Properties

Label 558.2.g.a.211.11
Level $558$
Weight $2$
Character 558.211
Analytic conductor $4.456$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(211,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.211"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 211.11
Character \(\chi\) \(=\) 558.211
Dual form 558.2.g.a.439.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.07682 + 1.35663i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.251592 + 0.435771i) q^{5} +(0.636470 - 1.61087i) q^{6} +(1.49612 - 2.59136i) q^{7} +1.00000 q^{8} +(-0.680914 + 2.92170i) q^{9} +(0.251592 - 0.435771i) q^{10} +3.41738 q^{11} +(-1.71329 + 0.254237i) q^{12} +(0.745981 + 1.29208i) q^{13} -2.99224 q^{14} +(-0.320262 + 0.810566i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.107908 - 0.186902i) q^{17} +(2.87073 - 0.871163i) q^{18} +(-0.313601 - 0.543174i) q^{19} -0.503185 q^{20} +(5.12658 - 0.760738i) q^{21} +(-1.70869 - 2.95953i) q^{22} +(-2.34285 + 4.05794i) q^{23} +(1.07682 + 1.35663i) q^{24} +(2.37340 - 4.11085i) q^{25} +(0.745981 - 1.29208i) q^{26} +(-4.69691 + 2.22240i) q^{27} +(1.49612 + 2.59136i) q^{28} +(0.870491 + 1.50773i) q^{29} +(0.862101 - 0.127928i) q^{30} +(3.91747 - 3.95645i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(3.67990 + 4.63613i) q^{33} +(-0.107908 + 0.186902i) q^{34} +1.50565 q^{35} +(-2.18981 - 2.05054i) q^{36} +(3.77685 + 6.54170i) q^{37} +(-0.313601 + 0.543174i) q^{38} +(-0.949589 + 2.40336i) q^{39} +(0.251592 + 0.435771i) q^{40} +(3.90895 + 6.77051i) q^{41} +(-3.22211 - 4.05938i) q^{42} +(2.24243 - 3.88401i) q^{43} +(-1.70869 + 2.95953i) q^{44} +(-1.44451 + 0.438356i) q^{45} +4.68570 q^{46} +(2.96572 + 5.13679i) q^{47} +(0.636470 - 1.61087i) q^{48} +(-0.976756 - 1.69179i) q^{49} -4.74681 q^{50} +(0.137360 - 0.347652i) q^{51} -1.49196 q^{52} +(-0.744043 + 1.28872i) q^{53} +(4.27311 + 2.95644i) q^{54} +(0.859785 + 1.48919i) q^{55} +(1.49612 - 2.59136i) q^{56} +(0.399196 - 1.01034i) q^{57} +(0.870491 - 1.50773i) q^{58} -6.72438 q^{59} +(-0.541840 - 0.682638i) q^{60} +(-5.06352 - 8.77028i) q^{61} +(-5.38512 - 1.41440i) q^{62} +(6.55245 + 6.13572i) q^{63} +1.00000 q^{64} +(-0.375366 + 0.650154i) q^{65} +(2.17506 - 5.50495i) q^{66} +(-7.40223 - 12.8210i) q^{67} +0.215816 q^{68} +(-8.02796 + 1.19128i) q^{69} +(-0.752825 - 1.30393i) q^{70} +(-1.88140 + 3.25868i) q^{71} +(-0.680914 + 2.92170i) q^{72} +(0.325049 - 0.563001i) q^{73} +(3.77685 - 6.54170i) q^{74} +(8.13266 - 1.20681i) q^{75} +0.627203 q^{76} +(5.11281 - 8.85564i) q^{77} +(2.55617 - 0.379312i) q^{78} +(2.19974 - 3.81007i) q^{79} +(0.251592 - 0.435771i) q^{80} +(-8.07271 - 3.97886i) q^{81} +(3.90895 - 6.77051i) q^{82} +4.72515 q^{83} +(-1.90447 + 4.82012i) q^{84} +(0.0542976 - 0.0940463i) q^{85} -4.48487 q^{86} +(-1.10808 + 2.80450i) q^{87} +3.41738 q^{88} -15.8136 q^{89} +(1.10188 + 1.03180i) q^{90} +4.46431 q^{91} +(-2.34285 - 4.05794i) q^{92} +(9.58586 + 1.05419i) q^{93} +(2.96572 - 5.13679i) q^{94} +(0.157799 - 0.273317i) q^{95} +(-1.71329 + 0.254237i) q^{96} +(-5.15725 - 8.93262i) q^{97} +(-0.976756 + 1.69179i) q^{98} +(-2.32694 + 9.98456i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 16 q^{2} + 4 q^{3} - 16 q^{4} - q^{5} - 2 q^{6} + q^{7} + 32 q^{8} + 12 q^{9} - q^{10} + 4 q^{11} - 2 q^{12} - 10 q^{13} - 2 q^{14} - 13 q^{15} - 16 q^{16} - 4 q^{17} - 6 q^{18} + 4 q^{19} + 2 q^{20}+ \cdots + 19 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.07682 + 1.35663i 0.621703 + 0.783253i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.251592 + 0.435771i 0.112515 + 0.194883i 0.916784 0.399384i \(-0.130776\pi\)
−0.804268 + 0.594266i \(0.797443\pi\)
\(6\) 0.636470 1.61087i 0.259838 0.657635i
\(7\) 1.49612 2.59136i 0.565481 0.979441i −0.431524 0.902101i \(-0.642024\pi\)
0.997005 0.0773398i \(-0.0246426\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.680914 + 2.92170i −0.226971 + 0.973901i
\(10\) 0.251592 0.435771i 0.0795605 0.137803i
\(11\) 3.41738 1.03038 0.515189 0.857077i \(-0.327722\pi\)
0.515189 + 0.857077i \(0.327722\pi\)
\(12\) −1.71329 + 0.254237i −0.494584 + 0.0733919i
\(13\) 0.745981 + 1.29208i 0.206898 + 0.358358i 0.950736 0.310002i \(-0.100330\pi\)
−0.743838 + 0.668360i \(0.766997\pi\)
\(14\) −2.99224 −0.799710
\(15\) −0.320262 + 0.810566i −0.0826912 + 0.209287i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.107908 0.186902i −0.0261715 0.0453304i 0.852643 0.522494i \(-0.174998\pi\)
−0.878815 + 0.477164i \(0.841665\pi\)
\(18\) 2.87073 0.871163i 0.676637 0.205335i
\(19\) −0.313601 0.543174i −0.0719451 0.124613i 0.827809 0.561011i \(-0.189587\pi\)
−0.899754 + 0.436398i \(0.856254\pi\)
\(20\) −0.503185 −0.112515
\(21\) 5.12658 0.760738i 1.11871 0.166007i
\(22\) −1.70869 2.95953i −0.364293 0.630975i
\(23\) −2.34285 + 4.05794i −0.488518 + 0.846138i −0.999913 0.0132079i \(-0.995796\pi\)
0.511395 + 0.859346i \(0.329129\pi\)
\(24\) 1.07682 + 1.35663i 0.219805 + 0.276922i
\(25\) 2.37340 4.11085i 0.474681 0.822171i
\(26\) 0.745981 1.29208i 0.146299 0.253397i
\(27\) −4.69691 + 2.22240i −0.903920 + 0.427701i
\(28\) 1.49612 + 2.59136i 0.282740 + 0.489721i
\(29\) 0.870491 + 1.50773i 0.161646 + 0.279979i 0.935459 0.353435i \(-0.114986\pi\)
−0.773813 + 0.633414i \(0.781653\pi\)
\(30\) 0.862101 0.127928i 0.157397 0.0233564i
\(31\) 3.91747 3.95645i 0.703598 0.710599i
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 3.67990 + 4.63613i 0.640588 + 0.807046i
\(34\) −0.107908 + 0.186902i −0.0185061 + 0.0320535i
\(35\) 1.50565 0.254501
\(36\) −2.18981 2.05054i −0.364969 0.341757i
\(37\) 3.77685 + 6.54170i 0.620910 + 1.07545i 0.989317 + 0.145783i \(0.0465703\pi\)
−0.368406 + 0.929665i \(0.620096\pi\)
\(38\) −0.313601 + 0.543174i −0.0508729 + 0.0881144i
\(39\) −0.949589 + 2.40336i −0.152056 + 0.384846i
\(40\) 0.251592 + 0.435771i 0.0397802 + 0.0689014i
\(41\) 3.90895 + 6.77051i 0.610476 + 1.05738i 0.991160 + 0.132670i \(0.0423552\pi\)
−0.380684 + 0.924705i \(0.624312\pi\)
\(42\) −3.22211 4.05938i −0.497182 0.626376i
\(43\) 2.24243 3.88401i 0.341968 0.592306i −0.642830 0.766009i \(-0.722240\pi\)
0.984798 + 0.173703i \(0.0555732\pi\)
\(44\) −1.70869 + 2.95953i −0.257594 + 0.446166i
\(45\) −1.44451 + 0.438356i −0.215334 + 0.0653462i
\(46\) 4.68570 0.690869
\(47\) 2.96572 + 5.13679i 0.432595 + 0.749277i 0.997096 0.0761555i \(-0.0242645\pi\)
−0.564501 + 0.825433i \(0.690931\pi\)
\(48\) 0.636470 1.61087i 0.0918665 0.232509i
\(49\) −0.976756 1.69179i −0.139537 0.241685i
\(50\) −4.74681 −0.671300
\(51\) 0.137360 0.347652i 0.0192343 0.0486810i
\(52\) −1.49196 −0.206898
\(53\) −0.744043 + 1.28872i −0.102202 + 0.177019i −0.912592 0.408872i \(-0.865922\pi\)
0.810390 + 0.585891i \(0.199256\pi\)
\(54\) 4.27311 + 2.95644i 0.581496 + 0.402321i
\(55\) 0.859785 + 1.48919i 0.115933 + 0.200803i
\(56\) 1.49612 2.59136i 0.199928 0.346285i
\(57\) 0.399196 1.01034i 0.0528747 0.133823i
\(58\) 0.870491 1.50773i 0.114301 0.197975i
\(59\) −6.72438 −0.875440 −0.437720 0.899111i \(-0.644214\pi\)
−0.437720 + 0.899111i \(0.644214\pi\)
\(60\) −0.541840 0.682638i −0.0699512 0.0881281i
\(61\) −5.06352 8.77028i −0.648317 1.12292i −0.983525 0.180774i \(-0.942140\pi\)
0.335207 0.942144i \(-0.391194\pi\)
\(62\) −5.38512 1.41440i −0.683910 0.179629i
\(63\) 6.55245 + 6.13572i 0.825531 + 0.773027i
\(64\) 1.00000 0.125000
\(65\) −0.375366 + 0.650154i −0.0465585 + 0.0806416i
\(66\) 2.17506 5.50495i 0.267731 0.677613i
\(67\) −7.40223 12.8210i −0.904326 1.56634i −0.821820 0.569748i \(-0.807041\pi\)
