211i −0.216449 0.666162i −0.999048 0.0436351i \(-0.986106\pi\)
0.782598 0.622527i \(-0.213894\pi\)
\(444\) 0 0
\(445\) −0.562306 + 1.73060i −0.0266559 + 0.0820383i
\(446\) −22.8262 + 16.5842i −1.08085 + 0.785286i
\(447\) 0 0
\(448\) 1.19098 + 3.66547i 0.0562687 + 0.173177i
\(449\) 3.23607 + 2.35114i 0.152719 + 0.110957i 0.661521 0.749927i \(-0.269911\pi\)
−0.508801 + 0.860884i \(0.669911\pi\)
\(450\) 0 0
\(451\) 3.41641 + 10.5146i 0.160872 + 0.495114i
\(452\) 9.85410 + 7.15942i 0.463498 + 0.336751i
\(453\) 0 0
\(454\) −3.48278 + 10.7189i −0.163455 + 0.503063i
\(455\) −1.47214 + 1.06957i −0.0690148 + 0.0501422i
\(456\) 0 0
\(457\) 1.71885 + 5.29007i 0.0804043 + 0.247459i 0.983176 0.182661i \(-0.0584712\pi\)
−0.902772 + 0.430120i \(0.858471\pi\)
\(458\) −4.76393 + 14.6619i −0.222604 + 0.685104i
\(459\) 0 0
\(460\) −5.23607 −0.244133
\(461\) −2.97214 + 9.14729i −0.138426 + 0.426032i −0.996107 0.0881502i \(-0.971904\pi\)
0.857681 + 0.514182i \(0.171904\pi\)
\(462\) 0 0
\(463\) −13.7082 + 9.95959i −0.637074 + 0.462862i −0.858844 0.512238i \(-0.828817\pi\)
0.221770 + 0.975099i \(0.428817\pi\)
\(464\) 1.61803 0.0751153
\(465\) 0 0
\(466\) −22.3607 −1.03584
\(467\) −33.9615 + 24.6745i −1.57155 + 1.14180i −0.645898 + 0.763424i \(0.723517\pi\)
−0.925653 + 0.378374i \(0.876483\pi\)
\(468\) 0 0
\(469\) 13.0344 40.1159i 0.601875 1.85238i
\(470\) 0.944272 0.0435560
\(471\) 0 0
\(472\) −2.50000 + 7.69421i −0.115072 + 0.354155i
\(473\) 3.09017 + 9.51057i 0.142086 + 0.437296i
\(474\) 0 0
\(475\) −9.23607 + 6.71040i −0.423780 + 0.307894i
\(476\) −4.76393 + 14.6619i −0.218354 + 0.672026i
\(477\) 0 0
\(478\) −19.9443 14.4904i −0.912230 0.662774i
\(479\) −1.76393 5.42882i −0.0805961 0.248049i 0.902637 0.430403i \(-0.141628\pi\)
−0.983233 + 0.182353i \(0.941628\pi\)
\(480\) 0 0
\(481\) −4.18034 3.03719i −0.190607 0.138484i
\(482\) −5.80902 17.8783i −0.264593 0.814335i
\(483\) 0 0
\(484\) 7.35410 5.34307i 0.334277 0.242867i
\(485\) −1.32624 + 4.08174i −0.0602214 + 0.185342i
\(486\) 0 0
\(487\) −2.00000 6.15537i −0.0906287 0.278926i 0.895461 0.445140i \(-0.146846\pi\)
−0.986090 + 0.166213i \(0.946846\pi\)
\(488\) −3.47214 10.6861i −0.157176 0.483739i
\(489\) 0 0
\(490\) 4.85410 0.219286
\(491\) −25.5279 −1.15206 −0.576028 0.817430i \(-0.695398\pi\)
−0.576028 + 0.817430i \(0.695398\pi\)
\(492\) 0 0
\(493\) 5.23607 + 3.80423i 0.235821 + 0.171334i
\(494\) 1.52786 1.11006i 0.0687419 0.0499439i
\(495\) 0 0
\(496\) −0.0450850 5.56758i −0.00202437 0.249992i
\(497\) 7.70820 0.345760
\(498\) 0 0
\(499\) −7.61803 5.53483i −0.341030 0.247773i 0.404066 0.914730i \(-0.367597\pi\)
−0.745096 + 0.666957i \(0.767597\pi\)
\(500\) −1.83688 + 5.65334i −0.0821478 + 0.252825i
\(501\) 0 0
\(502\) −21.3820 −0.954324
\(503\) 8.52786 26.2461i 0.380239 1.17025i −0.559637 0.828738i \(-0.689059\pi\)
0.939876 0.341517i \(-0.110941\pi\)
\(504\) 0 0
\(505\) −1.93769 5.96361i −0.0862263 0.265377i
\(506\) −9.47214 + 6.88191i −0.421088 + 0.305938i
\(507\) 0 0
\(508\) 6.39919 4.64928i 0.283918 0.206279i
\(509\) −3.61803 2.62866i −0.160367 0.116513i 0.504708 0.863290i \(-0.331600\pi\)
−0.665074 + 0.746777i \(0.731600\pi\)
