Properties

Label 558.2.g.a.439.6
Level $558$
Weight $2$
Character 558.439
Analytic conductor $4.456$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(211,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.211"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 439.6
Character \(\chi\) \(=\) 558.439
Dual form 558.2.g.a.211.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.735824 - 1.56798i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.112175 - 0.194293i) q^{5} +(1.72582 + 0.146748i) q^{6} +(1.36938 + 2.37184i) q^{7} +1.00000 q^{8} +(-1.91712 + 2.30752i) q^{9} +(0.112175 + 0.194293i) q^{10} -1.78900 q^{11} +(-0.989999 + 1.42123i) q^{12} +(-2.36086 + 4.08914i) q^{13} -2.73877 q^{14} +(-0.387188 - 0.0329228i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.76904 - 3.06407i) q^{17} +(-1.03981 - 2.81404i) q^{18} +(1.48549 - 2.57295i) q^{19} -0.224350 q^{20} +(2.71138 - 3.89243i) q^{21} +(0.894500 - 1.54932i) q^{22} +(4.28596 + 7.42350i) q^{23} +(-0.735824 - 1.56798i) q^{24} +(2.47483 + 4.28654i) q^{25} +(-2.36086 - 4.08914i) q^{26} +(5.02881 + 1.30809i) q^{27} +(1.36938 - 2.37184i) q^{28} +(2.91652 - 5.05156i) q^{29} +(0.222106 - 0.318853i) q^{30} +(-0.472281 + 5.54770i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.31639 + 2.80512i) q^{33} +(1.76904 + 3.06407i) q^{34} +0.614442 q^{35} +(2.95693 + 0.506521i) q^{36} +(-5.39234 + 9.33981i) q^{37} +(1.48549 + 2.57295i) q^{38} +(8.14887 + 0.692902i) q^{39} +(0.112175 - 0.194293i) q^{40} +(-1.86216 + 3.22535i) q^{41} +(2.01525 + 4.29434i) q^{42} +(4.34890 + 7.53252i) q^{43} +(0.894500 + 1.54932i) q^{44} +(0.233280 + 0.631329i) q^{45} -8.57192 q^{46} +(3.95276 - 6.84638i) q^{47} +(1.72582 + 0.146748i) q^{48} +(-0.250427 + 0.433752i) q^{49} -4.94967 q^{50} +(-6.10611 - 0.519205i) q^{51} +4.72173 q^{52} +(-1.39044 - 2.40831i) q^{53} +(-3.64724 + 3.70103i) q^{54} +(-0.200681 + 0.347589i) q^{55} +(1.36938 + 2.37184i) q^{56} +(-5.12740 - 0.435985i) q^{57} +(2.91652 + 5.05156i) q^{58} -0.735683 q^{59} +(0.165082 + 0.351776i) q^{60} +(0.690085 - 1.19526i) q^{61} +(-4.56831 - 3.18286i) q^{62} +(-8.09835 - 1.38724i) q^{63} +1.00000 q^{64} +(0.529660 + 0.917397i) q^{65} +(-3.08750 - 0.262531i) q^{66} +(5.77895 - 10.0094i) q^{67} -3.53808 q^{68} +(8.48619 - 12.1827i) q^{69} +(-0.307221 + 0.532123i) q^{70} +(5.76848 + 9.99131i) q^{71} +(-1.91712 + 2.30752i) q^{72} +(-1.13722 - 1.96972i) q^{73} +(-5.39234 - 9.33981i) q^{74} +(4.90016 - 7.03463i) q^{75} -2.97099 q^{76} +(-2.44983 - 4.24323i) q^{77} +(-4.67450 + 6.71067i) q^{78} +(7.08665 + 12.2744i) q^{79} +(0.112175 + 0.194293i) q^{80} +(-1.64926 - 8.84759i) q^{81} +(-1.86216 - 3.22535i) q^{82} -10.9608 q^{83} +(-4.72663 - 0.401908i) q^{84} +(-0.396884 - 0.687424i) q^{85} -8.69780 q^{86} +(-10.0668 - 0.855985i) q^{87} -1.78900 q^{88} -13.3870 q^{89} +(-0.663387 - 0.113638i) q^{90} -12.9317 q^{91} +(4.28596 - 7.42350i) q^{92} +(9.04620 - 3.34160i) q^{93} +(3.95276 + 6.84638i) q^{94} +(-0.333271 - 0.577242i) q^{95} +(-0.989999 + 1.42123i) q^{96} +(6.40336 - 11.0909i) q^{97} +(-0.250427 - 0.433752i) q^{98} +(3.42973 - 4.12814i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{2} + 4 q^{3} - 16 q^{4} - q^{5} - 2 q^{6} + q^{7} + 32 q^{8} + 12 q^{9} - q^{10} + 4 q^{11} - 2 q^{12} - 10 q^{13} - 2 q^{14} - 13 q^{15} - 16 q^{16} - 4 q^{17} - 6 q^{18} + 4 q^{19} + 2 q^{20}+ \cdots + 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.735824 1.56798i −0.424828 0.905274i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.112175 0.194293i 0.0501662 0.0868903i −0.839852 0.542816i \(-0.817358\pi\)
0.890018 + 0.455925i \(0.150692\pi\)
\(6\) 1.72582 + 0.146748i 0.704564 + 0.0599094i
\(7\) 1.36938 + 2.37184i 0.517579 + 0.896472i 0.999792 + 0.0204184i \(0.00649983\pi\)
−0.482213 + 0.876054i \(0.660167\pi\)
\(8\) 1.00000 0.353553
\(9\) −1.91712 + 2.30752i −0.639042 + 0.769172i
\(10\) 0.112175 + 0.194293i 0.0354728 + 0.0614407i
\(11\) −1.78900 −0.539404 −0.269702 0.962944i \(-0.586925\pi\)
−0.269702 + 0.962944i \(0.586925\pi\)
\(12\) −0.989999 + 1.42123i −0.285788 + 0.410275i
\(13\) −2.36086 + 4.08914i −0.654786 + 1.13412i 0.327162 + 0.944968i \(0.393908\pi\)
−0.981947 + 0.189154i \(0.939425\pi\)
\(14\) −2.73877 −0.731967
\(15\) −0.387188 0.0329228i −0.0999716 0.00850063i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.76904 3.06407i 0.429056 0.743146i −0.567734 0.823212i \(-0.692180\pi\)
0.996790 + 0.0800659i \(0.0255131\pi\)
\(18\) −1.03981 2.81404i −0.245084 0.663275i
\(19\) 1.48549 2.57295i 0.340796 0.590276i −0.643785 0.765207i \(-0.722637\pi\)
0.984581 + 0.174931i \(0.0559702\pi\)
\(20\) −0.224350 −0.0501662
\(21\) 2.71138 3.89243i 0.591671 0.849397i
\(22\) 0.894500 1.54932i 0.190708 0.330316i
\(23\) 4.28596 + 7.42350i 0.893684 + 1.54791i 0.835425 + 0.549605i \(0.185222\pi\)
0.0582596 + 0.998301i \(0.481445\pi\)
\(24\) −0.735824 1.56798i −0.150200 0.320063i
\(25\) 2.47483 + 4.28654i 0.494967 + 0.857307i
\(26\) −2.36086 4.08914i −0.463003 0.801946i
\(27\) 5.02881 + 1.30809i 0.967795 + 0.251742i
\(28\) 1.36938 2.37184i 0.258789 0.448236i
\(29\) 2.91652 5.05156i 0.541585 0.938052i −0.457229 0.889349i \(-0.651158\pi\)
0.998813 0.0487028i \(-0.0155087\pi\)
\(30\) 0.222106 0.318853i 0.0405508 0.0582144i
\(31\) −0.472281 + 5.54770i −0.0848241 + 0.996396i
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 1.31639 + 2.80512i 0.229154 + 0.488308i
\(34\) 1.76904 + 3.06407i 0.303388 + 0.525484i
\(35\) 0.614442 0.103860
\(36\) 2.95693 + 0.506521i 0.492822 + 0.0844201i
\(37\) −5.39234 + 9.33981i −0.886496 + 1.53546i −0.0425065 + 0.999096i \(0.513534\pi\)
−0.843989 + 0.536360i \(0.819799\pi\)
\(38\) 1.48549 + 2.57295i 0.240979 + 0.417388i
\(39\) 8.14887 + 0.692902i 1.30486 + 0.110953i
\(40\) 0.112175 0.194293i 0.0177364 0.0307204i
\(41\) −1.86216 + 3.22535i −0.290820 + 0.503716i −0.974004 0.226531i \(-0.927262\pi\)
0.683184 + 0.730247i \(0.260595\pi\)
\(42\) 2.01525 + 4.29434i 0.310960 + 0.662630i
\(43\) 4.34890 + 7.53252i 0.663201 + 1.14870i 0.979770 + 0.200129i \(0.0641360\pi\)
−0.316568 + 0.948570i \(0.602531\pi\)
\(44\) 0.894500 + 1.54932i 0.134851 + 0.233569i
\(45\) 0.233280 + 0.631329i 0.0347754 + 0.0941130i
\(46\) −8.57192 −1.26386
\(47\) 3.95276 6.84638i 0.576570 0.998648i −0.419300 0.907848i \(-0.637724\pi\)
0.995869 0.0907998i \(-0.0289423\pi\)
\(48\) 1.72582 + 0.146748i 0.249101 + 0.0211812i
\(49\) −0.250427 + 0.433752i −0.0357753 + 0.0619646i
\(50\) −4.94967 −0.699989
\(51\) −6.10611 0.519205i −0.855026 0.0727033i
\(52\) 4.72173 0.654786
\(53\) −1.39044 2.40831i −0.190992 0.330807i 0.754587 0.656199i \(-0.227837\pi\)
−0.945579 + 0.325392i \(0.894504\pi\)
\(54\) −3.64724 + 3.70103i −0.496327 + 0.503647i
\(55\) −0.200681 + 0.347589i −0.0270598 + 0.0468690i
\(56\) 1.36938 + 2.37184i 0.182992 + 0.316951i
\(57\) −5.12740 0.435985i −0.679141 0.0577477i
\(58\) 2.91652 + 5.05156i 0.382958 + 0.663303i
\(59\) −0.735683 −0.0957777 −0.0478889 0.998853i \(-0.515249\pi\)
−0.0478889 + 0.998853i \(0.515249\pi\)
\(60\) 0.165082 + 0.351776i 0.0213120 + 0.0454141i
\(61\) 0.690085 1.19526i 0.0883564 0.153038i −0.818460 0.574563i \(-0.805172\pi\)
0.906816 + 0.421526i \(0.138505\pi\)
\(62\) −4.56831 3.18286i −0.580176 0.404223i
\(63\) −8.09835 1.38724i −1.02030 0.174776i
\(64\) 1.00000 0.125000
\(65\) 0.529660 + 0.917397i 0.0656962 + 0.113789i
\(66\) −3.08750 0.262531i −0.380044 0.0323154i
\(67\) 5.77895 10.0094i 0.706012 1.22285i −0.260314 0.965524i \(-0.583826\pi\)