−0.0825063 0.996591i \(-0.526292\pi\)
\(68\) 0.215816 0.0261715
\(69\) −8.02796 + 1.19128i −0.966453 + 0.143413i
\(70\) −0.752825 1.30393i −0.0899798 0.155850i
\(71\) −1.88140 + 3.25868i −0.223281 + 0.386734i −0.955802 0.294010i \(-0.905010\pi\)
0.732521 + 0.680744i \(0.238343\pi\)
\(72\) −0.680914 + 2.92170i −0.0802465 + 0.344326i
\(73\) 0.325049 0.563001i 0.0380441 0.0658943i −0.846376 0.532585i \(-0.821221\pi\)
0.884420 + 0.466691i \(0.154554\pi\)
\(74\) 3.77685 6.54170i 0.439050 0.760457i
\(75\) 8.13266 1.20681i 0.939078 0.139351i
\(76\) 0.627203 0.0719451
\(77\) 5.11281 8.85564i 0.582658 1.00919i
\(78\) 2.55617 0.379312i 0.289429 0.0429486i
\(79\) 2.19974 3.81007i 0.247490 0.428666i −0.715338 0.698778i \(-0.753727\pi\)
0.962829 + 0.270112i \(0.0870608\pi\)
\(80\) 0.251592 0.435771i 0.0281289 0.0487206i
\(81\) −8.07271 3.97886i −0.896968 0.442096i
\(82\) 3.90895 6.77051i 0.431672 0.747677i
\(83\) 4.72515 0.518653 0.259326 0.965790i \(-0.416499\pi\)
0.259326 + 0.965790i \(0.416499\pi\)
\(84\) −1.90447 + 4.82012i −0.207795 + 0.525918i
\(85\) 0.0542976 0.0940463i 0.00588941 0.0102008i
\(86\) −4.48487 −0.483616
\(87\) −1.10808 + 2.80450i −0.118799 + 0.300674i
\(88\) 3.41738 0.364293
\(89\) −15.8136 −1.67623 −0.838117 0.545490i \(-0.816343\pi\)
−0.838117 + 0.545490i \(0.816343\pi\)
\(90\) 1.10188 + 1.03180i 0.116148 + 0.108761i
\(91\) 4.46431 0.467987
\(92\) −2.34285 4.05794i −0.244259 0.423069i
\(93\) 9.58586 + 1.05419i 0.994007 + 0.109314i
\(94\) 2.96572 5.13679i 0.305891 0.529819i
\(95\) 0.157799 0.273317i 0.0161899 0.0280417i
\(96\) −1.71329 + 0.254237i −0.174862 + 0.0259479i
\(97\) −5.15725 8.93262i −0.523639 0.906970i −0.999621 0.0275148i \(-0.991241\pi\)
0.475982 0.879455i \(-0.342093\pi\)
\(98\) −0.976756 + 1.69179i −0.0986673 + 0.170897i
\(99\) −2.32694 + 9.98456i −0.233866 + 1.00349i
\(100\) 2.37340 + 4.11085i 0.237340 + 0.411085i
\(101\) −6.91596 11.9788i −0.688164 1.19193i −0.972431 0.233190i \(-0.925084\pi\)
0.284268 0.958745i \(-0.408250\pi\)
\(102\) −0.369755 + 0.0548684i −0.0366112 + 0.00543278i
\(103\) 5.15407 + 8.92711i 0.507846 + 0.879614i 0.999959 + 0.00908319i \(0.00289131\pi\)
−0.492113 + 0.870531i \(0.663775\pi\)
\(104\) 0.745981 + 1.29208i 0.0731495 + 0.126699i
\(105\) 1.62132 + 2.04262i 0.158224 + 0.199339i
\(106\) 1.48809 0.144536
\(107\) −1.33208 2.30724i −0.128777 0.223049i 0.794426 0.607361i \(-0.207772\pi\)
−0.923203 + 0.384312i \(0.874439\pi\)
\(108\) 0.423799 5.17884i 0.0407801 0.498334i
\(109\) −15.9550 −1.52821 −0.764107 0.645090i \(-0.776820\pi\)
−0.764107 + 0.645090i \(0.776820\pi\)
\(110\) 0.859785 1.48919i 0.0819773 0.141989i
\(111\) −4.80770 + 12.1680i −0.456327 + 1.15494i
\(112\) −2.99224 −0.282740
\(113\) −8.48882 14.7031i −0.798561 1.38315i −0.920553 0.390617i \(-0.872262\pi\)
0.121992 0.992531i \(-0.461072\pi\)
\(114\) −1.07458 + 0.159458i −0.100644 + 0.0149346i
\(115\) −2.35777 −0.219863
\(116\) −1.74098 −0.161646
\(117\) −4.28302 + 1.29974i −0.395965 + 0.120161i
\(118\) 3.36219 + 5.82349i 0.309515 + 0.536095i
\(119\) −0.645774 −0.0591980
\(120\) −0.320262 + 0.810566i −0.0292358 + 0.0739942i
\(121\) 0.678453 0.0616775
\(122\) −5.06352 + 8.77028i −0.458430 + 0.794024i
\(123\) −4.97586 + 12.5936i −0.448658 + 1.13553i
\(124\) 1.46765 + 5.37085i 0.131799 + 0.482316i
\(125\) 4.90444 0.438667
\(126\) 2.03746 8.74245i 0.181511 0.778839i
\(127\) 9.66532 + 16.7408i 0.857659 + 1.48551i 0.874157 + 0.485644i \(0.161415\pi\)
−0.0164980 + 0.999864i \(0.505252\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 7.68388 1.14022i 0.676528 0.100391i
\(130\) 0.750733 0.0658436
\(131\) −0.108524 −0.00948176 −0.00474088 0.999989i \(-0.501509\pi\)
−0.00474088 + 0.999989i \(0.501509\pi\)
\(132\) −5.85496 + 0.868823i −0.509608 + 0.0756213i
\(133\) −1.87674 −0.162734
\(134\) −7.40223 + 12.8210i −0.639455 + 1.10757i
\(135\) −2.15016 1.48764i −0.185057 0.128035i
\(136\) −0.107908 0.186902i −0.00925304 0.0160267i
\(137\) −13.4640 −1.15031 −0.575154 0.818045i \(-0.695058\pi\)
−0.575154 + 0.818045i \(0.695058\pi\)
\(138\) 5.04566 + 6.35678i 0.429515 + 0.541125i
\(139\) 3.04467 5.27352i 0.258245 0.447294i −0.707527 0.706687i \(-0.750189\pi\)
0.965772 + 0.259393i \(0.0835224\pi\)
\(140\) −0.752825 + 1.30393i −0.0636253 + 0.110202i
\(141\) −3.77519 + 9.55480i −0.317928 + 0.804659i
\(142\) 3.76280 0.315767
\(143\) 2.54930 + 4.41551i 0.213183 + 0.369244i
\(144\) 2.87073 0.871163i 0.239227 0.0725969i
\(145\) −0.438017 + 0.758668i −0.0363754 + 0.0630040i
\(146\) −0.650097 −0.0538024
\(147\) 1.24335 3.14686i 0.102550 0.259548i
\(148\) −7.55370 −0.620910
\(149\) 5.50336 0.450852 0.225426 0.974260i \(-0.427623\pi\)
0.225426 + 0.974260i \(0.427623\pi\)
\(150\) −5.11146 6.43968i −0.417349 0.525798i
\(151\) 1.12514 + 1.94880i 0.0915625 + 0.158591i 0.908169 0.418604i \(-0.137481\pi\)
−0.816606 + 0.577195i \(0.804147\pi\)
\(152\) −0.313601 0.543174i −0.0254364 0.0440572i
\(153\) 0.619549 0.188011i 0.0500876 0.0151998i
\(154\) −10.2256 −0.824003
\(155\) 2.70971 + 0.711705i 0.217649 + 0.0571655i
\(156\) −1.60658 2.02405i −0.128629 0.162054i
\(157\) −2.36692 + 4.09962i −0.188901 + 0.327186i −0.944884 0.327405i \(-0.893826\pi\)
0.755983 + 0.654591i \(0.227159\pi\)
\(158\) −4.39949 −0.350004
\(159\) −2.54952 + 0.378326i −0.202190 + 0.0300032i
\(160\) −0.503185 −0.0397802
\(161\) 7.01037 + 12.1423i 0.552495 + 0.956949i
\(162\) 0.590562 + 8.98060i 0.0463989 + 0.705583i
\(163\) −8.36515 −0.655209 −0.327604 0.944815i \(-0.606241\pi\)
−0.327604 + 0.944815i \(0.606241\pi\)
\(164\) −7.81791 −0.610476
\(165\) −1.09445 + 2.77001i −0.0852031 + 0.215645i
\(166\) −2.36258 4.09210i −0.183371 0.317609i
\(167\) 3.47128 0.268616 0.134308 0.990940i \(-0.457119\pi\)
0.134308 + 0.990940i \(0.457119\pi\)
\(168\) 5.12658 0.760738i 0.395524 0.0586922i
\(169\) 5.38702 9.33060i 0.414386 0.717738i
\(170\) −0.108595 −0.00832888
\(171\) 1.80053 0.546396i 0.137690 0.0417840i
\(172\) 2.24243 + 3.88401i 0.170984 + 0.296153i
\(173\) −8.91361 −0.677689 −0.338845 0.940842i \(-0.610036\pi\)
−0.338845 + 0.940842i \(0.610036\pi\)
\(174\) 2.98281 0.442622i 0.226126 0.0335551i
\(175\) −7.10180 12.3007i −0.536845 0.929843i
\(176\) −1.70869 2.95953i −0.128797 0.223083i
\(177\) −7.24095 9.12253i −0.544263 0.685691i
\(178\) 7.90678 + 13.6949i 0.592638 + 1.02648i
\(179\) −9.76971 16.9216i −0.730222 1.26478i −0.956788 0.290786i \(-0.906083\pi\)
0.226566 0.973996i \(-0.427250\pi\)
\(180\) 0.342626 1.47016i 0.0255378 0.109579i
\(181\) −5.75215 + 9.96302i −0.427554 + 0.740546i −0.996655 0.0817221i \(-0.973958\pi\)
0.569101 + 0.822268i \(0.307291\pi\)
\(182\) −2.23216 3.86621i −0.165458 0.286583i
\(183\) 6.44555 16.3134i 0.476469 1.20592i
\(184\) −2.34285 + 4.05794i −0.172717 + 0.299155i
\(185\) −1.90045 + 3.29168i −0.139724 + 0.242009i
\(186\) −3.87998 8.82869i −0.284494 0.647351i
\(187\) −0.368762 0.638715i −0.0269666 0.0467074i
\(188\) −5.93145 −0.432595
\(189\) −1.26811 + 15.4963i −0.0922413 + 1.12719i
\(190\) −0.315599 −0.0228959
\(191\) 4.16012 0.301016 0.150508 0.988609i \(-0.451909\pi\)
0.150508 + 0.988609i \(0.451909\pi\)
\(192\) 1.07682 + 1.35663i 0.0777128 + 0.0979067i
\(193\) −12.8309 −0.923591 −0.461795 0.886986i \(-0.652795\pi\)
−0.461795 + 0.886986i \(0.652795\pi\)
\(194\) −5.15725 + 8.93262i −0.370269 + 0.641324i
\(195\) −1.28622 + 0.190864i −0.0921083 + 0.0136681i
\(196\) 1.95351 0.139537
\(197\) 1.20027 2.07893i 0.0855157 0.148117i −0.820095 0.572227i \(-0.806080\pi\)
0.905611 + 0.424110i \(0.139413\pi\)