\(510\) 0 0
\(511\) 7.42705 + 5.39607i 0.328553 + 0.238708i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0 0
\(514\) 1.47214 + 1.06957i 0.0649331 + 0.0471767i
\(515\) −4.47214 + 3.24920i −0.197066 + 0.143177i
\(516\) 0 0
\(517\) 1.70820 1.24108i 0.0751267 0.0545828i
\(518\) 8.05573 + 24.7930i 0.353948 + 1.08934i
\(519\) 0 0
\(520\) 0.145898 0.449028i 0.00639805 0.0196912i
\(521\) −10.2918 −0.450892 −0.225446 0.974256i \(-0.572384\pi\)
−0.225446 + 0.974256i \(0.572384\pi\)
\(522\) 0 0
\(523\) −2.56231 + 7.88597i −0.112042 + 0.344829i −0.991319 0.131482i \(-0.958026\pi\)
0.879277 + 0.476311i \(0.158026\pi\)
\(524\) 13.7812 + 10.0126i 0.602032 + 0.437402i
\(525\) 0 0
\(526\) −5.81966 −0.253749
\(527\) 12.9443 18.1231i 0.563861 0.789454i
\(528\) 0 0
\(529\) −39.4615 + 28.6705i −1.71572 + 1.24654i
\(530\) 1.19098 + 0.865300i 0.0517330 + 0.0375862i
\(531\) 0 0
\(532\) −9.52786 −0.413085
\(533\) −6.11146 −0.264717
\(534\) 0 0
\(535\) 3.73607 + 11.4984i 0.161524 + 0.497121i
\(536\) 3.38197 + 10.4086i 0.146079 + 0.449584i
\(537\) 0 0
\(538\) 1.98936 6.12261i 0.0857673 0.263965i
\(539\) 8.78115 6.37988i 0.378231 0.274801i
\(540\) 0 0
\(541\) −0.472136 1.45309i −0.0202987 0.0624730i 0.940394 0.340087i \(-0.110456\pi\)
−0.960693 + 0.277614i \(0.910456\pi\)
\(542\) 16.0623 + 11.6699i 0.689935 + 0.501267i
\(543\) 0 0
\(544\) −1.23607 3.80423i −0.0529960 0.163105i
\(545\) −2.00000 1.45309i −0.0856706 0.0622433i
\(546\) 0 0
\(547\) 11.4721 35.3076i 0.490513 1.50964i −0.333321 0.942813i \(-0.608169\pi\)
0.823834 0.566831i \(-0.191831\pi\)
\(548\) −13.7082 + 9.95959i −0.585585 + 0.425453i
\(549\) 0 0
\(550\) 1.97214 + 6.06961i 0.0840922 + 0.258809i
\(551\) −1.23607 + 3.80423i −0.0526583 + 0.162065i
\(552\) 0 0
\(553\) −43.6525 −1.85629
\(554\) 4.38197 13.4863i 0.186172 0.572978i
\(555\) 0 0
\(556\) −3.85410 + 2.80017i −0.163450 + 0.118754i
\(557\) 30.5066 1.29261 0.646303 0.763081i \(-0.276314\pi\)
0.646303 + 0.763081i \(0.276314\pi\)
\(558\) 0 0
\(559\) −5.52786 −0.233804
\(560\) −1.92705 + 1.40008i −0.0814328 + 0.0591644i
\(561\) 0 0
\(562\) 5.52786 17.0130i 0.233179 0.717651i
\(563\) −6.32624 −0.266619 −0.133310 0.991074i \(-0.542560\pi\)
−0.133310 + 0.991074i \(0.542560\pi\)
\(564\) 0 0
\(565\) −2.32624 + 7.15942i −0.0978656 + 0.301199i
\(566\) 10.0000 + 30.7768i 0.420331 + 1.29365i
\(567\) 0 0
\(568\) −1.61803 + 1.17557i −0.0678912 + 0.0493258i
\(569\) 11.2361 34.5811i 0.471040 1.44971i −0.380184 0.924911i \(-0.624139\pi\)
0.851224 0.524802i \(-0.175861\pi\)
\(570\) 0 0
\(571\) −2.14590 1.55909i −0.0898030 0.0652457i 0.541978 0.840393i \(-0.317676\pi\)
−0.631781 + 0.775147i \(0.717676\pi\)
\(572\) −0.326238 1.00406i −0.0136407 0.0419817i
\(573\) 0 0
\(574\) 24.9443 + 18.1231i 1.04115 + 0.756443i
\(575\) 12.0902 + 37.2097i 0.504195 + 1.55175i
\(576\) 0 0
\(577\) 21.2082 15.4087i 0.882909 0.641471i −0.0511104 0.998693i \(-0.516276\pi\)
0.934020 + 0.357222i \(0.116276\pi\)
\(578\) −0.309017 + 0.951057i −0.0128534 + 0.0395587i
\(579\) 0 0
\(580\) 0.309017 + 0.951057i 0.0128312 + 0.0394905i
\(581\) −7.70820 23.7234i −0.319790 0.984213i
\(582\) 0 0
