Properties

Label 552.4.m.a.137.5
Level $552$
Weight $4$
Character 552.137
Analytic conductor $32.569$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,4,Mod(137,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.137"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 552.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5690543232\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 137.5
Character \(\chi\) \(=\) 552.137
Dual form 552.4.m.a.137.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.11929 - 0.890422i) q^{3} -20.0544 q^{5} +33.3044i q^{7} +(25.4143 + 9.11666i) q^{9} +57.9527 q^{11} -50.6877 q^{13} +(102.664 + 17.8569i) q^{15} +59.5814 q^{17} +71.6126i q^{19} +(29.6550 - 170.495i) q^{21} +(24.4434 + 107.562i) q^{23} +277.178 q^{25} +(-121.986 - 69.3003i) q^{27} +34.8835i q^{29} -5.52541 q^{31} +(-296.677 - 51.6024i) q^{33} -667.899i q^{35} +144.241i q^{37} +(259.485 + 45.1334i) q^{39} +430.206i q^{41} -264.484i q^{43} +(-509.668 - 182.829i) q^{45} +215.856i q^{47} -766.183 q^{49} +(-305.014 - 53.0526i) q^{51} -62.8922 q^{53} -1162.21 q^{55} +(63.7654 - 366.606i) q^{57} +151.374i q^{59} +549.877i q^{61} +(-303.625 + 846.408i) q^{63} +1016.51 q^{65} -526.152i q^{67} +(-29.3574 - 572.405i) q^{69} -221.978i q^{71} -803.576 q^{73} +(-1418.96 - 246.806i) q^{75} +1930.08i q^{77} +973.309i q^{79} +(562.773 + 463.387i) q^{81} -244.352 q^{83} -1194.87 q^{85} +(31.0610 - 178.579i) q^{87} +966.847 q^{89} -1688.12i q^{91} +(28.2862 + 4.91994i) q^{93} -1436.15i q^{95} -1068.16i q^{97} +(1472.83 + 528.336i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 28 q^{9} + 1872 q^{25} - 444 q^{27} - 216 q^{31} - 68 q^{39} - 4200 q^{49} - 576 q^{55} + 1376 q^{69} - 384 q^{73} - 3592 q^{75} - 252 q^{81} + 3480 q^{85} - 412 q^{87} + 780 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.11929 0.890422i −0.985208 0.171362i
\(4\) 0 0
\(5\) −20.0544 −1.79372 −0.896859 0.442316i \(-0.854157\pi\)
−0.896859 + 0.442316i \(0.854157\pi\)
\(6\) 0 0
\(7\) 33.3044i 1.79827i 0.437673 + 0.899134i \(0.355803\pi\)
−0.437673 + 0.899134i \(0.644197\pi\)
\(8\) 0 0
\(9\) 25.4143 + 9.11666i 0.941270 + 0.337654i
\(10\) 0 0
\(11\) 57.9527 1.58849 0.794246 0.607596i \(-0.207866\pi\)
0.794246 + 0.607596i \(0.207866\pi\)
\(12\) 0 0
\(13\) −50.6877 −1.08140 −0.540701 0.841215i \(-0.681841\pi\)
−0.540701 + 0.841215i \(0.681841\pi\)
\(14\) 0 0
\(15\) 102.664 + 17.8569i 1.76719 + 0.307375i
\(16\) 0 0
\(17\) 59.5814 0.850036 0.425018 0.905185i \(-0.360268\pi\)
0.425018 + 0.905185i \(0.360268\pi\)
\(18\) 0 0
\(19\) 71.6126i 0.864687i 0.901709 + 0.432344i \(0.142313\pi\)
−0.901709 + 0.432344i \(0.857687\pi\)
\(20\) 0 0
\(21\) 29.6550 170.495i 0.308154 1.77167i
\(22\) 0 0
\(23\) 24.4434 + 107.562i 0.221600 + 0.975138i
\(24\) 0 0
\(25\) 277.178 2.21743
\(26\) 0 0
\(27\) −121.986 69.3003i −0.869486 0.493957i
\(28\) 0 0