\(198\) 9.81035 2.97709i 0.697191 0.211573i
\(199\) 4.96174 8.59399i 0.351729 0.609212i −0.634824 0.772657i \(-0.718927\pi\)
0.986552 + 0.163445i \(0.0522607\pi\)
\(200\) 2.37340 4.11085i 0.167825 0.290681i
\(201\) 9.42258 23.8481i 0.664618 1.68211i
\(202\) −6.91596 + 11.9788i −0.486605 + 0.842825i
\(203\) 5.20944 0.365631
\(204\) 0.232395 + 0.292783i 0.0162709 + 0.0204989i
\(205\) −1.96693 + 3.40681i −0.137376 + 0.237942i
\(206\) 5.15407 8.92711i 0.359101 0.621981i
\(207\) −10.2608 9.60822i −0.713175 0.667817i
\(208\) 0.745981 1.29208i 0.0517245 0.0895895i
\(209\) −1.07169 1.85623i −0.0741306 0.128398i
\(210\) 0.958300 2.42541i 0.0661290 0.167369i
\(211\) 1.44788 0.0996762 0.0498381 0.998757i \(-0.484129\pi\)
0.0498381 + 0.998757i \(0.484129\pi\)
\(212\) −0.744043 1.28872i −0.0511011 0.0885096i
\(213\) −6.44677 + 0.956643i −0.441725 + 0.0655481i
\(214\) −1.33208 + 2.30724i −0.0910594 + 0.157720i
\(215\) 2.25672 0.153907
\(216\) −4.69691 + 2.22240i −0.319584 + 0.151215i
\(217\) −4.39156 16.0709i −0.298119 1.09096i
\(218\) 7.97751 + 13.8175i 0.540305 + 0.935836i
\(219\) 1.11381 0.165279i 0.0752640 0.0111685i
\(220\) −1.71957 −0.115933
\(221\) 0.160995 0.278851i 0.0108297 0.0187576i
\(222\) 12.9417 1.92043i 0.868589 0.128891i
\(223\) −1.56823 + 2.71626i −0.105017 + 0.181894i −0.913745 0.406288i \(-0.866823\pi\)
0.808728 + 0.588182i \(0.200156\pi\)
\(224\) 1.49612 + 2.59136i 0.0999638 + 0.173142i
\(225\) 10.3946 + 9.73352i 0.692974 + 0.648901i
\(226\) −8.48882 + 14.7031i −0.564668 + 0.978033i
\(227\) 8.57661 0.569249 0.284625 0.958639i \(-0.408131\pi\)
0.284625 + 0.958639i \(0.408131\pi\)
\(228\) 0.675385 + 0.850885i 0.0447285 + 0.0563512i
\(229\) −6.08136 −0.401868 −0.200934 0.979605i \(-0.564398\pi\)
−0.200934 + 0.979605i \(0.564398\pi\)
\(230\) 1.17889 + 2.04189i 0.0777334 + 0.134638i
\(231\) 17.5194 2.59973i 1.15269 0.171050i
\(232\) 0.870491 + 1.50773i 0.0571505 + 0.0989876i
\(233\) 27.2939 1.78808 0.894042 0.447982i \(-0.147857\pi\)
0.894042 + 0.447982i \(0.147857\pi\)
\(234\) 3.26712 + 3.05933i 0.213578 + 0.199995i
\(235\) −1.49231 + 2.58475i −0.0973474 + 0.168611i
\(236\) 3.36219 5.82349i 0.218860 0.379077i
\(237\) 7.53760 1.11851i 0.489620 0.0726552i
\(238\) 0.322887 + 0.559256i 0.0209296 + 0.0362512i
\(239\) 9.32939 + 16.1590i 0.603468 + 1.04524i 0.992292 + 0.123925i \(0.0395483\pi\)
−0.388823 + 0.921312i \(0.627118\pi\)
\(240\) 0.862101 0.127928i 0.0556484 0.00825772i
\(241\) −5.24358 + 9.08214i −0.337769 + 0.585032i −0.984013 0.178098i \(-0.943005\pi\)
0.646244 + 0.763131i \(0.276339\pi\)
\(242\) −0.339226 0.587557i −0.0218063 0.0377696i
\(243\) −3.29500 15.2362i −0.211375 0.977405i
\(244\) 10.1270 0.648317
\(245\) 0.491489 0.851283i 0.0314001 0.0543865i
\(246\) 13.3943 1.98760i 0.853992 0.126725i
\(247\) 0.467882 0.810395i 0.0297706 0.0515642i
\(248\) 3.91747 3.95645i 0.248759 0.251235i
\(249\) 5.08814 + 6.41030i 0.322448 + 0.406236i
\(250\) −2.45222 4.24737i −0.155092 0.268627i
\(251\) −1.44756 2.50725i −0.0913694 0.158256i 0.816718 0.577037i \(-0.195791\pi\)
−0.908088 + 0.418780i \(0.862458\pi\)
\(252\) −8.58991 + 2.60673i −0.541114 + 0.164209i
\(253\) −8.00640 + 13.8675i −0.503358 + 0.871841i
\(254\) 9.66532 16.7408i 0.606456 1.05041i
\(255\) 0.186055 0.0276089i 0.0116512 0.00172894i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 2.52702 + 4.37693i 0.157631 + 0.273025i 0.934014 0.357236i \(-0.116281\pi\)
−0.776383 + 0.630262i \(0.782948\pi\)
\(258\) −4.82940 6.08433i −0.300665 0.378794i
\(259\) 22.6025 1.40445
\(260\) −0.375366 0.650154i −0.0232792 0.0403208i
\(261\) −4.99788 + 1.51668i −0.309361 + 0.0938800i
\(262\) 0.0542619 + 0.0939843i 0.00335231 + 0.00580637i
\(263\) 12.2997 + 21.3038i 0.758434 + 1.31365i 0.943649 + 0.330948i \(0.107369\pi\)
−0.185215 + 0.982698i \(0.559298\pi\)
\(264\) 3.67990 + 4.63613i 0.226482 + 0.285334i
\(265\) −0.748782 −0.0459973
\(266\) 0.938371 + 1.62531i 0.0575352 + 0.0996540i
\(267\) −17.0284 21.4532i −1.04212 1.31292i
\(268\) 14.8045 0.904326
\(269\) 9.30033 16.1086i 0.567051 0.982161i −0.429805 0.902922i \(-0.641418\pi\)
0.996856 0.0792393i \(-0.0252491\pi\)
\(270\) −0.213249 + 2.60591i −0.0129779 + 0.158591i
\(271\) 5.43100 0.329910 0.164955 0.986301i \(-0.447252\pi\)
0.164955 + 0.986301i \(0.447252\pi\)
\(272\) −0.107908 + 0.186902i −0.00654288 + 0.0113326i
\(273\) 4.80727 + 6.05644i 0.290949 + 0.366553i
\(274\) 6.73200 + 11.6602i 0.406695 + 0.704417i
\(275\) 8.11081 14.0483i 0.489100 0.847146i
\(276\) 2.98231 7.54806i 0.179514 0.454340i
\(277\) −4.29110 7.43240i −0.257827 0.446570i 0.707833 0.706380i \(-0.249673\pi\)
−0.965660 + 0.259811i \(0.916340\pi\)
\(278\) −6.08933 −0.365214
\(279\) 8.89211 + 14.1397i 0.532357 + 0.846520i
\(280\) 1.50565 0.0899798
\(281\) −5.87824 10.1814i −0.350666 0.607372i 0.635700 0.771936i \(-0.280712\pi\)
−0.986366 + 0.164564i \(0.947378\pi\)
\(282\) 10.1623 1.50799i 0.605156 0.0897997i
\(283\) −13.5289 + 23.4327i −0.804208 + 1.39293i 0.112616 + 0.993639i \(0.464077\pi\)
−0.916824 + 0.399291i \(0.869256\pi\)
\(284\) −1.88140 3.25868i −0.111641 0.193367i
\(285\) 0.540712 0.0802369i 0.0320290 0.00475282i
\(286\) 2.54930 4.41551i 0.150743 0.261095i
\(287\) 23.3931 1.38085
\(288\) −2.18981 2.05054i −0.129036 0.120829i
\(289\) 8.47671 14.6821i 0.498630 0.863653i
\(290\) 0.876035 0.0514425
\(291\) 6.56486 16.6153i 0.384839 0.974008i
\(292\) 0.325049 + 0.563001i 0.0190220 + 0.0329471i
\(293\) 0.768533 0.0448982 0.0224491 0.999748i \(-0.492854\pi\)
0.0224491 + 0.999748i \(0.492854\pi\)
\(294\) −3.34693 + 0.496655i −0.195197 + 0.0289655i
\(295\) −1.69180 2.93029i −0.0985006 0.170608i
\(296\) 3.77685 + 6.54170i 0.219525 + 0.380228i
\(297\) −16.0511 + 7.59477i −0.931379 + 0.440694i
\(298\) −2.75168 4.76605i −0.159400 0.276090i
\(299\) −6.99089 −0.404294
\(300\) −3.02120 + 7.64649i −0.174429 + 0.441470i
\(301\) −6.70991 11.6219i −0.386753 0.669875i
\(302\) 1.12514 1.94880i 0.0647445 0.112141i
\(303\) 8.80360 22.2814i 0.505753 1.28004i
\(304\) −0.313601 + 0.543174i −0.0179863 + 0.0311531i
\(305\) 2.54789 4.41307i 0.145892 0.252692i
\(306\) −0.472597 0.442540i −0.0270166 0.0252983i
\(307\) −5.72092 9.90893i −0.326510 0.565533i 0.655306 0.755363i \(-0.272539\pi\)
−0.981817 + 0.189830i \(0.939206\pi\)
\(308\) 5.11281 + 8.85564i 0.291329 + 0.504597i
\(309\) −6.56082 + 16.6051i −0.373232 + 0.944630i
\(310\) −0.738499 2.70253i −0.0419439 0.153493i
\(311\) 5.12987 8.88520i 0.290888 0.503834i −0.683132 0.730295i \(-0.739382\pi\)
0.974020 + 0.226462i \(0.0727158\pi\)
\(312\) −0.949589 + 2.40336i −0.0537599 + 0.136063i
\(313\) 1.26067 2.18355i 0.0712574 0.123422i −0.828195 0.560440i \(-0.810632\pi\)
0.899453 + 0.437018i \(0.143965\pi\)
\(314\) 4.73384 0.267146
\(315\) −1.02522 + 4.39906i −0.0577645 + 0.247859i
\(316\) 2.19974 + 3.81007i 0.123745 + 0.214333i
\(317\) −2.61051 + 4.52153i −0.146621 + 0.253955i −0.929976 0.367619i \(-0.880173\pi\)
0.783356 + 0.621574i \(0.213506\pi\)
\(318\) 1.60240 + 2.01879i 0.0898582 + 0.113208i
\(319\) 2.97479 + 5.15249i 0.166556 + 0.288484i
\(320\) 0.251592 + 0.435771i 0.0140644 + 0.0243603i
\(321\) 1.69566 4.29163i 0.0946426 0.239536i
\(322\) 7.01037 12.1423i 0.390673 0.676665i
\(323\) −0.0676802 + 0.117226i −0.00376583 + 0.00652261i
\(324\) 7.48215 5.00174i 0.415675 0.277875i
\(325\) 7.08206 0.392842
\(326\) 4.18257 + 7.24443i 0.231651 + 0.401232i
\(327\) −17.1807 21.6451i −0.950095 1.19698i
\(328\) 3.90895 + 6.77051i 0.215836 + 0.373839i
\(329\) 17.7483 0.978497