\(583\) 3.29180 0.136332
\(584\) −2.38197 −0.0985665
\(585\) 0 0
\(586\) −0.381966 0.277515i −0.0157789 0.0114640i
\(587\) 1.40983 1.02430i 0.0581899 0.0422774i −0.558310 0.829632i \(-0.688550\pi\)
0.616500 + 0.787355i \(0.288550\pi\)
\(588\) 0 0
\(589\) 13.1246 + 4.14725i 0.540790 + 0.170885i
\(590\) −5.00000 −0.205847
\(591\) 0 0
\(592\) −5.47214 3.97574i −0.224903 0.163402i
\(593\) −4.67376 + 14.3844i −0.191928 + 0.590695i 0.808070 + 0.589086i \(0.200512\pi\)
−0.999999 + 0.00160883i \(0.999488\pi\)
\(594\) 0 0
\(595\) −9.52786 −0.390604
\(596\) 4.73607 14.5761i 0.193997 0.597061i
\(597\) 0 0
\(598\) −2.00000 6.15537i −0.0817861 0.251712i
\(599\) −15.4721 + 11.2412i −0.632174 + 0.459302i −0.857153 0.515062i \(-0.827769\pi\)
0.224978 + 0.974364i \(0.427769\pi\)
\(600\) 0 0
\(601\) 1.02786 0.746787i 0.0419274 0.0304621i −0.566624 0.823976i \(-0.691751\pi\)
0.608552 + 0.793514i \(0.291751\pi\)
\(602\) 22.5623 + 16.3925i 0.919571 + 0.668107i
\(603\) 0 0
\(604\) 19.0623 + 13.8496i 0.775634 + 0.563531i
\(605\) 4.54508 + 3.30220i 0.184784 + 0.134253i
\(606\) 0 0
\(607\) 16.5451 + 12.0207i 0.671544 + 0.487905i 0.870542 0.492095i \(-0.163769\pi\)
−0.198997 + 0.980000i \(0.563769\pi\)
\(608\) 2.00000 1.45309i 0.0811107 0.0589304i
\(609\) 0 0
\(610\) 5.61803 4.08174i 0.227468 0.165265i
\(611\) 0.360680 + 1.11006i 0.0145915 + 0.0449081i
\(612\) 0 0
\(613\) −8.61803 + 26.5236i −0.348079 + 1.07128i 0.611836 + 0.790985i \(0.290431\pi\)
−0.959915 + 0.280292i \(0.909569\pi\)
\(614\) 0.472136 0.0190539
\(615\) 0 0
\(616\) −1.64590 + 5.06555i −0.0663151 + 0.204097i
\(617\) 2.94427 + 2.13914i 0.118532 + 0.0861185i 0.645472 0.763784i \(-0.276661\pi\)
−0.526940 + 0.849902i \(0.676661\pi\)
\(618\) 0 0
\(619\) 8.18034 0.328796 0.164398 0.986394i \(-0.447432\pi\)
0.164398 + 0.986394i \(0.447432\pi\)
\(620\) 3.26393 1.08981i 0.131083 0.0437680i
\(621\) 0 0
\(622\) −23.5623 + 17.1190i −0.944762 + 0.686410i
\(623\) 9.18034 + 6.66991i 0.367803 + 0.267224i
\(624\) 0 0
\(625\) 19.4164 0.776656
\(626\) 5.41641 0.216483
\(627\) 0 0
\(628\) 7.18034 + 22.0988i 0.286527 + 0.881839i
\(629\) −8.36068 25.7315i −0.333362 1.02598i
\(630\) 0 0
\(631\) 8.89919 27.3889i 0.354271 1.09033i −0.602160 0.798376i \(-0.705693\pi\)
0.956431 0.291959i \(-0.0943070\pi\)
\(632\) 9.16312 6.65740i 0.364489 0.264817i
\(633\) 0 0
\(634\) −7.56231 23.2744i −0.300338 0.924344i
\(635\) 3.95492 + 2.87341i 0.156946 + 0.114028i
\(636\) 0 0
\(637\) 1.85410 + 5.70634i 0.0734622 + 0.226093i
\(638\) 1.80902 + 1.31433i 0.0716197 + 0.0520347i
\(639\) 0 0
\(640\) 0.190983 0.587785i 0.00754927 0.0232343i
\(641\) −21.0902 + 15.3229i −0.833012 + 0.605218i −0.920410 0.390955i \(-0.872145\pi\)
0.0873981 + 0.996173i \(0.472145\pi\)
\(642\) 0 0
\(643\) −3.18034 9.78808i −0.125420 0.386004i 0.868557 0.495589i \(-0.165048\pi\)
−0.993977 + 0.109585i \(0.965048\pi\)
\(644\) −10.0902 + 31.0543i −0.397608 + 1.22371i
\(645\) 0 0
\(646\) 9.88854 0.389060
\(647\) −5.50658 + 16.9475i −0.216486 + 0.666275i 0.782559 + 0.622577i \(0.213914\pi\)
−0.999045 + 0.0436985i \(0.986086\pi\)
\(648\) 0 0
\(649\) −9.04508 + 6.57164i −0.355051 + 0.257959i