\(29\) 34.8835i 0.223369i 0.993744 + 0.111684i \(0.0356246\pi\)
−0.993744 + 0.111684i \(0.964375\pi\)
\(30\) 0 0
\(31\) −5.52541 −0.0320127 −0.0160063 0.999872i \(-0.505095\pi\)
−0.0160063 + 0.999872i \(0.505095\pi\)
\(32\) 0 0
\(33\) −296.677 51.6024i −1.56500 0.272207i
\(34\) 0 0
\(35\) 667.899i 3.22559i
\(36\) 0 0
\(37\) 144.241i 0.640893i 0.947267 + 0.320446i \(0.103833\pi\)
−0.947267 + 0.320446i \(0.896167\pi\)
\(38\) 0 0
\(39\) 259.485 + 45.1334i 1.06541 + 0.185311i
\(40\) 0 0
\(41\) 430.206i 1.63870i 0.573290 + 0.819352i \(0.305667\pi\)
−0.573290 + 0.819352i \(0.694333\pi\)
\(42\) 0 0
\(43\) 264.484i 0.937985i −0.883202 0.468993i \(-0.844617\pi\)
0.883202 0.468993i \(-0.155383\pi\)
\(44\) 0 0
\(45\) −509.668 182.829i −1.68837 0.605657i
\(46\) 0 0
\(47\) 215.856i 0.669910i 0.942234 + 0.334955i \(0.108721\pi\)
−0.942234 + 0.334955i \(0.891279\pi\)
\(48\) 0 0
\(49\) −766.183 −2.23377
\(50\) 0 0
\(51\) −305.014 53.0526i −0.837462 0.145664i
\(52\) 0 0
\(53\) −62.8922 −0.162998 −0.0814991 0.996673i \(-0.525971\pi\)
−0.0814991 + 0.996673i \(0.525971\pi\)
\(54\) 0 0
\(55\) −1162.21 −2.84931
\(56\) 0 0
\(57\) 63.7654 366.606i 0.148174 0.851897i
\(58\) 0 0
\(59\) 151.374i 0.334022i 0.985955 + 0.167011i \(0.0534115\pi\)
−0.985955 + 0.167011i \(0.946589\pi\)
\(60\) 0 0
\(61\) 549.877i 1.15417i 0.816683 + 0.577087i \(0.195811\pi\)
−0.816683 + 0.577087i \(0.804189\pi\)
\(62\) 0 0
\(63\) −303.625 + 846.408i −0.607193 + 1.69266i
\(64\) 0 0
\(65\) 1016.51 1.93973
\(66\) 0 0
\(67\) 526.152i 0.959399i −0.877433 0.479699i \(-0.840746\pi\)
0.877433 0.479699i \(-0.159254\pi\)
\(68\) 0 0
\(69\) −29.3574 572.405i −0.0512205 0.998687i
\(70\) 0 0
\(71\) 221.978i 0.371042i −0.982640 0.185521i \(-0.940603\pi\)
0.982640 0.185521i \(-0.0593973\pi\)
\(72\) 0 0
\(73\) −803.576 −1.28838 −0.644188 0.764867i \(-0.722805\pi\)
−0.644188 + 0.764867i \(0.722805\pi\)
\(74\) 0 0
\(75\) −1418.96 246.806i −2.18463 0.379982i
\(76\) 0 0
\(77\) 1930.08i 2.85653i
\(78\) 0 0
\(79\) 973.309i 1.38615i 0.720866 + 0.693075i \(0.243745\pi\)
−0.720866 + 0.693075i \(0.756255\pi\)
\(80\) 0 0
\(81\) 562.773 + 463.387i 0.771979 + 0.635648i
\(82\) 0 0
\(83\) −244.352 −0.323146 −0.161573 0.986861i \(-0.551657\pi\)
−0.161573 + 0.986861i \(0.551657\pi\)
\(84\) 0 0
\(85\) −1194.87 −1.52473
\(86\) 0 0
\(87\) 31.0610 178.579i 0.0382769 0.220065i
\(88\) 0 0
\(89\) 966.847 1.15152 0.575762 0.817617i \(-0.304706\pi\)
0.575762 + 0.817617i \(0.304706\pi\)
\(90\) 0 0
\(91\) 1688.12i 1.94465i
\(92\) 0 0
\(93\) 28.2862 + 4.91994i 0.0315391 + 0.00548575i
\(94\) 0 0
\(95\) 1436.15i 1.55101i
\(96\) 0 0
\(97\) 1068.16i 1.11810i −0.829134 0.559050i \(-0.811166\pi\)
0.829134 0.559050i \(-0.188834\pi\)
\(98\) 0 0
\(99\) 1472.83 + 528.336i 1.49520 + 0.536361i
\(100\) 0 0
\(101\) 1173.08i 1.15570i −0.816144 0.577849i \(-0.803892\pi\)
0.816144 0.577849i \(-0.196108\pi\)
\(102\) 0 0
\(103\) 1661.92i 1.58984i −0.606715 0.794920i \(-0.707513\pi\)