\(330\) 2.94612 0.437178i 0.162179 0.0240659i
\(331\) 31.4910 1.73090 0.865452 0.500992i \(-0.167031\pi\)
0.865452 + 0.500992i \(0.167031\pi\)
\(332\) −2.36258 + 4.09210i −0.129663 + 0.224583i
\(333\) −21.6846 + 6.58051i −1.18831 + 0.360609i
\(334\) −1.73564 3.00622i −0.0949701 0.164493i
\(335\) 3.72469 6.45135i 0.203501 0.352475i
\(336\) −3.22211 4.05938i −0.175780 0.221457i
\(337\) −11.3810 + 19.7124i −0.619960 + 1.07380i 0.369532 + 0.929218i \(0.379518\pi\)
−0.989492 + 0.144585i \(0.953815\pi\)
\(338\) −10.7740 −0.586031
\(339\) 10.8057 27.3488i 0.586888 1.48538i
\(340\) 0.0542976 + 0.0940463i 0.00294470 + 0.00510038i
\(341\) 13.3874 13.5207i 0.724971 0.732185i
\(342\) −1.37346 1.28611i −0.0742681 0.0695446i
\(343\) 15.1003 0.815340
\(344\) 2.24243 3.88401i 0.120904 0.209412i
\(345\) −2.53890 3.19863i −0.136690 0.172209i
\(346\) 4.45681 + 7.71942i 0.239599 + 0.414998i
\(347\) −6.96915 −0.374124 −0.187062 0.982348i \(-0.559896\pi\)
−0.187062 + 0.982348i \(0.559896\pi\)
\(348\) −1.87472 2.36187i −0.100496 0.126610i
\(349\) −6.12136 10.6025i −0.327669 0.567539i 0.654380 0.756166i \(-0.272930\pi\)
−0.982049 + 0.188627i \(0.939596\pi\)
\(350\) −7.10180 + 12.3007i −0.379607 + 0.657498i
\(351\) −6.37532 4.41090i −0.340289 0.235436i
\(352\) −1.70869 + 2.95953i −0.0910734 + 0.157744i
\(353\) −12.3151 + 21.3304i −0.655467 + 1.13530i 0.326309 + 0.945263i \(0.394195\pi\)
−0.981776 + 0.190040i \(0.939138\pi\)
\(354\) −4.27986 + 10.8321i −0.227472 + 0.575720i
\(355\) −1.89338 −0.100490
\(356\) 7.90678 13.6949i 0.419059 0.725831i
\(357\) −0.695383 0.876079i −0.0368035 0.0463670i
\(358\) −9.76971 + 16.9216i −0.516345 + 0.894336i
\(359\) −11.0485 + 19.1366i −0.583120 + 1.00999i 0.411987 + 0.911190i \(0.364835\pi\)
−0.995107 + 0.0988035i \(0.968498\pi\)
\(360\) −1.44451 + 0.438356i −0.0761321 + 0.0231034i
\(361\) 9.30331 16.1138i 0.489648 0.848095i
\(362\) 11.5043 0.604653
\(363\) 0.730572 + 0.920413i 0.0383451 + 0.0483091i
\(364\) −2.23216 + 3.86621i −0.116997 + 0.202644i
\(365\) 0.327119 0.0171222
\(366\) −17.3506 + 2.57467i −0.906929 + 0.134580i
\(367\) 6.60738 0.344903 0.172451 0.985018i \(-0.444831\pi\)
0.172451 + 0.985018i \(0.444831\pi\)
\(368\) 4.68570 0.244259
\(369\) −22.4431 + 6.81067i −1.16834 + 0.354549i
\(370\) 3.80091 0.197600
\(371\) 2.22636 + 3.85616i 0.115587 + 0.200202i
\(372\) −5.70588 + 7.77450i −0.295836 + 0.403089i
\(373\) −6.13389 + 10.6242i −0.317601 + 0.550100i −0.979987 0.199062i \(-0.936210\pi\)
0.662386 + 0.749162i \(0.269544\pi\)
\(374\) −0.368762 + 0.638715i −0.0190682 + 0.0330272i
\(375\) 5.28120 + 6.65354i 0.272720 + 0.343587i
\(376\) 2.96572 + 5.13679i 0.152946 + 0.264909i
\(377\) −1.29874 + 2.24948i −0.0668885 + 0.115854i
\(378\) 14.0543 6.64996i 0.722874 0.342037i
\(379\) 8.31995 + 14.4106i 0.427367 + 0.740221i 0.996638 0.0819284i \(-0.0261079\pi\)
−0.569271 + 0.822150i \(0.692775\pi\)
\(380\) 0.157799 + 0.273317i 0.00809494 + 0.0140208i
\(381\) −12.3034 + 31.1392i −0.630320 + 1.59531i
\(382\) −2.08006 3.60277i −0.106425 0.184334i
\(383\) −14.1137 24.4457i −0.721177 1.24912i −0.960528 0.278183i \(-0.910268\pi\)
0.239351 0.970933i \(-0.423065\pi\)
\(384\) 0.636470 1.61087i 0.0324797 0.0822044i
\(385\) 5.14537 0.262232
\(386\) 6.41547 + 11.1119i 0.326539 + 0.565582i
\(387\) 9.82102 + 9.19641i 0.499231 + 0.467480i
\(388\) 10.3145 0.523639
\(389\) −2.57513 + 4.46025i −0.130564 + 0.226144i −0.923894 0.382648i \(-0.875012\pi\)
0.793330 + 0.608792i \(0.208346\pi\)
\(390\) 0.808405 + 1.01847i 0.0409352 + 0.0515722i
\(391\) 1.01125 0.0511411
\(392\) −0.976756 1.69179i −0.0493336 0.0854484i
\(393\) −0.116861 0.147227i −0.00589484 0.00742662i
\(394\) −2.40054 −0.120937
\(395\) 2.21375 0.111386
\(396\) −7.48341 7.00747i −0.376056 0.352139i
\(397\) 14.9268 + 25.8540i 0.749156 + 1.29758i 0.948228 + 0.317591i \(0.102874\pi\)
−0.199072 + 0.979985i \(0.563793\pi\)
\(398\) −9.92348 −0.497419
\(399\) −2.02092 2.54605i −0.101172 0.127462i
\(400\) −4.74681 −0.237340
\(401\) 10.1117 17.5140i 0.504956 0.874609i −0.495028 0.868877i \(-0.664842\pi\)
0.999984 0.00573174i \(-0.00182448\pi\)
\(402\) −25.3643 + 3.76384i −1.26506 + 0.187723i
\(403\) 8.03439 + 2.11023i 0.400222 + 0.105118i
\(404\) 13.8319 0.688164
\(405\) −0.297162 4.51890i −0.0147661 0.224546i
\(406\) −2.60472 4.51150i −0.129270 0.223902i
\(407\) 12.9069 + 22.3554i 0.639772 + 1.10812i
\(408\) 0.137360 0.347652i 0.00680035 0.0172113i
\(409\) 7.62920 0.377240 0.188620 0.982050i \(-0.439599\pi\)
0.188620 + 0.982050i \(0.439599\pi\)
\(410\) 3.93385 0.194279
\(411\) −14.4983 18.2657i −0.715149 0.900982i
\(412\) −10.3081 −0.507846
\(413\) −10.0605 + 17.4253i −0.495044 + 0.857442i
\(414\) −3.19056 + 13.6902i −0.156807 + 0.672838i
\(415\) 1.18881 + 2.05908i 0.0583565 + 0.101076i
\(416\) −1.49196 −0.0731495
\(417\) 10.4328 1.54813i 0.510896 0.0758124i
\(418\) −1.07169 + 1.85623i −0.0524183 + 0.0907911i
\(419\) −12.6772 + 21.9576i −0.619323 + 1.07270i 0.370287 + 0.928917i \(0.379259\pi\)
−0.989610 + 0.143781i \(0.954074\pi\)
\(420\) −2.57962 + 0.382792i −0.125872 + 0.0186783i
\(421\) −37.9032 −1.84729 −0.923645 0.383248i \(-0.874805\pi\)
−0.923645 + 0.383248i \(0.874805\pi\)
\(422\) −0.723940 1.25390i −0.0352409 0.0610390i
\(423\) −17.0276 + 5.16726i −0.827909 + 0.251241i
\(424\) −0.744043 + 1.28872i −0.0361339 + 0.0625858i
\(425\) −1.02444 −0.0496925
\(426\) 4.05186 + 5.10475i 0.196313 + 0.247326i
\(427\) −30.3026 −1.46644
\(428\) 2.66417 0.128777
\(429\) −3.24510 + 8.21318i −0.156675 + 0.396536i
\(430\) −1.12836 1.95437i −0.0544143 0.0942483i
\(431\) −18.0237 31.2180i −0.868171 1.50372i −0.863864 0.503725i \(-0.831962\pi\)
−0.00430706 0.999991i \(-0.501371\pi\)
\(432\) 4.27311 + 2.95644i 0.205590 + 0.142242i
\(433\) −36.1852 −1.73895 −0.869475 0.493977i \(-0.835543\pi\)
−0.869475 + 0.493977i \(0.835543\pi\)
\(434\) −11.7220 + 11.8386i −0.562674 + 0.568273i
\(435\) −1.50090 + 0.222720i −0.0719627 + 0.0106786i
\(436\) 7.97751 13.8175i 0.382053 0.661736i
\(437\) 2.93888 0.140586
\(438\) −0.700038 0.881945i −0.0334491 0.0421409i
\(439\) −17.8814 −0.853431 −0.426715 0.904386i \(-0.640329\pi\)
−0.426715 + 0.904386i \(0.640329\pi\)
\(440\) 0.859785 + 1.48919i 0.0409887 + 0.0709944i
\(441\) 5.60800 1.70183i 0.267048 0.0810394i
\(442\) −0.321989 −0.0153155
\(443\) −10.6424 −0.505637 −0.252818 0.967514i \(-0.581358\pi\)
−0.252818 + 0.967514i \(0.581358\pi\)
\(444\) −8.13398 10.2476i −0.386022 0.486330i
\(445\) −3.97857 6.89109i −0.188602 0.326669i
\(446\) 3.13647 0.148516
\(447\) 5.92613 + 7.46604i 0.280296 + 0.353132i
\(448\) 1.49612 2.59136i 0.0706851 0.122430i
\(449\) 31.6508 1.49370 0.746848 0.664995i \(-0.231566\pi\)
0.746848 + 0.664995i \(0.231566\pi\)
\(450\) 3.23217 13.8688i 0.152366 0.653780i
\(451\) 13.3584 + 23.1374i 0.629021 + 1.08950i
\(452\) 16.9776 0.798561
\(453\) −1.43223 + 3.62491i −0.0672922 + 0.170313i
\(454\) −4.28830 7.42756i −0.201260 0.348593i
\(455\) 1.12319 + 1.94542i 0.0526558 + 0.0912026i
\(456\) 0.399196 1.01034i 0.0186940 0.0473137i
\(457\) 15.8234 + 27.4070i 0.740189 + 1.28205i 0.952409 + 0.304824i \(0.0985976\pi\)
−0.212219 + 0.977222i \(0.568069\pi\)
\(458\) 3.04068 + 5.26662i 0.142082 + 0.246093i
\(459\) 0.922205 + 0.638047i 0.0430449 + 0.0297815i
\(460\) 1.17889 2.04189i 0.0549658 0.0952036i
\(461\) −15.0787 26.1171i −0.702285 1.21639i −0.967662 0.252249i \(-0.918830\pi\)
0.265377 0.964145i \(-0.414504\pi\)
\(462\) −11.0112 13.8724i −0.512285 0.645403i
\(463\) 15.3266 26.5465i 0.712289 1.23372i −0.251708 0.967803i \(-0.580992\pi\)