\(650\) −3.52786 −0.138374
\(651\) 0 0
\(652\) 11.5279 0.451466
\(653\) 32.4336 23.5644i 1.26923 0.922147i 0.270054 0.962845i \(-0.412958\pi\)
0.999171 + 0.0406984i \(0.0129583\pi\)
\(654\) 0 0
\(655\) −3.25329 + 10.0126i −0.127117 + 0.391224i
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) 1.81966 5.60034i 0.0709377 0.218324i
\(659\) −5.31966 16.3722i −0.207225 0.637772i −0.999615 0.0277569i \(-0.991164\pi\)
0.792390 0.610015i \(-0.208836\pi\)
\(660\) 0 0
\(661\) 10.1803 7.39645i 0.395969 0.287689i −0.371928 0.928262i \(-0.621303\pi\)
0.767897 + 0.640573i \(0.221303\pi\)
\(662\) 8.29180 25.5195i 0.322270 0.991844i
\(663\) 0 0
\(664\) 5.23607 + 3.80423i 0.203199 + 0.147633i
\(665\) −1.81966 5.60034i −0.0705634 0.217172i
\(666\) 0 0
\(667\) 11.0902 + 8.05748i 0.429413 + 0.311987i
\(668\) −6.18034 19.0211i −0.239125 0.735950i
\(669\) 0 0
\(670\) −5.47214 + 3.97574i −0.211407 + 0.153596i
\(671\) 4.79837 14.7679i 0.185239 0.570108i
\(672\) 0 0
\(673\) 3.62868 + 11.1679i 0.139875 + 0.430492i 0.996316 0.0857529i \(-0.0273296\pi\)
−0.856441 + 0.516245i \(0.827330\pi\)
\(674\) 7.85410 + 24.1724i 0.302529 + 0.931088i
\(675\) 0 0
\(676\) −12.4164 −0.477554
\(677\) 18.1459 0.697404 0.348702 0.937234i \(-0.386623\pi\)
0.348702 + 0.937234i \(0.386623\pi\)
\(678\) 0 0
\(679\) 21.6525 + 15.7314i 0.830946 + 0.603717i
\(680\) 2.00000 1.45309i 0.0766965 0.0557233i
\(681\) 0 0
\(682\) 4.47214 6.26137i 0.171247 0.239760i
\(683\) −22.8328 −0.873673 −0.436837 0.899541i \(-0.643901\pi\)
−0.436837 + 0.899541i \(0.643901\pi\)
\(684\) 0 0
\(685\) −8.47214 6.15537i −0.323704 0.235184i
\(686\) 1.01722 3.13068i 0.0388377 0.119530i
\(687\) 0 0
\(688\) −7.23607 −0.275873
\(689\) −0.562306 + 1.73060i −0.0214221 + 0.0659306i
\(690\) 0 0
\(691\) −6.67376 20.5397i −0.253882 0.781368i −0.994048 0.108944i \(-0.965253\pi\)
0.740166 0.672424i \(-0.234747\pi\)
\(692\) −6.69098 + 4.86128i −0.254353 + 0.184798i
\(693\) 0 0
\(694\) −12.5902 + 9.14729i −0.477916 + 0.347227i
\(695\) −2.38197 1.73060i −0.0903531 0.0656454i
\(696\) 0 0
\(697\) −25.8885 18.8091i −0.980599 0.712447i
\(698\) −14.0902 10.2371i −0.533321 0.387480i
\(699\) 0 0
\(700\) 14.3992 + 10.4616i 0.544238 + 0.395412i
\(701\) 12.5623 9.12705i 0.474472 0.344724i −0.324710 0.945814i \(-0.605267\pi\)
0.799181 + 0.601090i \(0.205267\pi\)
\(702\) 0 0
\(703\) 13.5279 9.82857i 0.510213 0.370691i
\(704\) −0.427051 1.31433i −0.0160951 0.0495356i
\(705\) 0 0
\(706\) 0.472136 1.45309i 0.0177691 0.0546876i
\(707\) −39.1033 −1.47063
\(708\) 0 0
\(709\) 3.34752 10.3026i 0.125719 0.386923i −0.868312 0.496018i \(-0.834795\pi\)
0.994031 + 0.109095i \(0.0347951\pi\)
\(710\) −1.00000 0.726543i −0.0375293 0.0272667i
\(711\) 0 0
\(712\) −2.94427 −0.110341
\(713\) 27.4164 38.3853i 1.02675 1.43754i
\(714\) 0 0
\(715\) 0.527864 0.383516i 0.0197410 0.0143427i
\(716\) −4.69098 3.40820i −0.175310 0.127370i
\(717\) 0 0
\(718\) −14.1803 −0.529206
\(719\) −18.6525 −0.695620 −0.347810 0.937565i \(-0.613075\pi\)
−0.347810 + 0.937565i \(0.613075\pi\)
\(720\) 0 0
\(721\) 10.6525 + 32.7849i 0.396719 + 1.22098i
\(722\) −3.98278 12.2577i −0.148224 0.456186i
\(723\) 0 0