0.606715 0.794920i \(-0.292487\pi\)
\(104\) 0 0
\(105\) −594.712 + 3419.17i −0.552743 + 3.17788i
\(106\) 0 0
\(107\) 162.335 0.146668 0.0733342 0.997307i \(-0.476636\pi\)
0.0733342 + 0.997307i \(0.476636\pi\)
\(108\) 0 0
\(109\) 1447.94i 1.27236i 0.771539 + 0.636181i \(0.219487\pi\)
−0.771539 + 0.636181i \(0.780513\pi\)
\(110\) 0 0
\(111\) 128.435 738.411i 0.109825 0.631413i
\(112\) 0 0
\(113\) −304.959 −0.253877 −0.126939 0.991911i \(-0.540515\pi\)
−0.126939 + 0.991911i \(0.540515\pi\)
\(114\) 0 0
\(115\) −490.197 2157.08i −0.397488 1.74912i
\(116\) 0 0
\(117\) −1288.19 462.102i −1.01789 0.365140i
\(118\) 0 0
\(119\) 1984.32i 1.52859i
\(120\) 0 0
\(121\) 2027.52 1.52331
\(122\) 0 0
\(123\) 383.065 2202.35i 0.280811 1.61447i
\(124\) 0 0
\(125\) −3051.84 −2.18372
\(126\) 0 0
\(127\) −2713.71 −1.89608 −0.948041 0.318148i \(-0.896939\pi\)
−0.948041 + 0.318148i \(0.896939\pi\)
\(128\) 0 0
\(129\) −235.502 + 1353.97i −0.160735 + 0.924111i
\(130\) 0 0
\(131\) 291.584i 0.194472i −0.995261 0.0972360i \(-0.969000\pi\)
0.995261 0.0972360i \(-0.0310002\pi\)
\(132\) 0 0
\(133\) −2385.01 −1.55494
\(134\) 0 0
\(135\) 2446.34 + 1389.77i 1.55961 + 0.886021i
\(136\) 0 0
\(137\) −198.109 −0.123545 −0.0617724 0.998090i \(-0.519675\pi\)
−0.0617724 + 0.998090i \(0.519675\pi\)
\(138\) 0 0
\(139\) −1531.61 −0.934598 −0.467299 0.884099i \(-0.654773\pi\)
−0.467299 + 0.884099i \(0.654773\pi\)
\(140\) 0 0
\(141\) 192.203 1105.03i 0.114797 0.660001i
\(142\) 0 0
\(143\) −2937.49 −1.71780
\(144\) 0 0
\(145\) 699.566i 0.400661i
\(146\) 0 0
\(147\) 3922.31 + 682.226i 2.20073 + 0.382783i
\(148\) 0 0
\(149\) 662.731 0.364383 0.182192 0.983263i \(-0.441681\pi\)
0.182192 + 0.983263i \(0.441681\pi\)
\(150\) 0 0
\(151\) 3233.77 1.74278 0.871392 0.490588i \(-0.163218\pi\)
0.871392 + 0.490588i \(0.163218\pi\)
\(152\) 0 0
\(153\) 1514.22 + 543.183i 0.800113 + 0.287018i
\(154\) 0 0
\(155\) 110.809 0.0574217
\(156\) 0 0
\(157\) 165.429i 0.0840934i −0.999116 0.0420467i \(-0.986612\pi\)
0.999116 0.0420467i \(-0.0133878\pi\)
\(158\) 0 0
\(159\) 321.964 + 56.0006i 0.160587 + 0.0279317i
\(160\) 0 0
\(161\) −3582.28 + 814.071i −1.75356 + 0.398496i
\(162\) 0 0
\(163\) −1171.01 −0.562704 −0.281352 0.959605i \(-0.590783\pi\)
−0.281352 + 0.959605i \(0.590783\pi\)
\(164\) 0 0
\(165\) 5949.68 + 1034.85i 2.80716 + 0.488263i
\(166\) 0 0
\(167\) 2748.16i 1.27341i −0.771108 0.636705i \(-0.780297\pi\)
0.771108 0.636705i \(-0.219703\pi\)
\(168\) 0 0
\(169\) 372.238 0.169430
\(170\) 0 0
\(171\) −652.868 + 1819.98i −0.291965 + 0.813904i
\(172\) 0 0
\(173\) 160.394i 0.0704885i 0.999379 + 0.0352442i \(0.0112209\pi\)
−0.999379 + 0.0352442i \(0.988779\pi\)
\(174\) 0 0
\(175\) 9231.26i 3.98753i
\(176\) 0 0
\(177\) 134.787 774.930i 0.0572385 0.329081i
\(178\) 0 0
\(179\) 1324.21i 0.552938i −0.961023 0.276469i \(-0.910836\pi\)
0.961023 0.276469i \(-0.0891643\pi\)