0.966325 0.257324i \(-0.0828407\pi\)
\(68\) −3.53808 −0.429056
\(69\) 8.48619 12.1827i 1.02162 1.46662i
\(70\) −0.307221 + 0.532123i −0.0367200 + 0.0636008i
\(71\) 5.76848 + 9.99131i 0.684593 + 1.18575i 0.973565 + 0.228412i \(0.0733534\pi\)
−0.288972 + 0.957338i \(0.593313\pi\)
\(72\) −1.91712 + 2.30752i −0.225935 + 0.271943i
\(73\) −1.13722 1.96972i −0.133101 0.230538i 0.791769 0.610820i \(-0.209160\pi\)
−0.924870 + 0.380282i \(0.875827\pi\)
\(74\) −5.39234 9.33981i −0.626847 1.08573i
\(75\) 4.90016 7.03463i 0.565822 0.812289i
\(76\) −2.97099 −0.340796
\(77\) −2.44983 4.24323i −0.279184 0.483560i
\(78\) −4.67450 + 6.71067i −0.529283 + 0.759834i
\(79\) 7.08665 + 12.2744i 0.797310 + 1.38098i 0.921362 + 0.388706i \(0.127078\pi\)
−0.124051 + 0.992276i \(0.539589\pi\)
\(80\) 0.112175 + 0.194293i 0.0125415 + 0.0217226i
\(81\) −1.64926 8.84759i −0.183252 0.983066i
\(82\) −1.86216 3.22535i −0.205641 0.356181i
\(83\) −10.9608 −1.20310 −0.601551 0.798834i \(-0.705450\pi\)
−0.601551 + 0.798834i \(0.705450\pi\)
\(84\) −4.72663 0.401908i −0.515718 0.0438517i
\(85\) −0.396884 0.687424i −0.0430482 0.0745616i
\(86\) −8.69780 −0.937908
\(87\) −10.0668 0.855985i −1.07927 0.0917712i
\(88\) −1.78900 −0.190708
\(89\) −13.3870 −1.41902 −0.709509 0.704697i \(-0.751083\pi\)
−0.709509 + 0.704697i \(0.751083\pi\)
\(90\) −0.663387 0.113638i −0.0699271 0.0119785i
\(91\) −12.9317 −1.35561
\(92\) 4.28596 7.42350i 0.446842 0.773953i
\(93\) 9.04620 3.34160i 0.938047 0.346508i
\(94\) 3.95276 + 6.84638i 0.407696 + 0.706151i
\(95\) −0.333271 0.577242i −0.0341928 0.0592237i
\(96\) −0.989999 + 1.42123i −0.101041 + 0.145054i
\(97\) 6.40336 11.0909i 0.650162 1.12611i −0.332921 0.942955i \(-0.608034\pi\)
0.983083 0.183160i \(-0.0586325\pi\)
\(98\) −0.250427 0.433752i −0.0252969 0.0438156i
\(99\) 3.42973 4.12814i 0.344701 0.414894i
\(100\) 2.47483 4.28654i 0.247483 0.428654i
\(101\) −5.60050 + 9.70035i −0.557270 + 0.965221i 0.440453 + 0.897776i \(0.354818\pi\)
−0.997723 + 0.0674448i \(0.978515\pi\)
\(102\) 3.50270 5.02844i 0.346819 0.497890i
\(103\) −8.34800 + 14.4592i −0.822553 + 1.42470i 0.0812228 + 0.996696i \(0.474117\pi\)
−0.903775 + 0.428007i \(0.859216\pi\)
\(104\) −2.36086 + 4.08914i −0.231502 + 0.400973i
\(105\) −0.452122 0.963434i −0.0441226 0.0940215i
\(106\) 2.78088 0.270103
\(107\) 1.71895 2.97731i 0.166177 0.287827i −0.770896 0.636961i \(-0.780191\pi\)
0.937073 + 0.349134i \(0.113524\pi\)
\(108\) −1.38157 5.00912i −0.132941 0.482003i
\(109\) 1.05340 0.100897 0.0504486 0.998727i \(-0.483935\pi\)
0.0504486 + 0.998727i \(0.483935\pi\)
\(110\) −0.200681 0.347589i −0.0191342 0.0331414i
\(111\) 18.6125 + 1.58263i 1.76662 + 0.150216i
\(112\) −2.73877 −0.258789
\(113\) 8.77559 15.1998i 0.825539 1.42987i −0.0759685 0.997110i \(-0.524205\pi\)
0.901507 0.432764i \(-0.142462\pi\)
\(114\) 2.94128 4.22247i 0.275476 0.395470i
\(115\) 1.92311 0.179331
\(116\) −5.83304 −0.541585
\(117\) −4.90968 13.2871i −0.453900 1.22839i
\(118\) 0.367841 0.637120i 0.0338625 0.0586516i
\(119\) 9.68999 0.888280
\(120\) −0.387188 0.0329228i −0.0353453 0.00300543i
\(121\) −7.79948 −0.709044
\(122\) 0.690085 + 1.19526i 0.0624774 + 0.108214i
\(123\) 6.42751 + 0.546534i 0.579549 + 0.0492794i
\(124\) 5.04059 2.36484i 0.452658 0.212369i
\(125\) 2.23221 0.199655
\(126\) 5.25056 6.31975i 0.467757 0.563008i
\(127\) −2.79724 + 4.84496i −0.248215 + 0.429921i −0.963031 0.269392i \(-0.913177\pi\)
0.714816 + 0.699313i \(0.246511\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 8.61081 12.3616i 0.758140 1.08838i
\(130\) −1.05932 −0.0929084
\(131\) −4.10066 −0.358276 −0.179138 0.983824i \(-0.557331\pi\)
−0.179138 + 0.983824i \(0.557331\pi\)
\(132\) 1.77111 2.54258i 0.154155 0.221304i
\(133\) 8.13685 0.705555
\(134\) 5.77895 + 10.0094i 0.499226 + 0.864684i
\(135\) 0.818258 0.830326i 0.0704244 0.0714631i
\(136\) 1.76904 3.06407i 0.151694 0.262742i
\(137\) −3.70226 −0.316305 −0.158153 0.987415i \(-0.550554\pi\)
−0.158153 + 0.987415i \(0.550554\pi\)
\(138\) 6.30743 + 13.4406i 0.536924 + 1.14414i
\(139\) 0.308876 + 0.534988i 0.0261985 + 0.0453771i 0.878827 0.477140i \(-0.158326\pi\)
−0.852629 + 0.522517i \(0.824993\pi\)
\(140\) −0.307221 0.532123i −0.0259649 0.0449726i
\(141\) −13.6435 1.16012i −1.14899 0.0976994i
\(142\) −11.5370 −0.968161
\(143\) 4.22358 7.31546i 0.353194 0.611750i
\(144\) −1.03981 2.81404i −0.0866505 0.234503i
\(145\) −0.654321 1.13332i −0.0543384 0.0941169i
\(146\) 2.27443 0.188233
\(147\) 0.864385 + 0.0734991i 0.0712933 + 0.00606210i
\(148\) 10.7847 0.886496
\(149\) −22.8854 −1.87485 −0.937423 0.348192i \(-0.886796\pi\)
−0.937423 + 0.348192i \(0.886796\pi\)
\(150\) 3.64209 + 7.76098i 0.297375 + 0.633681i
\(151\) 5.86565 10.1596i 0.477340 0.826777i −0.522323 0.852748i \(-0.674934\pi\)
0.999663 + 0.0259706i \(0.00826763\pi\)
\(152\) 1.48549 2.57295i 0.120490 0.208694i
\(153\) 3.67892 + 9.95630i 0.297423 + 0.804919i
\(154\) 4.89965 0.394825
\(155\) 1.02490 + 0.714073i 0.0823219 + 0.0573557i
\(156\) −3.47436 7.40358i −0.278172 0.592761i
\(157\) −8.39260 14.5364i −0.669802 1.16013i −0.977959 0.208796i \(-0.933045\pi\)
0.308157 0.951336i \(-0.400288\pi\)
\(158\) −14.1733 −1.12757
\(159\) −2.75307 + 3.95228i −0.218332 + 0.313436i
\(160\) −0.224350 −0.0177364
\(161\) −11.7383 + 20.3312i −0.925104 + 1.60233i
\(162\) 8.48687 + 2.99549i 0.666792 + 0.235348i
\(163\) 4.45804 0.349181 0.174591 0.984641i \(-0.444140\pi\)
0.174591 + 0.984641i \(0.444140\pi\)
\(164\) 3.72432 0.290820
\(165\) 0.692679 + 0.0588988i 0.0539250 + 0.00458527i
\(166\) 5.48039 9.49232i 0.425361 0.736747i
\(167\) −2.98695 −0.231138 −0.115569 0.993299i \(-0.536869\pi\)
−0.115569 + 0.993299i \(0.536869\pi\)
\(168\) 2.71138 3.89243i 0.209187 0.300307i
\(169\) −4.64736 8.04946i −0.357489 0.619189i
\(170\) 0.793769 0.0608793
\(171\) 3.08925 + 8.36047i 0.236241 + 0.639341i
\(172\) 4.34890 7.53252i 0.331601 0.574349i
\(173\) 15.7592 1.19815 0.599077 0.800692i \(-0.295534\pi\)
0.599077 + 0.800692i \(0.295534\pi\)
\(174\) 5.77471 8.29011i 0.437779 0.628472i
\(175\) −6.77800 + 11.7398i −0.512368 + 0.887448i
\(176\) 0.894500 1.54932i 0.0674254 0.116784i
\(177\) 0.541333 + 1.15354i 0.0406891 + 0.0867051i
\(178\) 6.69349 11.5935i 0.501698 0.868967i
\(179\) 7.69486 13.3279i 0.575141 0.996173i −0.420885 0.907114i \(-0.638281\pi\)
0.996026 0.0890594i \(-0.0283861\pi\)
\(180\) 0.430107 0.517691i 0.0320583 0.0385864i
\(181\) −4.56933 7.91432i −0.339636 0.588267i 0.644728 0.764412i \(-0.276971\pi\)
−0.984364 + 0.176145i \(0.943637\pi\)
\(182\) 6.46586 11.1992i 0.479281 0.830140i
\(183\) −2.38193 0.202537i −0.176077 0.0149719i
\(184\) 4.28596 + 7.42350i 0.315965 + 0.547268i
\(185\) 1.20977 + 2.09539i 0.0889442 + 0.154056i
\(186\) −1.62918 + 9.50504i −0.119458 + 0.696943i
\(187\) −3.16481 + 5.48162i −0.231434 + 0.400856i
\(188\) −7.90552 −0.576570
\(189\) 3.78379 + 13.7188i 0.275230 + 0.997897i
\(190\) 0.666541 0.0483560
\(191\) −3.16267 −0.228843 −0.114421 0.993432i \(-0.536501\pi\)
−0.114421 + 0.993432i \(0.536501\pi\)
\(192\) −0.735824 1.56798i −0.0531036 0.113159i
\(193\) 4.12497 0.296922 0.148461 0.988918i \(-0.452568\pi\)
0.148461 + 0.988918i \(0.452568\pi\)
\(194\) 6.40336 + 11.0909i 0.459734 + 0.796283i
\(195\) 1.04872 1.50554i 0.0751007 0.107814i
\(196\) 0.500854 0.0357753
\(197\) −2.14925 3.72261i −0.153128 0.265225i 0.779248 0.626716i \(-0.215601\pi\)
−0.932376 + 0.361491i \(0.882268\pi\)
\(198\) 1.86021 + 5.03431i 0.132199 + 0.357773i