0.963996 0.265917i \(-0.0856746\pi\)
\(464\) 0.870491 1.50773i 0.0404115 0.0699948i
\(465\) 1.95234 + 4.44246i 0.0905378 + 0.206014i
\(466\) −13.6470 23.6372i −0.632183 1.09497i
\(467\) −12.0165 −0.556056 −0.278028 0.960573i \(-0.589681\pi\)
−0.278028 + 0.960573i \(0.589681\pi\)
\(468\) 1.01590 4.35907i 0.0469599 0.201498i
\(469\) −44.2985 −2.04551
\(470\) 2.98461 0.137670
\(471\) −8.11044 + 1.20352i −0.373709 + 0.0554551i
\(472\) −6.72438 −0.309515
\(473\) 7.66324 13.2731i 0.352356 0.610299i
\(474\) −4.73746 5.96850i −0.217599 0.274142i
\(475\) −2.97721 −0.136604
\(476\) 0.322887 0.559256i 0.0147995 0.0256335i
\(477\) −3.25863 3.05138i −0.149202 0.139713i
\(478\) 9.32939 16.1590i 0.426717 0.739095i
\(479\) −10.0399 + 17.3896i −0.458735 + 0.794553i −0.998894 0.0470100i \(-0.985031\pi\)
0.540159 + 0.841563i \(0.318364\pi\)
\(480\) −0.541840 0.682638i −0.0247315 0.0311580i
\(481\) −5.63492 + 9.75997i −0.256930 + 0.445016i
\(482\) 10.4872 0.477677
\(483\) −8.92378 + 22.5856i −0.406046 + 1.02768i
\(484\) −0.339226 + 0.587557i −0.0154194 + 0.0267072i
\(485\) 2.59505 4.49475i 0.117835 0.204096i
\(486\) −11.5475 + 10.4717i −0.523804 + 0.475005i
\(487\) −8.54869 + 14.8068i −0.387378 + 0.670958i −0.992096 0.125481i \(-0.959952\pi\)
0.604718 + 0.796440i \(0.293286\pi\)
\(488\) −5.06352 8.77028i −0.229215 0.397012i
\(489\) −9.00776 11.3484i −0.407345 0.513194i
\(490\) −0.982978 −0.0444064
\(491\) 14.0523 + 24.3393i 0.634172 + 1.09842i 0.986690 + 0.162613i \(0.0519921\pi\)
−0.352518 + 0.935805i \(0.614675\pi\)
\(492\) −8.41848 10.6060i −0.379535 0.478157i
\(493\) 0.187866 0.325393i 0.00846105 0.0146550i
\(494\) −0.935763 −0.0421020
\(495\) −4.93642 + 1.49803i −0.221875 + 0.0673313i
\(496\) −5.38512 1.41440i −0.241799 0.0635085i
\(497\) 5.62961 + 9.75076i 0.252522 + 0.437381i
\(498\) 3.00741 7.61161i 0.134765 0.341084i
\(499\) 18.7866 0.841002 0.420501 0.907292i \(-0.361854\pi\)
0.420501 + 0.907292i \(0.361854\pi\)
\(500\) −2.45222 + 4.24737i −0.109667 + 0.189948i
\(501\) 3.73795 + 4.70926i 0.166999 + 0.210394i
\(502\) −1.44756 + 2.50725i −0.0646079 + 0.111904i
\(503\) 7.87967 + 13.6480i 0.351337 + 0.608533i 0.986484 0.163858i \(-0.0523938\pi\)
−0.635147 + 0.772391i \(0.719060\pi\)
\(504\) 6.55245 + 6.13572i 0.291869 + 0.273306i
\(505\) 3.48000 6.02754i 0.154858 0.268222i
\(506\) 16.0128 0.711856
\(507\) 18.4591 2.73916i 0.819796 0.121650i
\(508\) −19.3306 −0.857659
\(509\) 10.9607 + 18.9845i 0.485826 + 0.841475i 0.999867 0.0162901i \(-0.00518552\pi\)
−0.514041 + 0.857765i \(0.671852\pi\)
\(510\) −0.116938 0.147324i −0.00517809 0.00652362i
\(511\) −0.972624 1.68463i −0.0430264 0.0745239i
\(512\) 1.00000 0.0441942
\(513\) 2.68011 + 1.85429i 0.118330 + 0.0818688i
\(514\) 2.52702 4.37693i 0.111462 0.193058i
\(515\) −2.59345 + 4.49199i −0.114281 + 0.197941i
\(516\) −2.85448 + 7.22455i −0.125662 + 0.318043i
\(517\) 10.1350 + 17.5543i 0.445737 + 0.772038i
\(518\) −11.3013 19.5743i −0.496548 0.860047i
\(519\) −9.59836 12.0925i −0.421321 0.530802i
\(520\) −0.375366 + 0.650154i −0.0164609 + 0.0285111i
\(521\) −21.8435 37.8340i −0.956979 1.65754i −0.729772 0.683691i \(-0.760374\pi\)
−0.227207 0.973846i \(-0.572960\pi\)
\(522\) 3.81242 + 3.56995i 0.166865 + 0.156253i
\(523\) 12.2033 0.533613 0.266807 0.963750i \(-0.414031\pi\)
0.266807 + 0.963750i \(0.414031\pi\)
\(524\) 0.0542619 0.0939843i 0.00237044 0.00410572i
\(525\) 9.04015 22.8802i 0.394545 0.998572i
\(526\) 12.2997 21.3038i 0.536294 0.928888i
\(527\) −1.16219 0.305251i −0.0506260 0.0132969i
\(528\) 2.17506 5.50495i 0.0946571 0.239572i
\(529\) 0.522108 + 0.904317i 0.0227003 + 0.0393181i
\(530\) 0.374391 + 0.648464i 0.0162625 + 0.0281675i
\(531\) 4.57873 19.6467i 0.198700 0.852592i
\(532\) 0.938371 1.62531i 0.0406836 0.0704660i
\(533\) −5.83201 + 10.1013i −0.252613 + 0.437538i
\(534\) −10.0649 + 25.4736i −0.435549 + 1.10235i
\(535\) 0.670284 1.16097i 0.0289789 0.0501930i
\(536\) −7.40223 12.8210i −0.319727 0.553784i
\(537\) 12.4362 31.4755i 0.536663 1.35827i
\(538\) −18.6007 −0.801931
\(539\) −3.33794 5.78149i −0.143775 0.249026i
\(540\) 2.36341 1.11828i 0.101705 0.0481230i
\(541\) 10.8833 + 18.8504i 0.467909 + 0.810442i 0.999328 0.0366671i \(-0.0116741\pi\)
−0.531418 + 0.847109i \(0.678341\pi\)
\(542\) −2.71550 4.70338i −0.116641 0.202028i
\(543\) −19.7102 + 2.92482i −0.845846 + 0.125516i
\(544\) 0.215816 0.00925304
\(545\) −4.01416 6.95273i −0.171948 0.297822i
\(546\) 2.84140 7.19144i 0.121601 0.307765i
\(547\) 25.7658 1.10167 0.550834 0.834615i \(-0.314310\pi\)
0.550834 + 0.834615i \(0.314310\pi\)
\(548\) 6.73200 11.6602i 0.287577 0.498098i
\(549\) 29.0720 8.82231i 1.24076 0.376527i
\(550\) −16.2216 −0.691692
\(551\) 0.545974 0.945655i 0.0232593 0.0402863i
\(552\) −8.02796 + 1.19128i −0.341693 + 0.0507041i
\(553\) −6.58217 11.4006i −0.279902 0.484805i
\(554\) −4.29110 + 7.43240i −0.182311 + 0.315772i
\(555\) −6.51206 + 0.966330i −0.276421 + 0.0410184i
\(556\) 3.04467 + 5.27352i 0.129123 + 0.223647i
\(557\) −21.8646 −0.926432 −0.463216 0.886245i \(-0.653305\pi\)
−0.463216 + 0.886245i \(0.653305\pi\)
\(558\) 7.79927 14.7706i 0.330169 0.625291i
\(559\) 6.69126 0.283010
\(560\) −0.752825 1.30393i −0.0318127 0.0551012i
\(561\) 0.469412 1.18806i 0.0198186 0.0501598i
\(562\) −5.87824 + 10.1814i −0.247958 + 0.429477i
\(563\) 11.1206 + 19.2615i 0.468678 + 0.811774i 0.999359 0.0357973i \(-0.0113971\pi\)
−0.530681 + 0.847572i \(0.678064\pi\)
\(564\) −6.38711 8.04681i −0.268946 0.338832i
\(565\) 4.27144 7.39836i 0.179701 0.311251i
\(566\) 27.0577 1.13732
\(567\) −22.3884 + 14.9664i −0.940225 + 0.628531i
\(568\) −1.88140 + 3.25868i −0.0789418 + 0.136731i
\(569\) 26.4288 1.10795 0.553977 0.832532i \(-0.313109\pi\)
0.553977 + 0.832532i \(0.313109\pi\)
\(570\) −0.339843 0.428152i −0.0142345 0.0179333i
\(571\) 5.36835 + 9.29825i 0.224658 + 0.389120i 0.956217 0.292659i \(-0.0945400\pi\)
−0.731558 + 0.681779i \(0.761207\pi\)
\(572\) −5.09860 −0.213183
\(573\) 4.47971 + 5.64377i 0.187142 + 0.235772i
\(574\) −11.6965 20.2590i −0.488204 0.845594i
\(575\) 11.1211 + 19.2622i 0.463780 + 0.803290i
\(576\) −0.680914 + 2.92170i −0.0283714 + 0.121738i
\(577\) 19.1846 + 33.2287i 0.798666 + 1.38333i 0.920485 + 0.390778i \(0.127794\pi\)
−0.121818 + 0.992552i \(0.538873\pi\)
\(578\) −16.9534 −0.705169
\(579\) −13.8166 17.4069i −0.574199 0.723406i
\(580\) −0.438017 0.758668i −0.0181877 0.0315020i
\(581\) 7.06940 12.2446i 0.293288 0.507990i
\(582\) −17.6717 + 2.62233i −0.732517 + 0.108699i
\(583\) −2.54267 + 4.40404i −0.105307 + 0.182397i
\(584\) 0.325049 0.563001i 0.0134506 0.0232971i
\(585\) −1.64396 1.53941i −0.0679696 0.0636467i
\(586\) −0.384266 0.665569i −0.0158739 0.0274944i
\(587\) −8.66777 15.0130i −0.357757 0.619653i 0.629829 0.776734i \(-0.283125\pi\)
−0.987586 + 0.157081i \(0.949792\pi\)
\(588\) 2.10358 + 2.65020i 0.0867503 + 0.109293i
\(589\) −3.37756 0.887117i −0.139170 0.0365530i
\(590\) −1.69180 + 2.93029i −0.0696504 + 0.120638i
\(591\) 4.11282 0.610306i 0.169179 0.0251046i
\(592\) 3.77685 6.54170i 0.155228 0.268862i
\(593\) −23.2682 −0.955511 −0.477755 0.878493i \(-0.658549\pi\)
−0.477755 + 0.878493i \(0.658549\pi\)
\(594\) 14.6028 + 10.1033i 0.599161 + 0.414542i
\(595\) −0.162472 0.281409i −0.00666069 0.0115367i
\(596\) −2.75168 + 4.76605i −0.112713 + 0.195225i
\(597\) 17.0018 2.52292i 0.695838 0.103256i
\(598\) 3.49545 + 6.05429i 0.142939 + 0.247578i
\(599\) 9.37723 + 16.2418i 0.383143 + 0.663623i 0.991510 0.130033i \(-0.0415083\pi\)