\(724\) 2.14590 6.60440i 0.0797517 0.245450i
\(725\) 6.04508 4.39201i 0.224509 0.163115i
\(726\) 0 0
\(727\) −10.0451 30.9156i −0.372552 1.14660i −0.945116 0.326736i \(-0.894051\pi\)
0.572564 0.819860i \(-0.305949\pi\)
\(728\) −2.38197 1.73060i −0.0882815 0.0641403i
\(729\) 0 0
\(730\) −0.454915 1.40008i −0.0168372 0.0518195i
\(731\) −23.4164 17.0130i −0.866087 0.629249i
\(732\) 0 0
\(733\) 7.23607 22.2703i 0.267270 0.822573i −0.723891 0.689914i \(-0.757648\pi\)
0.991162 0.132659i \(-0.0423516\pi\)
\(734\) 5.01722 3.64522i 0.185189 0.134548i
\(735\) 0 0
\(736\) −2.61803 8.05748i −0.0965020 0.297003i
\(737\) −4.67376 + 14.3844i −0.172160 + 0.529855i
\(738\) 0 0
\(739\) −31.1246 −1.14494 −0.572469 0.819927i \(-0.694014\pi\)
−0.572469 + 0.819927i \(0.694014\pi\)
\(740\) 1.29180 3.97574i 0.0474874 0.146151i
\(741\) 0 0
\(742\) 7.42705 5.39607i 0.272656 0.198096i
\(743\) −34.6525 −1.27128 −0.635638 0.771987i \(-0.719263\pi\)
−0.635638 + 0.771987i \(0.719263\pi\)
\(744\) 0 0
\(745\) 9.47214 0.347032
\(746\) −21.7984 + 15.8374i −0.798095 + 0.579850i
\(747\) 0 0
\(748\) 1.70820 5.25731i 0.0624581 0.192226i
\(749\) 75.3951 2.75488
\(750\) 0 0
\(751\) −10.7639 + 33.1280i −0.392781 + 1.20886i 0.537894 + 0.843012i \(0.319220\pi\)
−0.930676 + 0.365845i \(0.880780\pi\)
\(752\) 0.472136 + 1.45309i 0.0172170 + 0.0529886i
\(753\) 0 0
\(754\) −1.00000 + 0.726543i −0.0364179 + 0.0264591i
\(755\) −4.50000 + 13.8496i −0.163772 + 0.504038i
\(756\) 0 0
\(757\) −9.76393 7.09391i −0.354876 0.257833i 0.396036 0.918235i \(-0.370386\pi\)
−0.750912 + 0.660403i \(0.770386\pi\)
\(758\) 5.47214 + 16.8415i 0.198757 + 0.611711i
\(759\) 0 0
\(760\) 1.23607 + 0.898056i 0.0448369 + 0.0325759i
\(761\) 6.96556 + 21.4378i 0.252501 + 0.777119i 0.994312 + 0.106509i \(0.0339674\pi\)
−0.741810 + 0.670610i \(0.766033\pi\)
\(762\) 0 0
\(763\) −12.4721 + 9.06154i −0.451522 + 0.328050i
\(764\) −2.56231 + 7.88597i −0.0927010 + 0.285304i
\(765\) 0 0
\(766\) 7.23607 + 22.2703i 0.261450 + 0.804660i
\(767\) −1.90983 5.87785i −0.0689600 0.212237i
\(768\) 0 0
\(769\) 24.4721 0.882488 0.441244 0.897387i \(-0.354537\pi\)
0.441244 + 0.897387i \(0.354537\pi\)
\(770\) −3.29180 −0.118628
\(771\) 0 0
\(772\) 6.39919 + 4.64928i 0.230312 + 0.167331i
\(773\) 14.6803 10.6659i 0.528015 0.383625i −0.291600 0.956540i \(-0.594187\pi\)
0.819615 + 0.572915i \(0.194187\pi\)
\(774\) 0 0
\(775\) −15.2812 20.6785i −0.548915 0.742793i
\(776\) −6.94427 −0.249285
\(777\) 0 0
\(778\) 26.7254 + 19.4172i 0.958153 + 0.696139i
\(779\) 6.11146 18.8091i 0.218966 0.673907i
\(780\) 0 0
\(781\) −2.76393 −0.0989013
\(782\) 10.4721 32.2299i 0.374483 1.15254i
\(783\) 0 0
\(784\) 2.42705 + 7.46969i 0.0866804 + 0.266775i
\(785\) −11.6180 + 8.44100i −0.414665 + 0.301272i
\(786\) 0 0
\(787\) 8.61803 6.26137i 0.307200 0.223194i −0.423494 0.905899i \(-0.639197\pi\)
0.730694 + 0.682705i \(0.239197\pi\)
\(788\) −14.4443 10.4944i −0.514556 0.373847i
\(789\) 0 0
\(790\) 5.66312 + 4.11450i 0.201485 + 0.146387i
\(791\) 37.9787 + 27.5932i 1.35037 + 0.981099i
\(792\) 0 0
\(793\) 6.94427 + 5.04531i 0.246598 + 0.179164i
\(794\) 9.38197 6.81640i 0.332954 0.241905i