\(199\) −2.73087 4.73000i −0.193586 0.335301i 0.752850 0.658192i \(-0.228678\pi\)
−0.946436 + 0.322891i \(0.895345\pi\)
\(200\) 2.47483 + 4.28654i 0.174997 + 0.303104i
\(201\) −19.9469 1.69609i −1.40695 0.119633i
\(202\) −5.60050 9.70035i −0.394050 0.682514i
\(203\) 15.9754 1.12125
\(204\) 2.60341 + 5.54765i 0.182275 + 0.388413i
\(205\) 0.417775 + 0.723608i 0.0291787 + 0.0505390i
\(206\) −8.34800 14.4592i −0.581633 1.00742i
\(207\) −25.3466 4.34185i −1.76171 0.301780i
\(208\) −2.36086 4.08914i −0.163696 0.283531i
\(209\) −2.65755 + 4.60301i −0.183826 + 0.318397i
\(210\) 1.06042 + 0.0901679i 0.0731759 + 0.00622218i
\(211\) 10.7402 0.739384 0.369692 0.929154i \(-0.379463\pi\)
0.369692 + 0.929154i \(0.379463\pi\)
\(212\) −1.39044 + 2.40831i −0.0954958 + 0.165404i
\(213\) 11.4216 16.3967i 0.782594 1.12348i
\(214\) 1.71895 + 2.97731i 0.117505 + 0.203524i
\(215\) 1.95135 0.133081
\(216\) 5.02881 + 1.30809i 0.342167 + 0.0890041i
\(217\) −13.8050 + 6.47676i −0.937145 + 0.439671i
\(218\) −0.526699 + 0.912269i −0.0356725 + 0.0617866i
\(219\) −2.25169 + 3.23250i −0.152155 + 0.218432i
\(220\) 0.401362 0.0270598
\(221\) 8.35293 + 14.4677i 0.561879 + 0.973203i
\(222\) −10.6768 + 15.3276i −0.716582 + 1.02872i
\(223\) 6.87299 + 11.9044i 0.460249 + 0.797175i 0.998973 0.0453075i \(-0.0144268\pi\)
−0.538724 + 0.842482i \(0.681093\pi\)
\(224\) 1.36938 2.37184i 0.0914958 0.158475i
\(225\) −14.6358 2.50711i −0.975721 0.167141i
\(226\) 8.77559 + 15.1998i 0.583744 + 1.01107i
\(227\) 12.9311 0.858267 0.429133 0.903241i \(-0.358819\pi\)
0.429133 + 0.903241i \(0.358819\pi\)
\(228\) 2.18613 + 4.65845i 0.144780 + 0.308514i
\(229\) −24.6591 −1.62952 −0.814758 0.579801i \(-0.803130\pi\)
−0.814758 + 0.579801i \(0.803130\pi\)
\(230\) −0.961554 + 1.66546i −0.0634030 + 0.109817i
\(231\) −4.85065 + 6.96355i −0.319149 + 0.458168i
\(232\) 2.91652 5.05156i 0.191479 0.331651i
\(233\) 16.0453 1.05116 0.525581 0.850744i \(-0.323848\pi\)
0.525581 + 0.850744i \(0.323848\pi\)
\(234\) 13.9618 + 2.39165i 0.912713 + 0.156347i
\(235\) −0.886802 1.53599i −0.0578486 0.100197i
\(236\) 0.367841 + 0.637120i 0.0239444 + 0.0414730i
\(237\) 14.0315 20.1436i 0.911447 1.30846i
\(238\) −4.84500 + 8.39178i −0.314054 + 0.543958i
\(239\) 3.31957 5.74966i 0.214725 0.371915i −0.738462 0.674295i \(-0.764448\pi\)
0.953188 + 0.302380i \(0.0977811\pi\)
\(240\) 0.222106 0.318853i 0.0143369 0.0205819i
\(241\) −9.00343 15.5944i −0.579962 1.00452i −0.995483 0.0949403i \(-0.969734\pi\)
0.415521 0.909584i \(-0.363599\pi\)
\(242\) 3.89974 6.75455i 0.250685 0.434199i
\(243\) −12.6593 + 9.09629i −0.812094 + 0.583527i
\(244\) −1.38017 −0.0883564
\(245\) 0.0561832 + 0.0973122i 0.00358942 + 0.00621705i
\(246\) −3.68707 + 5.29312i −0.235079 + 0.337477i
\(247\) 7.01410 + 12.1488i 0.446297 + 0.773008i
\(248\) −0.472281 + 5.54770i −0.0299898 + 0.352279i
\(249\) 8.06522 + 17.1863i 0.511112 + 1.08914i
\(250\) −1.11610 + 1.93315i −0.0705886 + 0.122263i
\(251\) −6.79471 + 11.7688i −0.428878 + 0.742839i −0.996774 0.0802615i \(-0.974424\pi\)
0.567895 + 0.823101i \(0.307758\pi\)
\(252\) 2.84779 + 7.70700i 0.179394 + 0.485495i
\(253\) −7.66758 13.2806i −0.482056 0.834946i
\(254\) −2.79724 4.84496i −0.175514 0.304000i
\(255\) −0.785830 + 1.12813i −0.0492106 + 0.0706462i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 5.42227 9.39164i 0.338232 0.585835i −0.645868 0.763449i \(-0.723505\pi\)
0.984100 + 0.177614i \(0.0568379\pi\)
\(258\) 6.40006 + 13.6380i 0.398450 + 0.849064i
\(259\) −29.5368 −1.83533
\(260\) 0.529660 0.917397i 0.0328481 0.0568946i
\(261\) 6.06523 + 16.4144i 0.375428 + 1.01603i
\(262\) 2.05033 3.55128i 0.126670 0.219399i
\(263\) −13.3671 + 23.1525i −0.824252 + 1.42765i 0.0782384 + 0.996935i \(0.475070\pi\)
−0.902490 + 0.430711i \(0.858263\pi\)
\(264\) 1.31639 + 2.80512i 0.0810182 + 0.172643i
\(265\) −0.623890 −0.0383253
\(266\) −4.06843 + 7.04672i −0.249451 + 0.432062i
\(267\) 9.85047 + 20.9905i 0.602839 + 1.28460i
\(268\) −11.5579 −0.706012
\(269\) 3.70614 + 6.41922i 0.225967 + 0.391387i 0.956609 0.291374i \(-0.0941124\pi\)
−0.730642 + 0.682761i \(0.760779\pi\)
\(270\) 0.309954 + 1.12380i 0.0188632 + 0.0683920i
\(271\) 6.12866 0.372290 0.186145 0.982522i \(-0.440401\pi\)
0.186145 + 0.982522i \(0.440401\pi\)
\(272\) 1.76904 + 3.06407i 0.107264 + 0.185787i
\(273\) 9.51548 + 20.2767i 0.575903 + 1.22720i
\(274\) 1.85113 3.20625i 0.111831 0.193697i
\(275\) −4.42747 7.66861i −0.266987 0.462435i
\(276\) −14.7936 1.25791i −0.890471 0.0757172i
\(277\) −2.79415 + 4.83961i −0.167884 + 0.290784i −0.937676 0.347511i \(-0.887027\pi\)
0.769792 + 0.638295i \(0.220360\pi\)
\(278\) −0.617751 −0.0370503
\(279\) −11.8960 11.7254i −0.712194 0.701983i
\(280\) 0.614442 0.0367200
\(281\) −0.195272 + 0.338221i −0.0116489 + 0.0201766i −0.871791 0.489878i \(-0.837041\pi\)
0.860142 + 0.510054i \(0.170375\pi\)
\(282\) 7.82646 11.2356i 0.466059 0.669070i
\(283\) −3.41935 5.92249i −0.203259 0.352056i 0.746317 0.665590i \(-0.231820\pi\)
−0.949577 + 0.313535i \(0.898487\pi\)
\(284\) 5.76848 9.99131i 0.342296 0.592875i
\(285\) −0.659875 + 0.947310i −0.0390876 + 0.0561138i
\(286\) 4.22358 + 7.31546i 0.249746 + 0.432572i
\(287\) −10.2000 −0.602090
\(288\) 2.95693 + 0.506521i 0.174239 + 0.0298470i
\(289\) 2.24098 + 3.88149i 0.131822 + 0.228323i
\(290\) 1.30864 0.0768461
\(291\) −22.1021 1.87935i −1.29565 0.110170i
\(292\) −1.13722 + 1.96972i −0.0665506 + 0.115269i
\(293\) 22.4628 1.31229 0.656144 0.754635i \(-0.272186\pi\)
0.656144 + 0.754635i \(0.272186\pi\)
\(294\) −0.495845 + 0.711830i −0.0289182 + 0.0415148i
\(295\) −0.0825252 + 0.142938i −0.00480480 + 0.00832216i
\(296\) −5.39234 + 9.33981i −0.313424 + 0.542866i
\(297\) −8.99653 2.34017i −0.522032 0.135790i
\(298\) 11.4427 19.8194i 0.662858 1.14810i
\(299\) −40.4743 −2.34069
\(300\) −8.54225 0.726352i −0.493187 0.0419359i
\(301\) −11.9106 + 20.6298i −0.686518 + 1.18908i
\(302\) 5.86565 + 10.1596i 0.337530 + 0.584620i
\(303\) 19.3309 + 1.64372i 1.11053 + 0.0944292i
\(304\) 1.48549 + 2.57295i 0.0851990 + 0.147569i
\(305\) −0.154821 0.268157i −0.00886500 0.0153546i
\(306\) −10.4619 1.79211i −0.598065 0.102448i
\(307\) 15.2405 26.3973i 0.869819 1.50657i 0.00763772 0.999971i \(-0.497569\pi\)
0.862181 0.506600i \(-0.169098\pi\)
\(308\) −2.44983 + 4.24323i −0.139592 + 0.241780i
\(309\) 28.8143 + 2.45010i 1.63919 + 0.139381i
\(310\) −1.13086 + 0.530552i −0.0642283 + 0.0301333i
\(311\) 8.10219 + 14.0334i 0.459433 + 0.795761i 0.998931 0.0462258i \(-0.0147194\pi\)
−0.539498 + 0.841987i \(0.681386\pi\)
\(312\) 8.14887 + 0.692902i 0.461339 + 0.0392279i
\(313\) 5.78194 + 10.0146i 0.326815 + 0.566059i 0.981878 0.189515i \(-0.0606914\pi\)
−0.655063 + 0.755574i \(0.727358\pi\)
\(314\) 16.7852 0.947244
\(315\) −1.17796 + 1.41784i −0.0663707 + 0.0798860i
\(316\) 7.08665 12.2744i 0.398655 0.690491i
\(317\) 2.97721 + 5.15668i 0.167217 + 0.289628i 0.937440 0.348146i \(-0.113189\pi\)
−0.770223 + 0.637774i \(0.779855\pi\)
\(318\) −2.04624 4.36037i −0.114747 0.244517i
\(319\) −5.21765 + 9.03724i −0.292133 + 0.505988i
\(320\) 0.112175 0.194293i 0.00627077 0.0108613i
\(321\) −5.93320 0.504503i −0.331159 0.0281586i
\(322\) −11.7383 20.3312i −0.654147 1.13302i
\(323\) −5.25581 9.10332i −0.292441 0.506522i
\(324\) −6.83761 + 5.85210i −0.379867 + 0.325117i
\(325\) −23.3710 −1.29639
\(326\) −2.22902 + 3.86078i −0.123454 + 0.213829i
\(327\) −0.775115 1.65171i −0.0428640 0.0913396i
\(328\) −1.86216 + 3.22535i −0.102821 + 0.178090i
\(329\) 21.6514 1.19368