−0.608367 + 0.793656i \(0.708175\pi\)
\(600\) 8.13266 1.20681i 0.332014 0.0492679i
\(601\) 2.40297 4.16206i 0.0980192 0.169774i −0.812846 0.582479i \(-0.802083\pi\)
0.910865 + 0.412705i \(0.135416\pi\)
\(602\) −6.70991 + 11.6219i −0.273475 + 0.473673i
\(603\) 42.4995 12.8971i 1.73072 0.525210i
\(604\) −2.25028 −0.0915625
\(605\) 0.170694 + 0.295650i 0.00693968 + 0.0120199i
\(606\) −23.6981 + 3.51658i −0.962669 + 0.142851i
\(607\) 6.51125 + 11.2778i 0.264283 + 0.457752i 0.967376 0.253346i \(-0.0815313\pi\)
−0.703092 + 0.711099i \(0.748198\pi\)
\(608\) 0.627203 0.0254364
\(609\) 5.60963 + 7.06730i 0.227314 + 0.286382i
\(610\) −5.09577 −0.206322
\(611\) −4.42475 + 7.66389i −0.179006 + 0.310048i
\(612\) −0.146952 + 0.630551i −0.00594019 + 0.0254885i
\(613\) −22.5833 39.1155i −0.912133 1.57986i −0.811046 0.584983i \(-0.801101\pi\)
−0.101087 0.994878i \(-0.532232\pi\)
\(614\) −5.72092 + 9.90893i −0.230878 + 0.399892i
\(615\) −6.73983 + 1.00013i −0.271776 + 0.0403291i
\(616\) 5.11281 8.85564i 0.206001 0.356804i
\(617\) 40.8474 1.64446 0.822228 0.569158i \(-0.192731\pi\)
0.822228 + 0.569158i \(0.192731\pi\)
\(618\) 17.6608 2.62071i 0.710423 0.105420i
\(619\) −3.78254 6.55155i −0.152033 0.263329i 0.779942 0.625852i \(-0.215249\pi\)
−0.931975 + 0.362523i \(0.881915\pi\)
\(620\) −1.97121 + 1.99082i −0.0791656 + 0.0799534i
\(621\) 1.98579 24.2665i 0.0796872 0.973781i
\(622\) −10.2597 −0.411378
\(623\) −23.6590 + 40.9786i −0.947878 + 1.64177i
\(624\) 2.55617 0.379312i 0.102329 0.0151846i
\(625\) −10.6331 18.4171i −0.425324 0.736682i
\(626\) −2.52135 −0.100773
\(627\) 1.36420 3.45272i 0.0544809 0.137888i
\(628\) −2.36692 4.09962i −0.0944504 0.163593i
\(629\) 0.815105 1.41180i 0.0325004 0.0562923i
\(630\) 4.32231 1.31167i 0.172205 0.0522581i
\(631\) 10.0926 17.4809i 0.401781 0.695905i −0.592160 0.805820i \(-0.701725\pi\)
0.993941 + 0.109915i \(0.0350580\pi\)
\(632\) 2.19974 3.81007i 0.0875011 0.151556i
\(633\) 1.55911 + 1.96424i 0.0619690 + 0.0780717i
\(634\) 5.22102 0.207353
\(635\) −4.86344 + 8.42373i −0.193000 + 0.334285i
\(636\) 0.947121 2.39711i 0.0375558 0.0950517i
\(637\) 1.45728 2.52409i 0.0577397 0.100008i
\(638\) 2.97479 5.15249i 0.117773 0.203989i
\(639\) −8.23983 7.71578i −0.325963 0.305231i
\(640\) 0.251592 0.435771i 0.00994506 0.0172253i
\(641\) −7.86394 −0.310607 −0.155304 0.987867i \(-0.549636\pi\)
−0.155304 + 0.987867i \(0.549636\pi\)
\(642\) −4.56449 + 0.677330i −0.180146 + 0.0267321i
\(643\) 9.84791 17.0571i 0.388364 0.672666i −0.603866 0.797086i \(-0.706374\pi\)
0.992230 + 0.124420i \(0.0397071\pi\)
\(644\) −14.0207 −0.552495
\(645\) 2.43008 + 3.06154i 0.0956843 + 0.120548i
\(646\) 0.135360 0.00532568
\(647\) −18.5409 −0.728918 −0.364459 0.931219i \(-0.618746\pi\)
−0.364459 + 0.931219i \(0.618746\pi\)
\(648\) −8.07271 3.97886i −0.317126 0.156304i
\(649\) −22.9797 −0.902034
\(650\) −3.54103 6.13324i −0.138891 0.240566i
\(651\) 17.0734 23.2632i 0.669158 0.911757i
\(652\) 4.18257 7.24443i 0.163802 0.283714i
\(653\) −3.53181 + 6.11727i −0.138210 + 0.239387i −0.926819 0.375508i \(-0.877468\pi\)
0.788609 + 0.614895i \(0.210802\pi\)
\(654\) −10.1549 + 25.7015i −0.397087 + 1.00501i
\(655\) −0.0273037 0.0472914i −0.00106684 0.00184783i
\(656\) 3.90895 6.77051i 0.152619 0.264344i
\(657\) 1.42359 + 1.33305i 0.0555396 + 0.0520073i
\(658\) −8.87417 15.3705i −0.345951 0.599205i
\(659\) −22.5386 39.0380i −0.877979 1.52070i −0.853556 0.521002i \(-0.825558\pi\)
−0.0244230 0.999702i \(-0.507775\pi\)
\(660\) −1.85167 2.33283i −0.0720761 0.0908052i
\(661\) 5.45170 + 9.44263i 0.212047 + 0.367276i 0.952355 0.304992i \(-0.0986538\pi\)
−0.740308 + 0.672268i \(0.765320\pi\)
\(662\) −15.7455 27.2720i −0.611967 1.05996i
\(663\) 0.551661 0.0818616i 0.0214248 0.00317924i
\(664\) 4.72515 0.183371
\(665\) −0.472174 0.817829i −0.0183101 0.0317141i
\(666\) 16.5412 + 15.4892i 0.640958 + 0.600193i
\(667\) −8.15772 −0.315868
\(668\) −1.73564 + 3.00622i −0.0671540 + 0.116314i
\(669\) −5.37368 + 0.797406i −0.207759 + 0.0308295i
\(670\) −7.44937 −0.287794
\(671\) −17.3040 29.9713i −0.668012 1.15703i
\(672\) −1.90447 + 4.82012i −0.0734666 + 0.185940i
\(673\) 28.3360 1.09227 0.546137 0.837696i \(-0.316098\pi\)
0.546137 + 0.837696i \(0.316098\pi\)
\(674\) 22.7619 0.876756
\(675\) −2.01169 + 24.5830i −0.0774300 + 0.946198i
\(676\) 5.38702 + 9.33060i 0.207193 + 0.358869i
\(677\) 29.4500 1.13185 0.565927 0.824455i \(-0.308518\pi\)
0.565927 + 0.824455i \(0.308518\pi\)
\(678\) −29.0876 + 4.31634i −1.11710 + 0.165768i
\(679\) −30.8635 −1.18443
\(680\) 0.0542976 0.0940463i 0.00208222 0.00360651i
\(681\) 9.23547 + 11.6353i 0.353904 + 0.445866i
\(682\) −18.4030 4.83354i −0.704686 0.185086i
\(683\) 13.5928 0.520113 0.260057 0.965593i \(-0.416259\pi\)
0.260057 + 0.965593i \(0.416259\pi\)
\(684\) −0.427071 + 1.83250i −0.0163295 + 0.0700674i
\(685\) −3.38744 5.86722i −0.129427 0.224175i
\(686\) −7.55016 13.0773i −0.288266 0.499292i
\(687\) −6.54854 8.25019i −0.249842 0.314764i
\(688\) −4.48487 −0.170984
\(689\) −2.22017 −0.0845817
\(690\) −1.50065 + 3.79807i −0.0571288 + 0.144590i
\(691\) −15.3335 −0.583314 −0.291657 0.956523i \(-0.594207\pi\)
−0.291657 + 0.956523i \(0.594207\pi\)
\(692\) 4.45681 7.71942i 0.169422 0.293448i
\(693\) 22.3922 + 20.9680i 0.850609 + 0.796510i
\(694\) 3.48458 + 6.03546i 0.132273 + 0.229103i
\(695\) 3.06406 0.116226
\(696\) −1.10808 + 2.80450i −0.0420017 + 0.106304i
\(697\) 0.843615 1.46118i 0.0319542 0.0553463i
\(698\) −6.12136 + 10.6025i −0.231697 + 0.401311i
\(699\) 29.3907 + 37.0279i 1.11166 + 1.40052i
\(700\) 14.2036 0.536845
\(701\) 5.41705 + 9.38260i 0.204599 + 0.354376i 0.950005 0.312235i \(-0.101078\pi\)
−0.745406 + 0.666611i \(0.767744\pi\)
\(702\) −0.632292 + 7.72664i −0.0238643 + 0.291623i
\(703\) 2.36885 4.10297i 0.0893429 0.154746i
\(704\) 3.41738 0.128797
\(705\) −5.11351 + 0.758799i −0.192586 + 0.0285780i
\(706\) 24.6302 0.926971
\(707\) −41.3885 −1.55657
\(708\) 11.5208 1.70959i 0.432979 0.0642502i
\(709\) 24.5137 + 42.4590i 0.920631 + 1.59458i 0.798441 + 0.602073i \(0.205658\pi\)
0.122190 + 0.992507i \(0.461008\pi\)
\(710\) 0.946692 + 1.63972i 0.0355287 + 0.0615375i
\(711\) 9.63405 + 9.02133i 0.361305 + 0.338326i
\(712\) −15.8136 −0.592638
\(713\) 6.87697 + 25.1662i 0.257544 + 0.942481i
\(714\) −0.411015 + 1.04026i −0.0153819 + 0.0389307i
\(715\) −1.28277 + 2.22182i −0.0479728 + 0.0830913i
\(716\) 19.5394 0.730222
\(717\) −11.8757 + 30.0569i −0.443508 + 1.12250i
\(718\) 22.0971 0.824656
\(719\) −13.9628 24.1842i −0.520723 0.901919i −0.999710 0.0240967i \(-0.992329\pi\)
0.478987 0.877822i \(-0.341004\pi\)
\(720\) 1.10188 + 1.03180i 0.0410646 + 0.0384529i
\(721\) 30.8445 1.14871
\(722\) −18.6066 −0.692467
\(723\) −17.9675 + 2.66622i −0.668220 + 0.0991579i
\(724\) −5.75215 9.96302i −0.213777 0.370273i
\(725\) 8.26410 0.306921
\(726\) 0.431815 1.09290i 0.0160261 0.0405613i
\(727\) −24.4221 + 42.3003i −0.905765 + 1.56883i −0.0858774 + 0.996306i \(0.527369\pi\)
−0.819887 + 0.572525i \(0.805964\pi\)
\(728\) 4.46431 0.165458
\(729\) 17.1219 20.8768i 0.634144 0.773215i
\(730\) −0.163559 0.283293i −0.00605361 0.0104852i
\(731\) −0.967906 −0.0357993
\(732\) 10.9050 + 13.7387i 0.403061 + 0.507797i
\(733\) 9.86372 + 17.0845i 0.364325 + 0.631029i 0.988668 0.150122i \(-0.0479665\pi\)
−0.624343 + 0.781150i \(0.714633\pi\)
\(734\) −3.30369 5.72216i −0.121942 0.211209i
\(735\) 1.68413 0.249909i 0.0621199 0.00921804i
\(736\) −2.34285 4.05794i −0.0863586 0.149577i
\(737\) −25.2962 43.8143i −0.931797 1.61392i