\(795\) 0 0
\(796\) 3.30902 2.40414i 0.117285 0.0852125i
\(797\) −6.97214 21.4580i −0.246966 0.760082i −0.995307 0.0967684i \(-0.969149\pi\)
0.748341 0.663314i \(-0.230851\pi\)
\(798\) 0 0
\(799\) −1.88854 + 5.81234i −0.0668119 + 0.205626i
\(800\) −4.61803 −0.163272
\(801\) 0 0
\(802\) 7.67376 23.6174i 0.270970 0.833960i
\(803\) −2.66312 1.93487i −0.0939794 0.0682801i
\(804\) 0 0
\(805\) −20.1803 −0.711264
\(806\) 2.52786 + 3.42071i 0.0890402 + 0.120489i
\(807\) 0 0
\(808\) 8.20820 5.96361i 0.288764 0.209799i
\(809\) 2.61803 + 1.90211i 0.0920452 + 0.0668747i 0.632856 0.774270i \(-0.281883\pi\)
−0.540811 + 0.841144i \(0.681883\pi\)
\(810\) 0 0
\(811\) 44.0689 1.54747 0.773734 0.633511i \(-0.218387\pi\)
0.773734 + 0.633511i \(0.218387\pi\)
\(812\) 6.23607 0.218843
\(813\) 0 0
\(814\) −2.88854 8.89002i −0.101243 0.311595i
\(815\) 2.20163 + 6.77591i 0.0771196 + 0.237350i
\(816\) 0 0
\(817\) 5.52786 17.0130i 0.193395 0.595210i
\(818\) 29.9615 21.7683i 1.04758 0.761111i
\(819\) 0 0
\(820\) −1.52786 4.70228i −0.0533553 0.164211i
\(821\) 22.3992 + 16.2740i 0.781737 + 0.567965i 0.905500 0.424347i \(-0.139496\pi\)
−0.123763 + 0.992312i \(0.539496\pi\)
\(822\) 0 0
\(823\) −0.0278640 0.0857567i −0.000971280 0.00298929i 0.950570 0.310511i \(-0.100500\pi\)
−0.951541 + 0.307522i \(0.900500\pi\)
\(824\) −7.23607 5.25731i −0.252080 0.183147i
\(825\) 0 0
\(826\) −9.63525 + 29.6543i −0.335253 + 1.03180i
\(827\) 14.1180 10.2574i 0.490932 0.356683i −0.314611 0.949221i \(-0.601874\pi\)
0.805543 + 0.592538i \(0.201874\pi\)
\(828\) 0 0
\(829\) −13.7984 42.4670i −0.479237 1.47494i −0.840157 0.542344i \(-0.817537\pi\)
0.360919 0.932597i \(-0.382463\pi\)
\(830\) −1.23607 + 3.80423i −0.0429045 + 0.132047i
\(831\) 0 0
\(832\) 0.763932 0.0264846
\(833\) −9.70820 + 29.8788i −0.336369 + 1.03524i
\(834\) 0 0
\(835\) 10.0000 7.26543i 0.346064 0.251430i
\(836\) 3.41641 0.118159
\(837\) 0 0
\(838\) −26.9787 −0.931964
\(839\) 25.8885 18.8091i 0.893772 0.649363i −0.0430869 0.999071i \(-0.513719\pi\)
0.936859 + 0.349708i \(0.113719\pi\)
\(840\) 0 0
\(841\) −8.15248 + 25.0907i −0.281120 + 0.865198i
\(842\) −16.9443 −0.583938
\(843\) 0 0
\(844\) −3.61803 + 11.1352i −0.124538 + 0.383288i
\(845\) −2.37132 7.29818i −0.0815760 0.251065i
\(846\) 0 0
\(847\) 28.3435 20.5927i 0.973893 0.707575i
\(848\) −0.736068 + 2.26538i −0.0252767 + 0.0777936i
\(849\) 0 0
\(850\) −14.9443 10.8576i −0.512584 0.372414i
\(851\) −17.7082 54.5002i −0.607029 1.86824i
\(852\) 0 0
\(853\) 23.4721 + 17.0535i 0.803671 + 0.583901i 0.911989 0.410215i \(-0.134546\pi\)
−0.108318 + 0.994116i \(0.534546\pi\)
\(854\) −13.3820 41.1855i −0.457921 1.40934i
\(855\) 0 0
\(856\) −15.8262 + 11.4984i −0.540930 + 0.393008i
\(857\) −14.4377 + 44.4347i −0.493182 + 1.51786i 0.326588 + 0.945167i \(0.394101\pi\)
−0.819771 + 0.572692i \(0.805899\pi\)
\(858\) 0 0
\(859\) −2.25735 6.94742i −0.0770199 0.237043i 0.905133 0.425130i \(-0.139771\pi\)
−0.982152 + 0.188087i \(0.939771\pi\)
\(860\) −1.38197 4.25325i −0.0471246 0.145035i
\(861\) 0 0
\(862\) 16.0000 0.544962
\(863\) −45.7771 −1.55827 −0.779135 0.626856i \(-0.784341\pi\)
−0.779135 + 0.626856i \(0.784341\pi\)