\(330\) −0.397348 + 0.570428i −0.0218733 + 0.0314011i
\(331\) 23.3496 1.28341 0.641705 0.766952i \(-0.278227\pi\)
0.641705 + 0.766952i \(0.278227\pi\)
\(332\) 5.48039 + 9.49232i 0.300776 + 0.520959i
\(333\) −11.2140 30.3485i −0.614522 1.66309i
\(334\) 1.49348 2.58678i 0.0817194 0.141542i
\(335\) −1.29651 2.24562i −0.0708358 0.122691i
\(336\) 2.01525 + 4.29434i 0.109941 + 0.234275i
\(337\) 10.6393 + 18.4279i 0.579561 + 1.00383i 0.995530 + 0.0944506i \(0.0301094\pi\)
−0.415968 + 0.909379i \(0.636557\pi\)
\(338\) 9.29471 0.505566
\(339\) −30.2902 2.57559i −1.64514 0.139887i
\(340\) −0.396884 + 0.687424i −0.0215241 + 0.0372808i
\(341\) 0.844909 9.92483i 0.0457544 0.537459i
\(342\) −8.78501 1.50487i −0.475039 0.0813739i
\(343\) 17.7997 0.961091
\(344\) 4.34890 + 7.53252i 0.234477 + 0.406126i
\(345\) −1.41507 3.01540i −0.0761848 0.162344i
\(346\) −7.87962 + 13.6479i −0.423611 + 0.733716i
\(347\) 11.0811 0.594863 0.297431 0.954743i \(-0.403870\pi\)
0.297431 + 0.954743i \(0.403870\pi\)
\(348\) 4.29210 + 9.14610i 0.230080 + 0.490282i
\(349\) 10.6149 18.3855i 0.568201 0.984154i −0.428543 0.903522i \(-0.640973\pi\)
0.996744 0.0806321i \(-0.0256939\pi\)
\(350\) −6.77800 11.7398i −0.362299 0.627521i
\(351\) −17.2213 + 17.4753i −0.919204 + 0.932761i
\(352\) 0.894500 + 1.54932i 0.0476770 + 0.0825790i
\(353\) 6.68694 + 11.5821i 0.355910 + 0.616454i 0.987273 0.159033i \(-0.0508377\pi\)
−0.631364 + 0.775487i \(0.717504\pi\)
\(354\) −1.26966 0.107960i −0.0674816 0.00573799i
\(355\) 2.58832 0.137374
\(356\) 6.69349 + 11.5935i 0.354754 + 0.614453i
\(357\) −7.13013 15.1937i −0.377367 0.804137i
\(358\) 7.69486 + 13.3279i 0.406686 + 0.704401i
\(359\) 3.50147 + 6.06472i 0.184800 + 0.320084i 0.943509 0.331346i \(-0.107503\pi\)
−0.758709 + 0.651430i \(0.774169\pi\)
\(360\) 0.233280 + 0.631329i 0.0122949 + 0.0332740i
\(361\) 5.08661 + 8.81027i 0.267716 + 0.463698i
\(362\) 9.13867 0.480318
\(363\) 5.73905 + 12.2294i 0.301222 + 0.641879i
\(364\) 6.46586 + 11.1992i 0.338903 + 0.586997i
\(365\) −0.510269 −0.0267087
\(366\) 1.36637 1.96154i 0.0714211 0.102532i
\(367\) 11.4584 0.598122 0.299061 0.954234i \(-0.403327\pi\)
0.299061 + 0.954234i \(0.403327\pi\)
\(368\) −8.57192 −0.446842
\(369\) −3.87257 10.4804i −0.201598 0.545586i
\(370\) −2.41954 −0.125786
\(371\) 3.80809 6.59581i 0.197706 0.342437i
\(372\) −7.41701 6.16343i −0.384554 0.319559i
\(373\) −14.8554 25.7303i −0.769183 1.33226i −0.938006 0.346618i \(-0.887330\pi\)
0.168823 0.985646i \(-0.446003\pi\)
\(374\) −3.16481 5.48162i −0.163649 0.283448i
\(375\) −1.64251 3.50006i −0.0848190 0.180742i
\(376\) 3.95276 6.84638i 0.203848 0.353075i
\(377\) 13.7710 + 23.8521i 0.709244 + 1.22845i
\(378\) −13.7727 3.58255i −0.708393 0.184266i
\(379\) −9.90644 + 17.1585i −0.508860 + 0.881371i 0.491088 + 0.871110i \(0.336599\pi\)
−0.999947 + 0.0102606i \(0.996734\pi\)
\(380\) −0.333271 + 0.577242i −0.0170964 + 0.0296119i
\(381\) 9.65508 + 0.820976i 0.494645 + 0.0420599i
\(382\) 1.58133 2.73895i 0.0809081 0.140137i
\(383\) 2.14961 3.72324i 0.109840 0.190249i −0.805865 0.592099i \(-0.798299\pi\)
0.915705 + 0.401850i \(0.131633\pi\)
\(384\) 1.72582 + 0.146748i 0.0880705 + 0.00748868i
\(385\) −1.09924 −0.0560223
\(386\) −2.06248 + 3.57233i −0.104978 + 0.181827i
\(387\) −25.7188 4.40562i −1.30736 0.223950i
\(388\) −12.8067 −0.650162
\(389\) 12.9883 + 22.4965i 0.658535 + 1.14062i 0.980995 + 0.194034i \(0.0621571\pi\)
−0.322459 + 0.946583i \(0.604510\pi\)
\(390\) 0.779473 + 1.66099i 0.0394701 + 0.0841076i
\(391\) 30.3282 1.53376
\(392\) −0.250427 + 0.433752i −0.0126485 + 0.0219078i
\(393\) 3.01737 + 6.42976i 0.152206 + 0.324338i
\(394\) 4.29850 0.216555
\(395\) 3.17978 0.159992
\(396\) −5.28995 0.906165i −0.265830 0.0455365i
\(397\) 16.3125 28.2541i 0.818703 1.41803i −0.0879354 0.996126i \(-0.528027\pi\)
0.906638 0.421909i \(-0.138640\pi\)
\(398\) 5.46173 0.273772
\(399\) −5.98730 12.7584i −0.299740 0.638720i
\(400\) −4.94967 −0.247483
\(401\) −16.1852 28.0336i −0.808249 1.39993i −0.914075 0.405544i \(-0.867082\pi\)
0.105826 0.994385i \(-0.466251\pi\)
\(402\) 11.4423 16.4265i 0.570691 0.819278i
\(403\) −21.5703 15.0286i −1.07449 0.748627i
\(404\) 11.2010 0.557270
\(405\) −1.90403 0.672038i −0.0946120 0.0333939i
\(406\) −7.98768 + 13.8351i −0.396422 + 0.686623i
\(407\) 9.64690 16.7089i 0.478179 0.828230i
\(408\) −6.10611 0.519205i −0.302297 0.0257045i
\(409\) 14.0840 0.696408 0.348204 0.937419i \(-0.386792\pi\)
0.348204 + 0.937419i \(0.386792\pi\)
\(410\) −0.835550 −0.0412649
\(411\) 2.72421 + 5.80507i 0.134376 + 0.286343i
\(412\) 16.6960 0.822553
\(413\) −1.00743 1.74492i −0.0495725 0.0858621i
\(414\) 16.4334 19.7798i 0.807659 0.972126i
\(415\) −1.22953 + 2.12960i −0.0603550 + 0.104538i
\(416\) 4.72173 0.231502
\(417\) 0.611573 0.877968i 0.0299489 0.0429943i
\(418\) −2.65755 4.60301i −0.129985 0.225141i
\(419\) −4.78040 8.27989i −0.233538 0.404499i 0.725309 0.688423i \(-0.241697\pi\)
−0.958847 + 0.283924i \(0.908364\pi\)
\(420\) −0.608297 + 0.873266i −0.0296819 + 0.0426110i
\(421\) 19.4558 0.948217 0.474108 0.880467i \(-0.342770\pi\)
0.474108 + 0.880467i \(0.342770\pi\)
\(422\) −5.37008 + 9.30126i −0.261412 + 0.452778i
\(423\) 8.22021 + 22.2464i 0.399680 + 1.08166i
\(424\) −1.39044 2.40831i −0.0675257 0.116958i
\(425\) 17.5123 0.849473
\(426\) 8.48918 + 18.0897i 0.411302 + 0.876451i
\(427\) 3.77997 0.182925
\(428\) −3.43790 −0.166177
\(429\) −14.5783 1.23960i −0.703848 0.0598485i
\(430\) −0.975675 + 1.68992i −0.0470513 + 0.0814952i
\(431\) 17.2586 29.8928i 0.831318 1.43989i −0.0656750 0.997841i \(-0.520920\pi\)
0.896993 0.442044i \(-0.145747\pi\)
\(432\) −3.64724 + 3.70103i −0.175478 + 0.178066i
\(433\) −2.01297 −0.0967373 −0.0483687 0.998830i \(-0.515402\pi\)
−0.0483687 + 0.998830i \(0.515402\pi\)
\(434\) 1.29347 15.1939i 0.0620884 0.729329i
\(435\) −1.29555 + 1.85989i −0.0621171 + 0.0891747i
\(436\) −0.526699 0.912269i −0.0252243 0.0436898i
\(437\) 25.4671 1.21826
\(438\) −1.67358 3.56627i −0.0799669 0.170403i
\(439\) 0.356224 0.0170017 0.00850083 0.999964i \(-0.497294\pi\)
0.00850083 + 0.999964i \(0.497294\pi\)
\(440\) −0.200681 + 0.347589i −0.00956708 + 0.0165707i
\(441\) −0.520790 1.40942i −0.0247995 0.0671153i
\(442\) −16.7059 −0.794617
\(443\) −16.0429 −0.762223 −0.381112 0.924529i \(-0.624459\pi\)
−0.381112 + 0.924529i \(0.624459\pi\)
\(444\) −7.93564 16.9102i −0.376609 0.802522i
\(445\) −1.50168 + 2.60099i −0.0711866 + 0.123299i
\(446\) −13.7460 −0.650891
\(447\) 16.8396 + 35.8839i 0.796488 + 1.69725i
\(448\) 1.36938 + 2.37184i 0.0646973 + 0.112059i
\(449\) 2.96595 0.139972 0.0699859 0.997548i \(-0.477705\pi\)
0.0699859 + 0.997548i \(0.477705\pi\)
\(450\) 9.48913 11.4214i 0.447322 0.538412i
\(451\) 3.33140 5.77015i 0.156870 0.271706i
\(452\) −17.5512 −0.825539
\(453\) −20.2462 1.72154i −0.951248 0.0808850i
\(454\) −6.46555 + 11.1987i −0.303443 + 0.525579i
\(455\) −1.45061 + 2.51254i −0.0680059 + 0.117790i
\(456\) −5.12740 0.435985i −0.240113 0.0204169i
\(457\) 0.0613990 0.106346i 0.00287213 0.00497467i −0.864586 0.502485i \(-0.832419\pi\)
0.867458 + 0.497511i \(0.165752\pi\)
\(458\) 12.3295 21.3554i 0.576121 0.997871i
\(459\) 12.9042 13.0946i 0.602319 0.611202i
\(460\) −0.961554 1.66546i −0.0448327 0.0776525i
\(461\) 4.52857 7.84371i 0.210916 0.365318i −0.741085 0.671411i \(-0.765689\pi\)
0.952002 + 0.306093i \(0.0990219\pi\)
\(462\) −3.60529 7.68256i −0.167733 0.357425i
\(463\) −10.3734 17.9672i −0.482091 0.835005i 0.517698 0.855563i \(-0.326789\pi\)