\(738\) 17.1198 + 16.0309i 0.630187 + 0.590107i
\(739\) 23.1467 40.0913i 0.851465 1.47478i −0.0284204 0.999596i \(-0.509048\pi\)
0.879886 0.475185i \(-0.157619\pi\)
\(740\) −1.90045 3.29168i −0.0698620 0.121005i
\(741\) 1.60323 0.237906i 0.0588963 0.00873968i
\(742\) 2.22636 3.85616i 0.0817321 0.141564i
\(743\) −25.8397 + 44.7556i −0.947966 + 1.64193i −0.198265 + 0.980148i \(0.563531\pi\)
−0.749701 + 0.661777i \(0.769803\pi\)
\(744\) 9.58586 + 1.05419i 0.351435 + 0.0386483i
\(745\) 1.38460 + 2.39820i 0.0507279 + 0.0878633i
\(746\) 12.2678 0.449155
\(747\) −3.21742 + 13.8055i −0.117719 + 0.505117i
\(748\) 0.737524 0.0269666
\(749\) −7.97184 −0.291285
\(750\) 3.12153 7.90043i 0.113982 0.288483i
\(751\) 44.9222 1.63923 0.819617 0.572912i \(-0.194187\pi\)
0.819617 + 0.572912i \(0.194187\pi\)
\(752\) 2.96572 5.13679i 0.108149 0.187319i
\(753\) 1.84266 4.66368i 0.0671503 0.169954i
\(754\) 2.59748 0.0945946
\(755\) −0.566153 + 0.980605i −0.0206044 + 0.0356879i
\(756\) −12.7862 8.84639i −0.465029 0.321740i
\(757\) 7.25508 12.5662i 0.263690 0.456725i −0.703529 0.710666i \(-0.748394\pi\)
0.967220 + 0.253941i \(0.0817270\pi\)
\(758\) 8.31995 14.4106i 0.302194 0.523416i
\(759\) −27.4346 + 4.07104i −0.995812 + 0.147769i
\(760\) 0.157799 0.273317i 0.00572399 0.00991424i
\(761\) 54.1047 1.96129 0.980647 0.195783i \(-0.0627249\pi\)
0.980647 + 0.195783i \(0.0627249\pi\)
\(762\) 33.1190 4.91456i 1.19977 0.178036i
\(763\) −23.8706 + 41.3452i −0.864175 + 1.49680i
\(764\) −2.08006 + 3.60277i −0.0752540 + 0.130344i
\(765\) 0.237803 + 0.222679i 0.00859780 + 0.00805098i
\(766\) −14.1137 + 24.4457i −0.509949 + 0.883258i
\(767\) −5.01626 8.68842i −0.181127 0.313721i
\(768\) −1.71329 + 0.254237i −0.0618230 + 0.00917398i
\(769\) −11.1636 −0.402569 −0.201285 0.979533i \(-0.564512\pi\)
−0.201285 + 0.979533i \(0.564512\pi\)
\(770\) −2.57269 4.45602i −0.0927132 0.160584i
\(771\) −3.21675 + 8.14141i −0.115848 + 0.293206i
\(772\) 6.41547 11.1119i 0.230898 0.399927i
\(773\) −51.7015 −1.85957 −0.929787 0.368098i \(-0.880009\pi\)
−0.929787 + 0.368098i \(0.880009\pi\)
\(774\) 3.05381 13.1035i 0.109767 0.470994i
\(775\) −6.96665 25.4944i −0.250249 0.915785i
\(776\) −5.15725 8.93262i −0.185134 0.320662i
\(777\) 24.3388 + 30.6633i 0.873151 + 1.10004i
\(778\) 5.15025 0.184646
\(779\) 2.45171 4.24648i 0.0878415 0.152146i
\(780\) 0.477819 1.20933i 0.0171086 0.0433011i
\(781\) −6.42945 + 11.1361i −0.230064 + 0.398482i
\(782\) −0.505625 0.875767i −0.0180811 0.0313174i
\(783\) −7.43940 5.14711i −0.265863 0.183943i
\(784\) −0.976756 + 1.69179i −0.0348842 + 0.0604211i
\(785\) −2.38199 −0.0850170
\(786\) −0.0690720 + 0.174818i −0.00246372 + 0.00623554i
\(787\) 6.09813 0.217375 0.108687 0.994076i \(-0.465335\pi\)
0.108687 + 0.994076i \(0.465335\pi\)
\(788\) 1.20027 + 2.07893i 0.0427578 + 0.0740587i
\(789\) −15.6568 + 39.6266i −0.557397 + 1.41074i
\(790\) −1.10688 1.91717i −0.0393809 0.0682098i
\(791\) −50.8012 −1.80628
\(792\) −2.32694 + 9.98456i −0.0826842 + 0.354786i
\(793\) 7.55459 13.0849i 0.268271 0.464659i
\(794\) 14.9268 25.8540i 0.529733 0.917525i
\(795\) −0.806303 1.01582i −0.0285966 0.0360275i
\(796\) 4.96174 + 8.59399i 0.175864 + 0.304606i
\(797\) 26.2865 + 45.5296i 0.931117 + 1.61274i 0.781416 + 0.624011i \(0.214498\pi\)
0.149701 + 0.988731i \(0.452169\pi\)
\(798\) −1.19449 + 3.02319i −0.0422845 + 0.107020i
\(799\) 0.640051 1.10860i 0.0226434 0.0392195i
\(800\) 2.37340 + 4.11085i 0.0839125 + 0.145341i
\(801\) 10.7677 46.2025i 0.380457 1.63249i
\(802\) −20.2235 −0.714115
\(803\) 1.11081 1.92399i 0.0391998 0.0678960i
\(804\) 15.9417 + 20.0842i 0.562222 + 0.708316i
\(805\) −3.52751 + 6.10983i −0.124328 + 0.215343i
\(806\) −2.18968 8.01311i −0.0771282 0.282250i
\(807\) 31.8683 4.72897i 1.12182 0.166468i
\(808\) −6.91596 11.9788i −0.243303 0.421412i
\(809\) −23.1168 40.0395i −0.812744 1.40771i −0.910937 0.412546i \(-0.864640\pi\)
0.0981929 0.995167i \(-0.468694\pi\)
\(810\) −3.76490 + 2.51680i −0.132285 + 0.0884313i
\(811\) −24.3552 + 42.1845i −0.855227 + 1.48130i 0.0212072 + 0.999775i \(0.493249\pi\)
−0.876434 + 0.481522i \(0.840084\pi\)
\(812\) −2.60472 + 4.51150i −0.0914077 + 0.158323i
\(813\) 5.84821 + 7.36788i 0.205106 + 0.258403i
\(814\) 12.9069 22.3554i 0.452387 0.783558i
\(815\) −2.10461 3.64529i −0.0737211 0.127689i
\(816\) −0.369755 + 0.0548684i −0.0129440 + 0.00192078i
\(817\) −2.81292 −0.0984117
\(818\) −3.81460 6.60708i −0.133374 0.231011i
\(819\) −3.03981 + 13.0434i −0.106220 + 0.455773i
\(820\) −1.96693 3.40681i −0.0686880 0.118971i
\(821\) −12.0392 20.8525i −0.420171 0.727758i 0.575785 0.817601i \(-0.304697\pi\)
−0.995956 + 0.0898436i \(0.971363\pi\)
\(822\) −8.56943 + 21.6888i −0.298893 + 0.756483i
\(823\) 32.4403 1.13080 0.565398 0.824818i \(-0.308722\pi\)
0.565398 + 0.824818i \(0.308722\pi\)
\(824\) 5.15407 + 8.92711i 0.179551 + 0.310991i
\(825\) 27.7923 4.12413i 0.967605 0.143584i
\(826\) 20.1210 0.700098
\(827\) −13.1241 + 22.7317i −0.456371 + 0.790458i −0.998766 0.0496657i \(-0.984184\pi\)
0.542395 + 0.840124i \(0.317518\pi\)
\(828\) 13.4514 4.08201i 0.467467 0.141860i
\(829\) −6.77611 −0.235344 −0.117672 0.993053i \(-0.537543\pi\)
−0.117672 + 0.993053i \(0.537543\pi\)
\(830\) 1.18881 2.05908i 0.0412642 0.0714718i
\(831\) 5.46231 13.8248i 0.189485 0.479577i
\(832\) 0.745981 + 1.29208i 0.0258623 + 0.0447947i
\(833\) −0.210800 + 0.365116i −0.00730378 + 0.0126505i
\(834\) −6.55712 8.26100i −0.227054 0.286055i
\(835\) 0.873348 + 1.51268i 0.0302235 + 0.0523486i
\(836\) 2.14339 0.0741306
\(837\) −9.60717 + 27.2892i −0.332072 + 0.943254i
\(838\) 25.3544 0.875854
\(839\) 20.2110 + 35.0065i 0.697762 + 1.20856i 0.969241 + 0.246115i \(0.0791541\pi\)
−0.271479 + 0.962444i \(0.587513\pi\)
\(840\) 1.62132 + 2.04262i 0.0559407 + 0.0704770i
\(841\) 12.9845 22.4898i 0.447741 0.775510i
\(842\) 18.9516 + 32.8252i 0.653116 + 1.13123i
\(843\) 7.48264 18.9382i 0.257716 0.652265i
\(844\) −0.723940 + 1.25390i −0.0249191 + 0.0431611i
\(845\) 5.42133 0.186500
\(846\) 12.9888 + 12.1627i 0.446563 + 0.418162i
\(847\) 1.01505 1.75811i 0.0348775 0.0604095i
\(848\) 1.48809 0.0511011
\(849\) −46.3578 + 6.87908i −1.59099 + 0.236089i
\(850\) 0.512218 + 0.887188i 0.0175689 + 0.0304303i
\(851\) −35.3944 −1.21330
\(852\) 2.39491 6.06139i 0.0820482 0.207660i
\(853\) −24.0086 41.5841i −0.822038 1.42381i −0.904162 0.427189i \(-0.859504\pi\)
0.0821244 0.996622i \(-0.473830\pi\)
\(854\) 15.1513 + 26.2428i 0.518466 + 0.898010i
\(855\) 0.691102 + 0.647148i 0.0236352 + 0.0221320i
\(856\) −1.33208 2.30724i −0.0455297 0.0788598i
\(857\) −14.4996 −0.495297 −0.247649 0.968850i \(-0.579658\pi\)
−0.247649 + 0.968850i \(0.579658\pi\)
\(858\) 8.73538 1.29625i 0.298221 0.0442533i
\(859\) −13.8382 23.9685i −0.472154 0.817794i 0.527339 0.849655i \(-0.323190\pi\)
−0.999492 + 0.0318611i \(0.989857\pi\)
\(860\) −1.12836 + 1.95437i −0.0384767 + 0.0666436i
\(861\) 25.1901 + 31.7358i 0.858478 + 1.08155i
\(862\) −18.0237 + 31.2180i −0.613890 + 1.06329i
\(863\) −0.000852621 0.00147678i −2.90236e−5 5.02703e-5i −0.866040 0.499975i \(-0.833343\pi\)
0.866011 + 0.500025i \(0.166676\pi\)
\(864\) 0.423799 5.17884i 0.0144179 0.176188i
\(865\) −2.24260 3.88429i −0.0762506 0.132070i
\(866\) 18.0926 + 31.3373i 0.614812 + 1.06489i
\(867\) 29.0461 4.31019i 0.986458 0.146382i
\(868\) 16.1136 + 4.23223i 0.546930 + 0.143651i
\(869\) 7.51735 13.0204i 0.255009 0.441688i
\(870\) 0.943332 + 1.18846i 0.0319820 + 0.0402925i
\(871\) 11.0438 19.1285i 0.374206 0.648145i