\(864\) 0 0
\(865\) −4.13525 3.00444i −0.140603 0.102154i
\(866\) −16.7361 + 12.1595i −0.568715 + 0.413195i
\(867\) 0 0
\(868\) −0.173762 21.4580i −0.00589787 0.728333i
\(869\) 15.6525 0.530974
\(870\) 0 0
\(871\) −6.76393 4.91428i −0.229187 0.166514i
\(872\) 1.23607 3.80423i 0.0418585 0.128827i
\(873\) 0 0
\(874\) 20.9443 0.708451
\(875\) −7.07953 + 21.7885i −0.239332 + 0.736587i
\(876\) 0 0
\(877\) −6.27051 19.2986i −0.211740 0.651669i −0.999369 0.0355191i \(-0.988692\pi\)
0.787629 0.616150i \(-0.211308\pi\)
\(878\) −22.1074 + 16.0620i −0.746088 + 0.542065i
\(879\) 0 0
\(880\) 0.690983 0.502029i 0.0232930 0.0169234i
\(881\) 9.32624 + 6.77591i 0.314209 + 0.228286i 0.733700 0.679473i \(-0.237792\pi\)
−0.419491 + 0.907759i \(0.637792\pi\)
\(882\) 0 0
\(883\) 27.0902 + 19.6822i 0.911657 + 0.662357i 0.941433 0.337199i \(-0.109480\pi\)
−0.0297765 + 0.999557i \(0.509480\pi\)
\(884\) 2.47214 + 1.79611i 0.0831469 + 0.0604098i
\(885\) 0 0
\(886\) 11.9271 + 8.66551i 0.400697 + 0.291123i
\(887\) −40.0689 + 29.1117i −1.34538 + 0.977477i −0.346154 + 0.938178i \(0.612513\pi\)
−0.999227 + 0.0392991i \(0.987487\pi\)
\(888\) 0 0
\(889\) 24.6631 17.9188i 0.827174 0.600977i
\(890\) −0.562306 1.73060i −0.0188485 0.0580098i
\(891\) 0 0
\(892\) 8.71885 26.8339i 0.291929 0.898464i
\(893\) −3.77709 −0.126395
\(894\) 0 0
\(895\) 1.10739 3.40820i 0.0370160 0.113924i
\(896\) −3.11803 2.26538i −0.104166 0.0756812i
\(897\) 0 0
\(898\) −4.00000 −0.133482
\(899\) −8.59017 2.71441i −0.286498 0.0905307i
\(900\) 0 0
\(901\) −7.70820 + 5.60034i −0.256798 + 0.186574i
\(902\) −8.94427 6.49839i −0.297812 0.216373i
\(903\) 0 0
\(904\) −12.1803 −0.405112
\(905\) 4.29180 0.142664
\(906\) 0 0
\(907\) −9.41641 28.9807i −0.312667 0.962289i −0.976704 0.214590i \(-0.931159\pi\)
0.664038 0.747699i \(-0.268841\pi\)
\(908\) −3.48278 10.7189i −0.115580 0.355719i
\(909\) 0 0
\(910\) 0.562306 1.73060i 0.0186403 0.0573688i
\(911\) 18.4721 13.4208i 0.612009 0.444651i −0.238112 0.971238i \(-0.576529\pi\)
0.850121 + 0.526587i \(0.176529\pi\)
\(912\) 0 0
\(913\) 2.76393 + 8.50651i 0.0914728 + 0.281524i
\(914\) −4.50000 3.26944i −0.148847 0.108144i
\(915\) 0 0
\(916\) −4.76393 14.6619i −0.157405 0.484442i
\(917\) 53.1140 + 38.5896i 1.75398 + 1.27434i
\(918\) 0 0
\(919\) 8.00000 24.6215i 0.263896 0.812187i −0.728050 0.685524i \(-0.759573\pi\)
0.991946 0.126663i \(-0.0404268\pi\)
\(920\) 4.23607 3.07768i 0.139659 0.101468i
\(921\) 0 0
\(922\) −2.97214 9.14729i −0.0978821 0.301250i
\(923\) 0.472136 1.45309i 0.0155405 0.0478289i
\(924\) 0 0
\(925\) −31.2361 −1.02704
\(926\) 5.23607 16.1150i 0.172068 0.529570i
\(927\) 0 0
\(928\) −1.30902 + 0.951057i −0.0429706 + 0.0312200i
\(929\) −1.23607 −0.0405541 −0.0202770 0.999794i \(-0.506455\pi\)
−0.0202770 + 0.999794i \(0.506455\pi\)
\(930\) 0 0
\(931\) −19.4164 −0.636347
\(932\) 18.0902 13.1433i 0.592563 0.430522i
\(933\) 0 0
\(934\) 12.9721 39.9241i 0.424461 1.30636i
\(935\) 3.41641 0.111728
\(936\) 0 0
\(937\) −4.38854 + 13.5065i −0.143367 + 0.441240i −0.996797 0.0799678i \(-0.974518\pi\)
0.853430 + 0.521208i \(0.174518\pi\)
\(938\) 13.0344 + 40.1159i 0.425590 + 1.30983i