−0.999789 + 0.0205579i \(0.993456\pi\)
\(464\) 2.91652 + 5.05156i 0.135396 + 0.234513i
\(465\) 0.365507 2.13245i 0.0169500 0.0988902i
\(466\) −8.02264 + 13.8956i −0.371642 + 0.643702i
\(467\) −9.66564 −0.447273 −0.223636 0.974673i \(-0.571793\pi\)
−0.223636 + 0.974673i \(0.571793\pi\)
\(468\) −9.05214 + 10.8955i −0.418435 + 0.503643i
\(469\) 31.6544 1.46167
\(470\) 1.77360 0.0818102
\(471\) −16.6173 + 23.8557i −0.765686 + 1.09921i
\(472\) −0.735683 −0.0338625
\(473\) −7.78018 13.4757i −0.357733 0.619612i
\(474\) 10.4291 + 22.2235i 0.479023 + 1.02076i
\(475\) 14.7054 0.674730
\(476\) −4.84500 8.39178i −0.222070 0.384637i
\(477\) 8.22287 + 1.40857i 0.376499 + 0.0644941i
\(478\) 3.31957 + 5.74966i 0.151834 + 0.262983i
\(479\) −3.35560 5.81208i −0.153321 0.265561i 0.779125 0.626868i \(-0.215664\pi\)
−0.932447 + 0.361308i \(0.882330\pi\)
\(480\) 0.165082 + 0.351776i 0.00753493 + 0.0160563i
\(481\) −25.4612 44.1001i −1.16093 2.01079i
\(482\) 18.0069 0.820190
\(483\) 40.5163 + 3.44512i 1.84355 + 0.156758i
\(484\) 3.89974 + 6.75455i 0.177261 + 0.307025i
\(485\) −1.43659 2.48825i −0.0652323 0.112986i
\(486\) −1.54798 15.5114i −0.0702176 0.703612i
\(487\) −16.6092 28.7680i −0.752635 1.30360i −0.946541 0.322582i \(-0.895449\pi\)
0.193906 0.981020i \(-0.437884\pi\)
\(488\) 0.690085 1.19526i 0.0312387 0.0541070i
\(489\) −3.28034 6.99013i −0.148342 0.316104i
\(490\) −0.112366 −0.00507620
\(491\) −15.1123 + 26.1753i −0.682008 + 1.18127i 0.292359 + 0.956309i \(0.405560\pi\)
−0.974367 + 0.224964i \(0.927774\pi\)
\(492\) −2.74044 5.83966i −0.123549 0.263272i
\(493\) −10.3189 17.8729i −0.464740 0.804953i
\(494\) −14.0282 −0.631159
\(495\) −0.417338 1.12945i −0.0187580 0.0507649i
\(496\) −4.56831 3.18286i −0.205123 0.142914i
\(497\) −15.7985 + 27.3639i −0.708661 + 1.22744i
\(498\) −18.9164 1.60847i −0.847663 0.0720772i
\(499\) −4.78644 −0.214270 −0.107135 0.994244i \(-0.534168\pi\)
−0.107135 + 0.994244i \(0.534168\pi\)
\(500\) −1.11610 1.93315i −0.0499137 0.0864530i
\(501\) 2.19787 + 4.68349i 0.0981938 + 0.209243i
\(502\) −6.79471 11.7688i −0.303263 0.525267i
\(503\) 12.9266 22.3896i 0.576370 0.998302i −0.419521 0.907745i \(-0.637802\pi\)
0.995891 0.0905566i \(-0.0288646\pi\)
\(504\) −8.09835 1.38724i −0.360729 0.0617927i
\(505\) 1.25647 + 2.17627i 0.0559122 + 0.0968428i
\(506\) 15.3352 0.681731
\(507\) −9.20175 + 13.2100i −0.408664 + 0.586675i
\(508\) 5.59448 0.248215
\(509\) 4.29896 7.44601i 0.190548 0.330039i −0.754884 0.655858i \(-0.772307\pi\)
0.945432 + 0.325820i \(0.105640\pi\)
\(510\) −0.584074 1.24461i −0.0258632 0.0551124i
\(511\) 3.11457 5.39460i 0.137781 0.238643i
\(512\) 1.00000 0.0441942
\(513\) 10.8359 10.9957i 0.478417 0.485473i
\(514\) 5.42227 + 9.39164i 0.239166 + 0.414248i
\(515\) 1.87287 + 3.24391i 0.0825286 + 0.142944i
\(516\) −15.0109 1.27638i −0.660817 0.0561896i
\(517\) −7.07149 + 12.2482i −0.311004 + 0.538674i
\(518\) 14.7684 25.5796i 0.648886 1.12390i
\(519\) −11.5960 24.7102i −0.509010 1.08466i
\(520\) 0.529660 + 0.917397i 0.0232271 + 0.0402305i
\(521\) −12.5385 + 21.7173i −0.549321 + 0.951453i 0.449000 + 0.893532i \(0.351780\pi\)
−0.998321 + 0.0579208i \(0.981553\pi\)
\(522\) −17.2479 2.95456i −0.754920 0.129317i
\(523\) 18.6718 0.816460 0.408230 0.912879i \(-0.366146\pi\)
0.408230 + 0.912879i \(0.366146\pi\)
\(524\) 2.05033 + 3.55128i 0.0895691 + 0.155138i
\(525\) 23.3952 + 1.98931i 1.02105 + 0.0868206i
\(526\) −13.3671 23.1525i −0.582834 1.00950i
\(527\) 16.1631 + 11.2612i 0.704074 + 0.490546i
\(528\) −3.08750 0.262531i −0.134366 0.0114252i
\(529\) −25.2389 + 43.7150i −1.09734 + 1.90065i
\(530\) 0.311945 0.540305i 0.0135500 0.0234693i
\(531\) 1.41040 1.69760i 0.0612060 0.0736696i
\(532\) −4.06843 7.04672i −0.176389 0.305514i
\(533\) −8.79261 15.2292i −0.380850 0.659652i
\(534\) −23.1036 1.96451i −0.999789 0.0850125i
\(535\) −0.385646 0.667958i −0.0166729 0.0288784i
\(536\) 5.77895 10.0094i 0.249613 0.432342i
\(537\) −26.5599 2.25840i −1.14615 0.0974573i
\(538\) −7.41228 −0.319566
\(539\) 0.448013 0.775982i 0.0192973 0.0334239i
\(540\) −1.12821 0.293469i −0.0485505 0.0126289i
\(541\) −16.3304 + 28.2850i −0.702097 + 1.21607i 0.265632 + 0.964075i \(0.414419\pi\)
−0.967729 + 0.251993i \(0.918914\pi\)
\(542\) −3.06433 + 5.30758i −0.131624 + 0.227980i
\(543\) −9.04727 + 12.9882i −0.388255 + 0.557376i
\(544\) −3.53808 −0.151694
\(545\) 0.118165 0.204667i 0.00506162 0.00876699i
\(546\) −22.3179 1.89770i −0.955116 0.0812140i
\(547\) −6.43449 −0.275119 −0.137559 0.990494i \(-0.543926\pi\)
−0.137559 + 0.990494i \(0.543926\pi\)
\(548\) 1.85113 + 3.20625i 0.0790763 + 0.136964i
\(549\) 1.43511 + 3.88385i 0.0612489 + 0.165759i
\(550\) 8.85495 0.377576
\(551\) −8.66496 15.0081i −0.369140 0.639368i
\(552\) 8.48619 12.1827i 0.361196 0.518530i
\(553\) −19.4087 + 33.6168i −0.825342 + 1.42953i
\(554\) −2.79415 4.83961i −0.118712 0.205615i
\(555\) 2.39534 3.43873i 0.101677 0.145966i
\(556\) 0.308876 0.534988i 0.0130992 0.0226886i
\(557\) 33.7425 1.42972 0.714858 0.699269i \(-0.246491\pi\)
0.714858 + 0.699269i \(0.246491\pi\)
\(558\) 16.1025 4.43951i 0.681673 0.187940i
\(559\) −41.0687 −1.73702
\(560\) −0.307221 + 0.532123i −0.0129825 + 0.0224863i
\(561\) 10.9238 + 0.928858i 0.461204 + 0.0392164i
\(562\) −0.195272 0.338221i −0.00823705 0.0142670i
\(563\) 8.89487 15.4064i 0.374874 0.649301i −0.615434 0.788188i \(-0.711019\pi\)
0.990308 + 0.138888i \(0.0443527\pi\)
\(564\) 5.81708 + 12.3957i 0.244943 + 0.521953i
\(565\) −1.96880 3.41007i −0.0828282 0.143463i
\(566\) 6.83871 0.287452
\(567\) 18.7266 16.0276i 0.786445 0.673094i
\(568\) 5.76848 + 9.99131i 0.242040 + 0.419226i
\(569\) −45.2192 −1.89569 −0.947843 0.318737i \(-0.896741\pi\)
−0.947843 + 0.318737i \(0.896741\pi\)
\(570\) −0.490457 1.04512i −0.0205430 0.0437754i
\(571\) 1.55123 2.68681i 0.0649170 0.112439i −0.831740 0.555165i \(-0.812655\pi\)
0.896657 + 0.442726i \(0.145988\pi\)
\(572\) −8.44717 −0.353194
\(573\) 2.32717 + 4.95900i 0.0972189 + 0.207165i
\(574\) 5.10002 8.83350i 0.212871 0.368703i
\(575\) −21.2141 + 36.7438i −0.884688 + 1.53232i
\(576\) −1.91712 + 2.30752i −0.0798802 + 0.0961465i
\(577\) 7.64425 13.2402i 0.318234 0.551198i −0.661885 0.749605i \(-0.730243\pi\)
0.980120 + 0.198407i \(0.0635768\pi\)
\(578\) −4.48196 −0.186425
\(579\) −3.03525 6.46787i −0.126141 0.268796i
\(580\) −0.654321 + 1.13332i −0.0271692 + 0.0470585i
\(581\) −15.0095 25.9973i −0.622700 1.07855i
\(582\) 12.6786 18.2013i 0.525546 0.754469i
\(583\) 2.48750 + 4.30847i 0.103022 + 0.178439i
\(584\) −1.13722 1.96972i −0.0470584 0.0815075i
\(585\) −3.13233 0.536567i −0.129506 0.0221843i
\(586\) −11.2314 + 19.4533i −0.463964 + 0.803609i
\(587\) 19.8677 34.4118i 0.820027 1.42033i −0.0856346 0.996327i \(-0.527292\pi\)
0.905661 0.424002i \(-0.139375\pi\)
\(588\) −0.368540 0.785329i −0.0151984 0.0323864i
\(589\) 13.5724 + 9.45623i 0.559241 + 0.389637i
\(590\) −0.0825252 0.142938i −0.00339751 0.00588466i
\(591\) −4.25551 + 6.10917i −0.175048 + 0.251298i
\(592\) −5.39234 9.33981i −0.221624 0.383864i
\(593\) 19.0789 0.783475 0.391738 0.920077i \(-0.371874\pi\)
0.391738 + 0.920077i \(0.371874\pi\)
\(594\) 6.52491 6.62114i 0.267720 0.271669i
\(595\) 1.08697 1.88269i 0.0445616 0.0771830i
\(596\) 11.4427 + 19.8194i 0.468712 + 0.811832i
\(597\) −5.40711 + 7.76239i −0.221298 + 0.317694i
\(598\) 20.2371 35.0517i 0.827558 1.43337i
\(599\) 7.11725 12.3274i 0.290803 0.503685i −0.683197 0.730234i \(-0.739411\pi\)
0.974000 + 0.226549i \(0.0727443\pi\)