\(872\) −15.9550 −0.540305
\(873\) 29.6101 8.98561i 1.00215 0.304117i
\(874\) −1.46944 2.54515i −0.0497046 0.0860909i
\(875\) 7.33764 12.7092i 0.248057 0.429648i
\(876\) −0.413767 + 1.04722i −0.0139799 + 0.0353824i
\(877\) 17.6037 + 30.4906i 0.594436 + 1.02959i 0.993626 + 0.112725i \(0.0359580\pi\)
−0.399190 + 0.916868i \(0.630709\pi\)
\(878\) 8.94068 + 15.4857i 0.301733 + 0.522617i
\(879\) 0.827572 + 1.04262i 0.0279133 + 0.0351666i
\(880\) 0.859785 1.48919i 0.0289834 0.0502006i
\(881\) 2.99880 5.19407i 0.101032 0.174993i −0.811078 0.584938i \(-0.801119\pi\)
0.912110 + 0.409945i \(0.134452\pi\)
\(882\) −4.27783 4.00576i −0.144042 0.134881i
\(883\) 11.2673 0.379174 0.189587 0.981864i \(-0.439285\pi\)
0.189587 + 0.981864i \(0.439285\pi\)
\(884\) 0.160995 + 0.278851i 0.00541484 + 0.00937878i
\(885\) 2.15356 5.45055i 0.0723912 0.183218i
\(886\) 5.32121 + 9.21661i 0.178770 + 0.309638i
\(887\) 0.0152303 0.000511383 0.000255692 1.00000i \(-0.499919\pi\)
0.000255692 1.00000i \(0.499919\pi\)
\(888\) −4.80770 + 12.1680i −0.161336 + 0.408333i
\(889\) 57.8420 1.93996
\(890\) −3.97857 + 6.89109i −0.133362 + 0.230990i
\(891\) −27.5875 13.5973i −0.924216 0.455525i
\(892\) −1.56823 2.71626i −0.0525084 0.0909472i
\(893\) 1.86011 3.22181i 0.0622462 0.107814i
\(894\) 3.50272 8.86520i 0.117148 0.296497i
\(895\) 4.91597 8.51470i 0.164323 0.284615i
\(896\) −2.99224 −0.0999638
\(897\) −7.52794 9.48408i −0.251350 0.316664i
\(898\) −15.8254 27.4104i −0.528101 0.914698i
\(899\) 9.37538 + 2.46245i 0.312687 + 0.0821272i
\(900\) −13.6268 + 4.13524i −0.454226 + 0.137841i
\(901\) 0.321153 0.0106991
\(902\) 13.3584 23.1374i 0.444785 0.770390i
\(903\) 8.54130 21.6176i 0.284237 0.719388i
\(904\) −8.48882 14.7031i −0.282334 0.489017i
\(905\) −5.78879 −0.192426
\(906\) 3.85538 0.572104i 0.128086 0.0190069i
\(907\) 2.69738 + 4.67199i 0.0895649 + 0.155131i 0.907327 0.420425i \(-0.138119\pi\)
−0.817762 + 0.575556i \(0.804786\pi\)
\(908\) −4.28830 + 7.42756i −0.142312 + 0.246492i
\(909\) 39.7077 12.0499i 1.31702 0.399669i
\(910\) 1.12319 1.94542i 0.0372333 0.0644899i
\(911\) 19.0797 33.0470i 0.632138 1.09490i −0.354976 0.934876i \(-0.615511\pi\)
0.987114 0.160020i \(-0.0511558\pi\)
\(912\) −1.07458 + 0.159458i −0.0355829 + 0.00528019i
\(913\) 16.1476 0.534408
\(914\) 15.8234 27.4070i 0.523393 0.906543i
\(915\) 8.73054 1.29553i 0.288623 0.0428290i
\(916\) 3.04068 5.26662i 0.100467 0.174014i
\(917\) −0.162365 + 0.281224i −0.00536175 + 0.00928683i
\(918\) 0.0914626 1.11768i 0.00301871 0.0368888i
\(919\) 19.7752 34.2517i 0.652325 1.12986i −0.330233 0.943900i \(-0.607127\pi\)
0.982557 0.185960i \(-0.0595394\pi\)
\(920\) −2.35777 −0.0777334
\(921\) 7.28239 18.4313i 0.239963 0.607334i
\(922\) −15.0787 + 26.1171i −0.496591 + 0.860120i
\(923\) −5.61396 −0.184786
\(924\) −6.50829 + 16.4721i −0.214107 + 0.541894i
\(925\) 35.8559 1.17894
\(926\) −30.6532 −1.00733
\(927\) −29.5919 + 8.98007i −0.971924 + 0.294944i
\(928\) −1.74098 −0.0571505
\(929\) −17.8691 30.9502i −0.586266 1.01544i −0.994716 0.102662i \(-0.967264\pi\)
0.408450 0.912781i \(-0.366069\pi\)
\(930\) 2.87111 3.91201i 0.0941475 0.128280i
\(931\) −0.612624 + 1.06110i −0.0200780 + 0.0347760i
\(932\) −13.6470 + 23.6372i −0.447021 + 0.774263i
\(933\) 17.5779 2.60841i 0.575475 0.0853954i
\(934\) 6.00824 + 10.4066i 0.196596 + 0.340514i
\(935\) 0.185555 0.321391i 0.00606831 0.0105106i
\(936\) −4.28302 + 1.29974i −0.139995 + 0.0424834i
\(937\) 25.8978 + 44.8564i 0.846046 + 1.46539i 0.884710 + 0.466142i \(0.154356\pi\)
−0.0386644 + 0.999252i \(0.512310\pi\)
\(938\) 22.1493 + 38.3636i 0.723199 + 1.25262i
\(939\) 4.31980 0.641019i 0.140971 0.0209189i
\(940\) −1.49231 2.58475i −0.0486737 0.0843053i
\(941\) −25.7265 44.5596i −0.838660 1.45260i −0.891016 0.453973i \(-0.850006\pi\)
0.0523560 0.998628i \(-0.483327\pi\)
\(942\) 5.09750 + 6.42209i 0.166085 + 0.209243i
\(943\) −36.6324 −1.19291
\(944\) 3.36219 + 5.82349i 0.109430 + 0.189538i
\(945\) −7.07190 + 3.34616i −0.230049 + 0.108850i
\(946\) −15.3265 −0.498307
\(947\) 5.21043 9.02473i 0.169316 0.293264i −0.768863 0.639413i \(-0.779177\pi\)
0.938180 + 0.346149i \(0.112511\pi\)
\(948\) −2.80014 + 7.08701i −0.0909443 + 0.230175i
\(949\) 0.969921 0.0314850
\(950\) 1.48861 + 2.57834i 0.0482967 + 0.0836524i
\(951\) −8.94512 + 1.32738i −0.290065 + 0.0430431i
\(952\) −0.645774 −0.0209296
\(953\) −41.8851 −1.35679 −0.678396 0.734697i \(-0.737324\pi\)
−0.678396 + 0.734697i \(0.737324\pi\)
\(954\) −1.01326 + 4.34774i −0.0328055 + 0.140763i
\(955\) 1.04666 + 1.81286i 0.0338690 + 0.0586628i
\(956\) −18.6588 −0.603468
\(957\) −3.78673 + 9.58402i −0.122408 + 0.309807i
\(958\) 20.0798 0.648750
\(959\) −20.1438 + 34.8900i −0.650477 + 1.12666i
\(960\) −0.320262 + 0.810566i −0.0103364 + 0.0261609i
\(961\) −0.306928 30.9985i −0.00990089 0.999951i
\(962\) 11.2698 0.363354
\(963\) 7.64810 2.32093i 0.246457 0.0747908i
\(964\) −5.24358 9.08214i −0.168884 0.292516i
\(965\) −3.22816 5.59134i −0.103918 0.179992i
\(966\) 24.0216 3.56459i 0.772883 0.114689i
\(967\) 21.7366 0.699002 0.349501 0.936936i \(-0.386351\pi\)
0.349501 + 0.936936i \(0.386351\pi\)
\(968\) 0.678453 0.0218063
\(969\) −0.231912 + 0.0344136i −0.00745008 + 0.00110552i
\(970\) −5.19010 −0.166644
\(971\) −9.13196 + 15.8170i −0.293059 + 0.507592i −0.974531 0.224251i \(-0.928006\pi\)
0.681473 + 0.731843i \(0.261340\pi\)
\(972\) 14.8425 + 4.76456i 0.476072 + 0.152823i
\(973\) −9.11038 15.7796i −0.292065 0.505872i
\(974\) 17.0974 0.547835
\(975\) 7.62611 + 9.60776i 0.244231 + 0.307695i
\(976\) −5.06352 + 8.77028i −0.162079 + 0.280730i
\(977\) −14.8937 + 25.7967i −0.476492 + 0.825308i −0.999637 0.0269352i \(-0.991425\pi\)
0.523145 + 0.852244i \(0.324759\pi\)
\(978\) −5.32416 + 13.4752i −0.170248 + 0.430889i
\(979\) −54.0409 −1.72715
\(980\) 0.491489 + 0.851283i 0.0157000 + 0.0271933i
\(981\) 10.8640 46.6158i 0.346861 1.48833i
\(982\) 14.0523 24.3393i 0.448427 0.776699i
\(983\) 18.9908 0.605712 0.302856 0.953036i \(-0.402060\pi\)
0.302856 + 0.953036i \(0.402060\pi\)
\(984\) −4.97586 + 12.5936i −0.158625 + 0.401471i
\(985\) 1.20791 0.0384873
\(986\) −0.375732 −0.0119657
\(987\) 19.1118 + 24.0780i 0.608334 + 0.766411i
\(988\) 0.467882 + 0.810395i 0.0148853 + 0.0257821i
\(989\) 10.5074 + 18.1993i 0.334115 + 0.578704i
\(990\) 3.76554 + 3.52605i 0.119677 + 0.112065i
\(991\) 35.9569 1.14221 0.571105 0.820877i \(-0.306515\pi\)
0.571105 + 0.820877i \(0.306515\pi\)
\(992\) 1.46765 + 5.37085i 0.0465979 + 0.170525i
\(993\) 33.9102 + 42.7218i 1.07611 + 1.35574i
\(994\) 5.62961 9.75076i 0.178560 0.309275i
\(995\) 4.99334 0.158300
\(996\) −8.09555 + 1.20131i −0.256517 + 0.0380649i
\(997\) −23.1461 −0.733045 −0.366523 0.930409i \(-0.619452\pi\)
−0.366523 + 0.930409i \(0.619452\pi\)
\(998\) −9.39328 16.2696i −0.297339 0.515007i
\(999\) −32.2778 22.3321i −1.02122 0.706555i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.g.a.211.11 32
3.2 odd 2 1674.2.g.b.955.8 32
9.2 odd 6 1674.2.h.b.397.9 32
9.7 even 3 558.2.h.a.25.12 yes 32
31.5 even 3 558.2.h.a.67.12 yes 32
93.5 odd 6 1674.2.h.b.253.9 32
279.160 even 3 inner 558.2.g.a.439.11 yes 32
279.191 odd 6 1674.2.g.b.1369.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
558.2.g.a.211.11 32 1.1 even 1 trivial
558.2.g.a.439.11 yes 32 279.160 even 3 inner
558.2.h.a.25.12 yes 32 9.7 even 3
558.2.h.a.67.12 yes 32 31.5 even 3
1674.2.g.b.955.8 32 3.2 odd 2
1674.2.g.b.1369.8 32 279.191 odd 6
1674.2.h.b.253.9 32 93.5 odd 6
1674.2.h.b.397.9 32 9.2 odd 6