\(939\) 0 0
\(940\) −0.763932 + 0.555029i −0.0249167 + 0.0181031i
\(941\) −1.73607 + 5.34307i −0.0565942 + 0.174179i −0.975358 0.220629i \(-0.929189\pi\)
0.918764 + 0.394808i \(0.129189\pi\)
\(942\) 0 0
\(943\) −54.8328 39.8384i −1.78560 1.29732i
\(944\) −2.50000 7.69421i −0.0813681 0.250425i
\(945\) 0 0
\(946\) −8.09017 5.87785i −0.263034 0.191105i
\(947\) 10.3885 + 31.9727i 0.337582 + 1.03897i 0.965436 + 0.260640i \(0.0839336\pi\)
−0.627854 + 0.778331i \(0.716066\pi\)
\(948\) 0 0
\(949\) 1.47214 1.06957i 0.0477876 0.0347197i
\(950\) 3.52786 10.8576i 0.114459 0.352269i
\(951\) 0 0
\(952\) −4.76393 14.6619i −0.154400 0.475194i
\(953\) 16.8328 + 51.8061i 0.545268 + 1.67816i 0.720351 + 0.693610i \(0.243981\pi\)
−0.175083 + 0.984554i \(0.556019\pi\)
\(954\) 0 0
\(955\) −5.12461 −0.165829
\(956\) 24.6525 0.797318
\(957\) 0 0
\(958\) 4.61803 + 3.35520i 0.149202 + 0.108402i
\(959\) −52.8328 + 38.3853i −1.70606 + 1.23953i
\(960\) 0 0
\(961\) −9.10081 + 29.6340i −0.293575 + 0.955936i
\(962\) 5.16718 0.166597
\(963\) 0 0
\(964\) 15.2082 + 11.0494i 0.489823 + 0.355877i
\(965\) −1.51064 + 4.64928i −0.0486293 + 0.149666i
\(966\) 0 0
\(967\) 16.9443 0.544891 0.272446 0.962171i \(-0.412168\pi\)
0.272446 + 0.962171i \(0.412168\pi\)
\(968\) −2.80902 + 8.64527i −0.0902852 + 0.277869i
\(969\) 0 0
\(970\) −1.32624 4.08174i −0.0425829 0.131057i
\(971\) 28.7254 20.8702i 0.921843 0.669758i −0.0221393 0.999755i \(-0.507048\pi\)
0.943982 + 0.329997i \(0.107048\pi\)
\(972\) 0 0
\(973\) −14.8541 + 10.7921i −0.476201 + 0.345980i
\(974\) 5.23607 + 3.80423i 0.167774 + 0.121895i
\(975\) 0 0
\(976\) 9.09017 + 6.60440i 0.290969 + 0.211402i
\(977\) −23.3262 16.9475i −0.746272 0.542199i 0.148397 0.988928i \(-0.452589\pi\)
−0.894669 + 0.446729i \(0.852589\pi\)
\(978\) 0 0
\(979\) −3.29180 2.39163i −0.105206 0.0764368i
\(980\) −3.92705 + 2.85317i −0.125445 + 0.0911412i
\(981\) 0 0
\(982\) 20.6525 15.0049i 0.659047 0.478826i
\(983\) −6.23607 19.1926i −0.198900 0.612150i −0.999909 0.0134983i \(-0.995703\pi\)
0.801009 0.598652i \(-0.204297\pi\)
\(984\) 0 0
\(985\) 3.40983 10.4944i 0.108646 0.334379i
\(986\) −6.47214 −0.206115
\(987\) 0 0
\(988\) −0.583592 + 1.79611i −0.0185665 + 0.0571419i
\(989\) −49.5967 36.0341i −1.57708 1.14582i
\(990\) 0 0
\(991\) −22.5623 −0.716715 −0.358358 0.933584i \(-0.616663\pi\)
−0.358358 + 0.933584i \(0.616663\pi\)
\(992\) 3.30902 + 4.47777i 0.105061 + 0.142169i
\(993\) 0 0
\(994\) −6.23607 + 4.53077i −0.197796 + 0.143707i
\(995\) 2.04508 + 1.48584i 0.0648336 + 0.0471043i
\(996\) 0 0
\(997\) 44.8328 1.41987 0.709935 0.704267i \(-0.248724\pi\)
0.709935 + 0.704267i \(0.248724\pi\)
\(998\) 9.41641 0.298071
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.i.b.109.1 4
3.2 odd 2 186.2.f.a.109.1 4
31.2 even 5 inner 558.2.i.b.343.1 4
93.2 odd 10 186.2.f.a.157.1 yes 4
93.8 odd 10 5766.2.a.q.1.1 2
93.23 even 10 5766.2.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.f.a.109.1 4 3.2 odd 2
186.2.f.a.157.1 yes 4 93.2 odd 10
558.2.i.b.109.1 4 1.1 even 1 trivial
558.2.i.b.343.1 4 31.2 even 5 inner
5766.2.a.m.1.1 2 93.23 even 10
5766.2.a.q.1.1 2 93.8 odd 10