\(600\) 4.90016 7.03463i 0.200048 0.287188i
\(601\) −3.91930 6.78843i −0.159872 0.276906i 0.774951 0.632022i \(-0.217775\pi\)
−0.934822 + 0.355116i \(0.884441\pi\)
\(602\) −11.9106 20.6298i −0.485441 0.840809i
\(603\) 12.0180 + 32.5244i 0.489410 + 1.32450i
\(604\) −11.7313 −0.477340
\(605\) −0.874906 + 1.51538i −0.0355700 + 0.0616091i
\(606\) −11.0890 + 15.9192i −0.450459 + 0.646674i
\(607\) 11.9645 20.7231i 0.485623 0.841123i −0.514241 0.857646i \(-0.671926\pi\)
0.999863 + 0.0165227i \(0.00525959\pi\)
\(608\) −2.97099 −0.120490
\(609\) −11.7551 25.0490i −0.476339 1.01504i
\(610\) 0.309641 0.0125370
\(611\) 18.6639 + 32.3268i 0.755059 + 1.30780i
\(612\) 6.78295 8.16419i 0.274184 0.330018i
\(613\) 18.3904 31.8532i 0.742783 1.28654i −0.208441 0.978035i \(-0.566839\pi\)
0.951224 0.308502i \(-0.0998277\pi\)
\(614\) 15.2405 + 26.3973i 0.615055 + 1.06531i
\(615\) 0.827194 1.18751i 0.0333557 0.0478851i
\(616\) −2.44983 4.24323i −0.0987064 0.170964i
\(617\) −33.1858 −1.33601 −0.668005 0.744157i \(-0.732851\pi\)
−0.668005 + 0.744157i \(0.732851\pi\)
\(618\) −16.5290 + 23.7289i −0.664894 + 0.954516i
\(619\) 11.7191 20.2981i 0.471032 0.815851i −0.528419 0.848983i \(-0.677215\pi\)
0.999451 + 0.0331329i \(0.0105485\pi\)
\(620\) 0.105956 1.24463i 0.00425530 0.0499854i
\(621\) 11.8427 + 42.9378i 0.475230 + 1.72303i
\(622\) −16.2044 −0.649736
\(623\) −18.3319 31.7518i −0.734453 1.27211i
\(624\) −4.67450 + 6.71067i −0.187130 + 0.268642i
\(625\) −12.1238 + 20.9990i −0.484951 + 0.839959i
\(626\) −11.5639 −0.462186
\(627\) 9.17292 + 0.779978i 0.366331 + 0.0311493i
\(628\) −8.39260 + 14.5364i −0.334901 + 0.580066i
\(629\) 19.0786 + 33.0450i 0.760712 + 1.31759i
\(630\) −0.638901 1.72906i −0.0254544 0.0688875i
\(631\) −2.50285 4.33506i −0.0996367 0.172576i 0.811898 0.583800i \(-0.198435\pi\)
−0.911534 + 0.411224i \(0.865101\pi\)
\(632\) 7.08665 + 12.2744i 0.281892 + 0.488251i
\(633\) −7.90288 16.8404i −0.314111 0.669345i
\(634\) −5.95443 −0.236480
\(635\) 0.627560 + 1.08697i 0.0249040 + 0.0431349i
\(636\) 4.79931 + 0.408087i 0.190305 + 0.0161817i
\(637\) −1.18245 2.04806i −0.0468503 0.0811471i
\(638\) −5.21765 9.03724i −0.206569 0.357788i
\(639\) −34.1140 5.84371i −1.34953 0.231174i
\(640\) 0.112175 + 0.194293i 0.00443410 + 0.00768009i
\(641\) −18.8549 −0.744726 −0.372363 0.928087i \(-0.621452\pi\)
−0.372363 + 0.928087i \(0.621452\pi\)
\(642\) 3.40351 4.88605i 0.134326 0.192837i
\(643\) 9.95142 + 17.2364i 0.392446 + 0.679736i 0.992772 0.120020i \(-0.0382958\pi\)
−0.600326 + 0.799755i \(0.704962\pi\)
\(644\) 23.4765 0.925104
\(645\) −1.43585 3.05968i −0.0565366 0.120475i
\(646\) 10.5116 0.413574
\(647\) −13.7789 −0.541705 −0.270852 0.962621i \(-0.587306\pi\)
−0.270852 + 0.962621i \(0.587306\pi\)
\(648\) −1.64926 8.84759i −0.0647892 0.347566i
\(649\) 1.31614 0.0516628
\(650\) 11.6855 20.2399i 0.458343 0.793873i
\(651\) 20.3135 + 16.8802i 0.796148 + 0.661588i
\(652\) −2.22902 3.86078i −0.0872953 0.151200i
\(653\) 6.86535 + 11.8911i 0.268662 + 0.465336i 0.968517 0.248949i \(-0.0800852\pi\)
−0.699855 + 0.714285i \(0.746752\pi\)
\(654\) 1.81798 + 0.154583i 0.0710885 + 0.00604469i
\(655\) −0.459991 + 0.796728i −0.0179733 + 0.0311308i
\(656\) −1.86216 3.22535i −0.0727051 0.125929i
\(657\) 6.72534 + 1.15205i 0.262381 + 0.0449457i
\(658\) −10.8257 + 18.7507i −0.422030 + 0.730977i
\(659\) 7.21984 12.5051i 0.281245 0.487131i −0.690447 0.723383i \(-0.742586\pi\)
0.971692 + 0.236253i \(0.0759193\pi\)
\(660\) −0.295332 0.629327i −0.0114958 0.0244965i
\(661\) 4.97137 8.61066i 0.193364 0.334916i −0.752999 0.658022i \(-0.771394\pi\)
0.946363 + 0.323106i \(0.104727\pi\)
\(662\) −11.6748 + 20.2213i −0.453754 + 0.785925i
\(663\) 16.5388 23.7429i 0.642313 0.922099i
\(664\) −10.9608 −0.425361
\(665\) 0.912751 1.58093i 0.0353950 0.0613059i
\(666\) 31.8896 + 5.46267i 1.23570 + 0.211674i
\(667\) 50.0004 1.93602
\(668\) 1.49348 + 2.58678i 0.0577844 + 0.100085i
\(669\) 13.6085 19.5362i 0.526135 0.755314i
\(670\) 2.59301 0.100177
\(671\) −1.23456 + 2.13832i −0.0476597 + 0.0825491i
\(672\) −4.72663 0.401908i −0.182334 0.0155039i
\(673\) −11.7409 −0.452580 −0.226290 0.974060i \(-0.572660\pi\)
−0.226290 + 0.974060i \(0.572660\pi\)
\(674\) −21.2787 −0.819624
\(675\) 6.83830 + 24.7935i 0.263206 + 0.954301i
\(676\) −4.64736 + 8.04946i −0.178744 + 0.309595i
\(677\) −15.5831 −0.598908 −0.299454 0.954111i \(-0.596804\pi\)
−0.299454 + 0.954111i \(0.596804\pi\)
\(678\) 17.3757 24.9443i 0.667308 0.957981i
\(679\) 35.0746 1.34604
\(680\) −0.396884 0.687424i −0.0152198 0.0263615i
\(681\) −9.51502 20.2757i −0.364616 0.776967i
\(682\) 8.17270 + 5.69413i 0.312949 + 0.218039i
\(683\) −38.0819 −1.45717 −0.728583 0.684958i \(-0.759821\pi\)
−0.728583 + 0.684958i \(0.759821\pi\)
\(684\) 5.69576 6.85561i 0.217783 0.262131i
\(685\) −0.415301 + 0.719322i −0.0158678 + 0.0274839i
\(686\) −8.89983 + 15.4150i −0.339797 + 0.588546i
\(687\) 18.1447 + 38.6649i 0.692265 + 1.47516i
\(688\) −8.69780 −0.331601
\(689\) 13.1306 0.500234
\(690\) 3.31895 + 0.282212i 0.126350 + 0.0107436i
\(691\) −17.5904 −0.669170 −0.334585 0.942366i \(-0.608596\pi\)
−0.334585 + 0.942366i \(0.608596\pi\)
\(692\) −7.87962 13.6479i −0.299538 0.518816i
\(693\) 14.4879 + 2.48178i 0.550351 + 0.0942749i
\(694\) −5.54053 + 9.59648i −0.210316 + 0.364278i
\(695\) 0.138592 0.00525711
\(696\) −10.0668 0.855985i −0.381581 0.0324460i
\(697\) 6.58847 + 11.4116i 0.249556 + 0.432244i
\(698\) 10.6149 + 18.3855i 0.401779 + 0.695902i
\(699\) −11.8065 25.1587i −0.446563 0.951589i
\(700\) 13.5560 0.512368
\(701\) −16.3743 + 28.3611i −0.618448 + 1.07118i 0.371321 + 0.928505i \(0.378905\pi\)
−0.989769 + 0.142679i \(0.954428\pi\)
\(702\) −6.52338 23.6517i −0.246209 0.892676i
\(703\) 16.0206 + 27.7485i 0.604228 + 1.04655i
\(704\) −1.78900 −0.0674254
\(705\) −1.75586 + 2.52070i −0.0661297 + 0.0949352i
\(706\) −13.3739 −0.503332
\(707\) −30.6769 −1.15373
\(708\) 0.728325 1.04558i 0.0273721 0.0392952i
\(709\) 18.2831 31.6673i 0.686637 1.18929i −0.286283 0.958145i \(-0.592420\pi\)
0.972919 0.231145i \(-0.0742470\pi\)
\(710\) −1.29416 + 2.24155i −0.0485689 + 0.0841238i
\(711\) −41.9095 7.17907i −1.57173 0.269236i
\(712\) −13.3870 −0.501698
\(713\) −43.2075 + 20.2712i −1.61813 + 0.759164i
\(714\) 16.7232 + 1.42198i 0.625851 + 0.0532164i
\(715\) −0.947560 1.64122i −0.0354367 0.0613782i
\(716\) −15.3897 −0.575141
\(717\) −11.4580 0.974278i −0.427906 0.0363851i
\(718\) −7.00294 −0.261347
\(719\) 6.97255 12.0768i 0.260032 0.450389i −0.706218 0.707995i \(-0.749600\pi\)
0.966250 + 0.257605i \(0.0829334\pi\)
\(720\) −0.663387 0.113638i −0.0247230 0.00423503i
\(721\) −45.7265 −1.70294
\(722\) −10.1732 −0.378608
\(723\) −17.8268 + 25.5920i −0.662985 + 0.951775i
\(724\) −4.56933 + 7.91432i −0.169818 + 0.294133i
\(725\) 28.8716 1.07227
\(726\) −13.4605 1.14455i −0.499567 0.0424784i
\(727\) 21.7643 + 37.6968i 0.807191 + 1.39810i 0.914802 + 0.403903i \(0.132347\pi\)
−0.107610 + 0.994193i \(0.534320\pi\)
\(728\) −12.9317 −0.479281
\(729\) 23.5778 + 13.1562i 0.873252 + 0.487268i
\(730\) 0.255134 0.441906i 0.00944295 0.0163557i
\(731\) 30.7736 1.13820
\(732\) 1.01556 + 2.16408i 0.0375363 + 0.0799867i
\(733\) 6.33597 10.9742i 0.234024 0.405342i −0.724964 0.688786i \(-0.758144\pi\)
0.958989 + 0.283444i \(0.0914771\pi\)
\(734\) −5.72919 + 9.92324i −0.211468 + 0.366274i
\(735\) 0.111243 0.159699i 0.00410325 0.00589058i
\(736\) 4.28596 7.42350i 0.157983 0.273634i
\(737\) −10.3385 + 17.9069i −0.380825 + 0.659608i
\(738\) 11.0125 + 1.88644i 0.405377 + 0.0694409i
\(739\) 16.2768 + 28.1922i 0.598751 + 1.03707i 0.993006 + 0.118066i \(0.0376695\pi\)
−0.394254 + 0.919001i \(0.628997\pi\)
\(740\) 1.20977 2.09539i 0.0444721 0.0770279i
\(741\) 13.8879 19.9373i 0.510185 0.732417i
\(742\) 3.80809 + 6.59581i 0.139800 + 0.242140i
\(743\) −13.2807 23.0029i −0.487222 0.843894i 0.512670 0.858586i \(-0.328657\pi\)
−0.999892 + 0.0146920i \(0.995323\pi\)
\(744\) 9.04620 3.34160i 0.331650 0.122509i
\(745\) −2.56717 + 4.44647i −0.0940538 + 0.162906i
\(746\) 29.7108 1.08779
\(747\) 21.0132 25.2922i 0.768833 0.925393i
\(748\) 6.32963 0.231434
\(749\) 9.41561 0.344039
\(750\) 3.85239 + 0.327571i 0.140670 + 0.0119612i
\(751\) 45.9117 1.67534 0.837671 0.546175i \(-0.183917\pi\)
0.837671 + 0.546175i \(0.183917\pi\)
\(752\) 3.95276 + 6.84638i 0.144142 + 0.249662i
\(753\) 23.4529 + 1.99421i 0.854673 + 0.0726732i
\(754\) −27.5420 −1.00302
\(755\) −1.31596 2.27931i −0.0478926 0.0829525i
\(756\) 9.98895 10.1363i 0.363295 0.368653i
\(757\) 22.5384 + 39.0376i 0.819171 + 1.41885i 0.906294 + 0.422648i \(0.138899\pi\)
−0.0871233 + 0.996198i \(0.527767\pi\)
\(758\) −9.90644 17.1585i −0.359818 0.623223i
\(759\) −15.1818 + 21.7948i −0.551064 + 0.791102i
\(760\) −0.333271 0.577242i −0.0120890 0.0209388i
\(761\) 2.74399 0.0994695 0.0497348 0.998762i \(-0.484162\pi\)
0.0497348 + 0.998762i \(0.484162\pi\)
\(762\) −5.53853 + 7.95106i −0.200640 + 0.288036i
\(763\) 1.44251 + 2.49849i 0.0522222 + 0.0904515i
\(764\) 1.58133 + 2.73895i 0.0572107 + 0.0990918i
\(765\) 2.34712 + 0.402060i 0.0848603 + 0.0145365i
\(766\) 2.14961 + 3.72324i 0.0776687 + 0.134526i
\(767\) 1.73685 3.00831i 0.0627139 0.108624i
\(768\) −0.989999 + 1.42123i −0.0357235 + 0.0512843i
\(769\) 7.88382 0.284298 0.142149 0.989845i \(-0.454599\pi\)
0.142149 + 0.989845i \(0.454599\pi\)
\(770\) 0.549618 0.951967i 0.0198069 0.0343065i
\(771\) −18.7157 1.59141i −0.674031 0.0573132i
\(772\) −2.06248 3.57233i −0.0742304 0.128571i
\(773\) −16.8186 −0.604922 −0.302461 0.953162i \(-0.597808\pi\)
−0.302461 + 0.953162i \(0.597808\pi\)
\(774\) 16.6748 20.0703i 0.599362 0.721413i
\(775\) −24.9492 + 11.7052i −0.896203 + 0.420462i
\(776\) 6.40336 11.0909i 0.229867 0.398142i
\(777\) 21.7339 + 46.3131i 0.779698 + 1.66147i
\(778\) −25.9767 −0.931310
\(779\) 5.53245 + 9.58249i 0.198221 + 0.343328i
\(780\) −1.82820 0.155452i −0.0654600 0.00556609i
\(781\) −10.3198 17.8744i −0.369272 0.639598i
\(782\) −15.1641 + 26.2650i −0.542267 + 0.939233i
\(783\) 21.2745 21.5883i 0.760289 0.771502i
\(784\) −0.250427 0.433752i −0.00894382 0.0154911i
\(785\) −3.76576 −0.134406
\(786\) −7.07701 0.601762i −0.252429 0.0214641i
\(787\) 29.7799 1.06154 0.530769 0.847517i \(-0.321903\pi\)
0.530769 + 0.847517i \(0.321903\pi\)
\(788\) −2.14925 + 3.72261i −0.0765639 + 0.132613i
\(789\) 46.1385 + 3.92318i 1.64258 + 0.139669i
\(790\) −1.58989 + 2.75377i −0.0565657 + 0.0979747i
\(791\) 48.0686 1.70912
\(792\) 3.42973 4.12814i 0.121870 0.146687i
\(793\) 3.25839 + 5.64370i 0.115709 + 0.200414i
\(794\) 16.3125 + 28.2541i 0.578910 + 1.00270i
\(795\) 0.459074 + 0.978247i 0.0162817 + 0.0346949i
\(796\) −2.73087 + 4.73000i −0.0967930 + 0.167650i
\(797\) −0.963067 + 1.66808i −0.0341136 + 0.0590865i −0.882578 0.470166i \(-0.844194\pi\)
0.848465 + 0.529252i \(0.177527\pi\)
\(798\) 14.0428 + 1.19406i 0.497109 + 0.0422694i
\(799\) −13.9852 24.2231i −0.494761 0.856951i
\(800\) 2.47483 4.28654i 0.0874986 0.151552i
\(801\) 25.6645 30.8907i 0.906811 1.09147i
\(802\) 32.3704 1.14304
\(803\) 2.03448 + 3.52382i 0.0717952 + 0.124353i
\(804\) 8.50459 + 18.1226i 0.299934 + 0.639134i
\(805\) 2.63348 + 4.56131i 0.0928178 + 0.160765i
\(806\) 23.8003 11.1661i 0.838329 0.393311i
\(807\) 7.33815 10.5346i 0.258315 0.370835i
\(808\) −5.60050 + 9.70035i −0.197025 + 0.341257i
\(809\) −1.87914 + 3.25477i −0.0660672 + 0.114432i −0.897167 0.441692i \(-0.854379\pi\)
0.831100 + 0.556123i \(0.187712\pi\)
\(810\) 1.53402 1.31292i 0.0538999 0.0461312i
\(811\) −23.2559 40.2804i −0.816626 1.41444i −0.908155 0.418635i \(-0.862509\pi\)
0.0915291 0.995802i \(-0.470825\pi\)
\(812\) −7.98768 13.8351i −0.280313 0.485516i
\(813\) −4.50962 9.60962i −0.158159 0.337024i
\(814\) 9.64690 + 16.7089i 0.338124 + 0.585647i
\(815\) 0.500081 0.866165i 0.0175171 0.0303405i
\(816\) 3.50270 5.02844i 0.122619 0.176031i
\(817\) 25.8411 0.904065
\(818\) −7.04199 + 12.1971i −0.246218 + 0.426461i
\(819\) 24.7917 29.8402i 0.866293 1.04270i
\(820\) 0.417775 0.723608i 0.0145893 0.0252695i
\(821\) −0.281005 + 0.486714i −0.00980713 + 0.0169864i −0.870887 0.491483i \(-0.836455\pi\)
0.861080 + 0.508469i \(0.169788\pi\)
\(822\) −6.38944 0.543297i −0.222857 0.0189497i
\(823\) −21.0731 −0.734561 −0.367280 0.930110i \(-0.619711\pi\)
−0.367280 + 0.930110i \(0.619711\pi\)
\(824\) −8.34800 + 14.4592i −0.290816 + 0.503709i
\(825\) −8.76639 + 12.5849i −0.305206 + 0.438152i
\(826\) 2.01486 0.0701061
\(827\) −6.53573 11.3202i −0.227270 0.393643i 0.729728 0.683737i \(-0.239647\pi\)
−0.956998 + 0.290095i \(0.906313\pi\)
\(828\) 8.91313 + 24.1217i 0.309753 + 0.838287i
\(829\) 28.2189 0.980085 0.490042 0.871699i \(-0.336981\pi\)
0.490042 + 0.871699i \(0.336981\pi\)
\(830\) −1.22953 2.12960i −0.0426775 0.0739195i
\(831\) 9.64442 + 0.820070i 0.334561 + 0.0284479i
\(832\) −2.36086 + 4.08914i −0.0818482 + 0.141765i
\(833\) 0.886031 + 1.53465i 0.0306992 + 0.0531725i
\(834\) 0.454557 + 0.968622i 0.0157400 + 0.0335406i
\(835\) −0.335061 + 0.580344i −0.0115953 + 0.0200836i
\(836\) 5.31510 0.183826
\(837\) −9.63188 + 27.2805i −0.332927 + 0.942953i
\(838\) 9.56079 0.330272
\(839\) 23.1977 40.1796i 0.800874 1.38715i −0.118168 0.992994i \(-0.537702\pi\)
0.919042 0.394161i \(-0.128965\pi\)
\(840\) −0.452122 0.963434i −0.0155997 0.0332416i
\(841\) −2.51220 4.35126i −0.0866276 0.150043i
\(842\) −9.72789 + 16.8492i −0.335245 + 0.580662i
\(843\) 0.674010 + 0.0573114i 0.0232141 + 0.00197391i
\(844\) −5.37008 9.30126i −0.184846 0.320162i
\(845\) −2.08527 −0.0717354
\(846\) −23.3761 4.00431i −0.803686 0.137671i
\(847\) −10.6805 18.4991i −0.366986 0.635638i
\(848\) 2.78088 0.0954958
\(849\) −6.77031 + 9.71939i −0.232356 + 0.333569i
\(850\) −8.75617 + 15.1661i −0.300334 + 0.520194i
\(851\) −92.4455 −3.16899
\(852\) −19.9108 1.69302i −0.682131 0.0580020i
\(853\) −14.3991 + 24.9400i −0.493017 + 0.853930i −0.999968 0.00804459i \(-0.997439\pi\)
0.506951 + 0.861975i \(0.330773\pi\)
\(854\) −1.88998 + 3.27355i −0.0646739 + 0.112019i
\(855\) 1.97092 + 0.337617i 0.0674039 + 0.0115463i
\(856\) 1.71895 2.97731i 0.0587525 0.101762i
\(857\) −32.6456 −1.11515 −0.557576 0.830126i \(-0.688269\pi\)
−0.557576 + 0.830126i \(0.688269\pi\)
\(858\) 8.36268 12.0054i 0.285497 0.409857i
\(859\) 3.39601 5.88206i 0.115870 0.200693i −0.802257 0.596979i \(-0.796368\pi\)
0.918127 + 0.396286i \(0.129701\pi\)
\(860\) −0.975675 1.68992i −0.0332703 0.0576258i
\(861\) 7.50544 + 15.9935i 0.255785 + 0.545056i
\(862\) 17.2586 + 29.8928i 0.587831 + 1.01815i
\(863\) −24.2090 41.9311i −0.824083 1.42735i −0.902618 0.430442i \(-0.858358\pi\)
0.0785358 0.996911i \(-0.474976\pi\)
\(864\) −1.38157 5.00912i −0.0470019 0.170414i
\(865\) 1.76779 3.06191i 0.0601067 0.104108i
\(866\) 1.00649 1.74329i 0.0342018 0.0592393i
\(867\) 4.43714 6.36991i 0.150693 0.216334i
\(868\) 12.5115 + 8.71711i 0.424669 + 0.295878i
\(869\) −12.6780 21.9590i −0.430072 0.744906i
\(870\) −0.962931 2.05193i −0.0326464 0.0695668i
\(871\) 27.2866 + 47.2619i 0.924573 + 1.60141i
\(872\) 1.05340 0.0356725
\(873\) 13.3165 + 36.0386i 0.450695 + 1.21972i
\(874\) −12.7335 + 22.0551i −0.430718 + 0.746026i
\(875\) 3.05675 + 5.29444i 0.103337 + 0.178985i
\(876\) 3.92527 + 0.333768i 0.132623 + 0.0112770i
\(877\) 8.41916 14.5824i 0.284295 0.492413i −0.688143 0.725575i \(-0.741574\pi\)
0.972438 + 0.233162i \(0.0749073\pi\)
\(878\) −0.178112 + 0.308499i −0.00601099 + 0.0104113i
\(879\) −16.5286 35.2212i −0.557498 1.18798i
\(880\) −0.200681 0.347589i −0.00676495 0.0117172i
\(881\) 9.10158 + 15.7644i 0.306640 + 0.531116i 0.977625 0.210355i \(-0.0674619\pi\)
−0.670985 + 0.741471i \(0.734129\pi\)
\(882\) 1.48099 + 0.253693i 0.0498675 + 0.00854228i
\(883\) 27.0039 0.908752 0.454376 0.890810i \(-0.349862\pi\)
0.454376 + 0.890810i \(0.349862\pi\)
\(884\) 8.35293 14.4677i 0.280940 0.486602i
\(885\) 0.284848 + 0.0242207i 0.00957505 + 0.000814171i
\(886\) 8.02147 13.8936i 0.269487 0.466765i
\(887\) 0.627232 0.0210604 0.0105302 0.999945i \(-0.496648\pi\)
0.0105302 + 0.999945i \(0.496648\pi\)
\(888\) 18.6125 + 1.58263i 0.624593 + 0.0531095i
\(889\) −15.3220 −0.513883
\(890\) −1.50168 2.60099i −0.0503366 0.0871855i
\(891\) 2.95053 + 15.8283i 0.0988466 + 0.530269i
\(892\) 6.87299 11.9044i 0.230125 0.398587i
\(893\) −11.7436 20.3405i −0.392985 0.680670i
\(894\) −39.4962 3.35838i −1.32095 0.112321i
\(895\) −1.72634 2.99011i −0.0577052 0.0999484i
\(896\) −2.73877 −0.0914958
\(897\) 29.7820 + 63.4629i 0.994390 + 2.11896i
\(898\) −1.48298 + 2.56859i −0.0494875 + 0.0857149i
\(899\) 26.6471 + 18.5657i 0.888732 + 0.619202i
\(900\) 5.14669 + 13.9285i 0.171556 + 0.464285i
\(901\) −9.83899 −0.327784
\(902\) 3.33140 + 5.77015i 0.110923 + 0.192125i
\(903\) 41.1113 + 3.49571i 1.36810 + 0.116330i
\(904\) 8.77559 15.1998i 0.291872 0.505537i
\(905\) −2.05026 −0.0681529
\(906\) 11.6140 16.6729i 0.385849 0.553921i
\(907\) −8.22342 + 14.2434i −0.273054 + 0.472944i −0.969642 0.244527i \(-0.921367\pi\)
0.696588 + 0.717471i \(0.254701\pi\)
\(908\) −6.46555 11.1987i −0.214567 0.371640i
\(909\) −11.6469 31.5200i −0.386302 1.04545i
\(910\) −1.45061 2.51254i −0.0480874 0.0832898i
\(911\) −20.4664 35.4488i −0.678082 1.17447i −0.975558 0.219742i \(-0.929478\pi\)
0.297476 0.954729i \(-0.403855\pi\)
\(912\) 2.94128 4.22247i 0.0973954 0.139820i
\(913\) 19.6088 0.648958
\(914\) 0.0613990 + 0.106346i 0.00203090 + 0.00351762i
\(915\) −0.306544 + 0.440072i −0.0101340 + 0.0145483i
\(916\) 12.3295 + 21.3554i 0.407379 + 0.705601i
\(917\) −5.61538 9.72612i −0.185436 0.321185i
\(918\) 4.88810 + 17.7227i 0.161331 + 0.584936i
\(919\) 13.1639 + 22.8005i 0.434237 + 0.752120i 0.997233 0.0743394i \(-0.0236848\pi\)
−0.562996 + 0.826459i \(0.690351\pi\)
\(920\) 1.92311 0.0634030
\(921\) −52.6047 4.47300i −1.73338 0.147390i
\(922\) 4.52857 + 7.84371i 0.149140 + 0.258319i
\(923\) −54.4744 −1.79305
\(924\) 8.45594 + 0.719012i 0.278180 + 0.0236538i
\(925\) −53.3806 −1.75514
\(926\) 20.7467 0.681779
\(927\) −17.3606 46.9831i −0.570196 1.54313i
\(928\) −5.83304 −0.191479
\(929\) 4.85121 8.40254i 0.159163 0.275678i −0.775404 0.631465i \(-0.782454\pi\)
0.934567 + 0.355787i \(0.115787\pi\)
\(930\) 1.66401 + 1.38277i 0.0545649 + 0.0453427i
\(931\) 0.744016 + 1.28867i 0.0243841 + 0.0422346i
\(932\) −8.02264 13.8956i −0.262790 0.455166i
\(933\) 16.0423 23.0302i 0.525202 0.753974i
\(934\) 4.83282 8.37069i 0.158135 0.273897i
\(935\) 0.710026 + 1.22980i 0.0232203 + 0.0402188i
\(936\) −4.90968 13.2871i −0.160478 0.434303i
\(937\) −0.255570 + 0.442660i −0.00834911 + 0.0144611i −0.870170 0.492752i \(-0.835991\pi\)
0.861821 + 0.507213i \(0.169324\pi\)
\(938\) −15.8272 + 27.4135i −0.516777 + 0.895084i
\(939\) 11.4482 16.4350i 0.373599 0.536335i
\(940\) −0.886802 + 1.53599i −0.0289243 + 0.0500983i
\(941\) −25.6020 + 44.3440i −0.834603 + 1.44557i 0.0597504 + 0.998213i \(0.480970\pi\)
−0.894353 + 0.447361i \(0.852364\pi\)
\(942\) −12.3510 26.3189i −0.402416 0.857515i
\(943\) −31.9245 −1.03961
\(944\) 0.367841 0.637120i 0.0119722 0.0207365i
\(945\) 3.08991 + 0.803744i 0.100515 + 0.0261458i
\(946\) 15.5604 0.505911
\(947\) 28.5943 + 49.5268i 0.929189 + 1.60940i 0.784681 + 0.619900i \(0.212827\pi\)
0.144508 + 0.989504i \(0.453840\pi\)
\(948\) −24.4606 2.07990i −0.794443 0.0675519i
\(949\) 10.7393 0.348611
\(950\) −7.35270 + 12.7353i −0.238553 + 0.413186i
\(951\) 5.89487 8.46262i 0.191154 0.274419i
\(952\) 9.68999 0.314054
\(953\) 9.12093 0.295456 0.147728 0.989028i \(-0.452804\pi\)
0.147728 + 0.989028i \(0.452804\pi\)
\(954\) −5.33129 + 6.41693i −0.172607 + 0.207756i
\(955\) −0.354772 + 0.614484i −0.0114802 + 0.0198842i
\(956\) −6.63914 −0.214725
\(957\) 18.0095 + 1.53136i 0.582164 + 0.0495017i
\(958\) 6.71121 0.216829
\(959\) −5.06982 8.78118i −0.163713 0.283559i
\(960\) −0.387188 0.0329228i −0.0124964 0.00106258i
\(961\) −30.5539 5.24014i −0.985610 0.169037i
\(962\) 50.9224 1.64180
\(963\) 3.57474 + 9.67437i 0.115195 + 0.311752i
\(964\) −9.00343 + 15.5944i −0.289981 + 0.502262i
\(965\) 0.462718 0.801451i 0.0148954 0.0257996i
\(966\) −23.2417 + 33.3656i −0.747790 + 1.07352i
\(967\) 13.7545 0.442314 0.221157 0.975238i \(-0.429017\pi\)
0.221157 + 0.975238i \(0.429017\pi\)
\(968\) −7.79948 −0.250685
\(969\) −10.4065 + 14.9394i −0.334304 + 0.479924i
\(970\) 2.87318 0.0922524
\(971\) 5.73336 + 9.93048i 0.183992 + 0.318684i 0.943237 0.332122i \(-0.107764\pi\)
−0.759244 + 0.650806i \(0.774431\pi\)
\(972\) 14.2073 + 6.41512i 0.455698 + 0.205765i
\(973\) −0.845939 + 1.46521i −0.0271196 + 0.0469725i
\(974\) 33.2184 1.06439
\(975\) 17.1969 + 36.6452i 0.550743 + 1.17359i
\(976\) 0.690085 + 1.19526i 0.0220891 + 0.0382594i
\(977\) 11.2070 + 19.4111i 0.358544 + 0.621016i 0.987718 0.156248i \(-0.0499400\pi\)
−0.629174 + 0.777265i \(0.716607\pi\)
\(978\) 7.69380 + 0.654207i 0.246020 + 0.0209192i
\(979\) 23.9493 0.765423
\(980\) 0.0561832 0.0973122i 0.00179471 0.00310853i
\(981\) −2.01949 + 2.43073i −0.0644775 + 0.0776073i
\(982\) −15.1123 26.1753i −0.482253 0.835286i
\(983\) −38.9311 −1.24171 −0.620855 0.783925i \(-0.713214\pi\)
−0.620855 + 0.783925i \(0.713214\pi\)
\(984\) 6.42751 + 0.546534i 0.204902 + 0.0174229i
\(985\) −0.964368 −0.0307273
\(986\) 20.6378 0.657241
\(987\) −15.9316 33.9490i −0.507109 1.08061i
\(988\) 7.01410 12.1488i 0.223148 0.386504i
\(989\) −37.2784 + 64.5681i −1.18539 + 2.05315i
\(990\) 1.18680 + 0.203298i 0.0377189 + 0.00646123i
\(991\) −56.3923 −1.79136 −0.895679 0.444700i \(-0.853310\pi\)
−0.895679 + 0.444700i \(0.853310\pi\)
\(992\) 5.04059 2.36484i 0.160039 0.0750838i
\(993\) −17.1812 36.6117i −0.545229 1.16184i
\(994\) −15.7985 27.3639i −0.501099 0.867929i
\(995\) −1.22534 −0.0388458
\(996\) 10.8512 15.5778i 0.343832 0.493602i
\(997\) 27.8110 0.880782 0.440391 0.897806i \(-0.354840\pi\)
0.440391 + 0.897806i \(0.354840\pi\)
\(998\) 2.39322 4.14518i 0.0757560 0.131213i
\(999\) −39.3344 + 39.9145i −1.24448 + 1.26284i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.g.a.439.6 yes 32
3.2 odd 2 1674.2.g.b.1369.9 32
9.4 even 3 558.2.h.a.67.16 yes 32
9.5 odd 6 1674.2.h.b.253.8 32
31.25 even 3 558.2.h.a.25.16 yes 32
93.56 odd 6 1674.2.h.b.397.8 32
279.149 odd 6 1674.2.g.b.955.9 32
279.211 even 3 inner 558.2.g.a.211.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.g.a.211.6 32 279.211 even 3 inner
558.2.g.a.439.6 yes 32 1.1 even 1 trivial
558.2.h.a.25.16 yes 32 31.25 even 3
558.2.h.a.67.16 yes 32 9.4 even 3
1674.2.g.b.955.9 32 279.149 odd 6
1674.2.g.b.1369.9 32 3.2 odd 2
1674.2.h.b.253.8 32 9.5 odd 6
1674.2.h.b.397.8 32 93.56 odd 6