\(180\) 0 0
\(181\) 2965.18i 1.21768i 0.793293 + 0.608841i \(0.208365\pi\)
−0.793293 + 0.608841i \(0.791635\pi\)
\(182\) 0 0
\(183\) 489.623 2814.98i 0.197781 1.13710i
\(184\) 0 0
\(185\) 2892.66i 1.14958i
\(186\) 0 0
\(187\) 3452.90 1.35027
\(188\) 0 0
\(189\) 2308.00 4062.65i 0.888268 1.56357i
\(190\) 0 0
\(191\) 4189.76 1.58723 0.793614 0.608422i \(-0.208197\pi\)
0.793614 + 0.608422i \(0.208197\pi\)
\(192\) 0 0
\(193\) −1493.28 −0.556937 −0.278468 0.960445i \(-0.589827\pi\)
−0.278468 + 0.960445i \(0.589827\pi\)
\(194\) 0 0
\(195\) −5203.81 905.123i −1.91104 0.332396i
\(196\) 0 0
\(197\) 4483.73i 1.62159i −0.585333 0.810793i \(-0.699036\pi\)
0.585333 0.810793i \(-0.300964\pi\)
\(198\) 0 0
\(199\) 2192.98i 0.781187i 0.920563 + 0.390594i \(0.127730\pi\)
−0.920563 + 0.390594i \(0.872270\pi\)
\(200\) 0 0
\(201\) −468.497 + 2693.53i −0.164404 + 0.945207i
\(202\) 0 0
\(203\) −1161.77 −0.401677
\(204\) 0 0
\(205\) 8627.52i 2.93938i
\(206\) 0 0
\(207\) −359.393 + 2956.45i −0.120674 + 0.992692i
\(208\) 0 0
\(209\) 4150.15i 1.37355i
\(210\) 0 0
\(211\) −1078.73 −0.351956 −0.175978 0.984394i \(-0.556309\pi\)
−0.175978 + 0.984394i \(0.556309\pi\)
\(212\) 0 0
\(213\) −197.654 + 1136.37i −0.0635824 + 0.365554i
\(214\) 0 0
\(215\) 5304.06i 1.68248i
\(216\) 0 0
\(217\) 184.020i 0.0575673i
\(218\) 0 0
\(219\) 4113.74 + 715.522i 1.26932 + 0.220778i
\(220\) 0 0
\(221\) −3020.04 −0.919230
\(222\) 0 0
\(223\) −2649.88 −0.795737 −0.397868 0.917442i \(-0.630250\pi\)
−0.397868 + 0.917442i \(0.630250\pi\)
\(224\) 0 0
\(225\) 7044.29 + 2526.94i 2.08720 + 0.748723i
\(226\) 0 0
\(227\) 3454.65 1.01010 0.505051 0.863090i \(-0.331474\pi\)
0.505051 + 0.863090i \(0.331474\pi\)
\(228\) 0 0
\(229\) 952.474i 0.274853i 0.990512 + 0.137426i \(0.0438830\pi\)
−0.990512 + 0.137426i \(0.956117\pi\)
\(230\) 0 0
\(231\) 1718.59 9880.65i 0.489501 2.81428i
\(232\) 0 0
\(233\) 4803.31i 1.35054i 0.737572 + 0.675269i \(0.235972\pi\)
−0.737572 + 0.675269i \(0.764028\pi\)
\(234\) 0 0
\(235\) 4328.85i 1.20163i
\(236\) 0 0
\(237\) 866.656 4982.65i 0.237533 1.36565i
\(238\) 0 0
\(239\) 4589.78i 1.24221i −0.783727 0.621105i \(-0.786684\pi\)
0.783727 0.621105i \(-0.213316\pi\)
\(240\) 0 0
\(241\) 1558.16i 0.416473i −0.978078 0.208237i \(-0.933228\pi\)
0.978078 0.208237i \(-0.0667724\pi\)
\(242\) 0 0
\(243\) −2468.39 2873.32i −0.651635 0.758533i
\(244\) 0 0
\(245\) 15365.3 4.00675
\(246\) 0 0
\(247\) 3629.87i 0.935075i
\(248\) 0 0
\(249\) 1250.91 + 217.577i 0.318367 + 0.0553750i
\(250\) 0 0
\(251\) 406.202 0.102148 0.0510742 0.998695i \(-0.483735\pi\)
0.0510742 + 0.998695i \(0.483735\pi\)
\(252\) 0 0
\(253\) 1416.56 + 6233.50i 0.352009 + 1.54900i
\(254\) 0 0
\(255\) 6116.88 + 1063.94i 1.50217 + 0.261280i
\(256\) 0 0
\(257\) 5017.55i 1.21784i 0.793230 + 0.608922i \(0.208398\pi\)
−0.793230 + 0.608922i \(0.791602\pi\)
\(258\) 0 0
\(259\) −4803.85 −1.15250
\(260\) 0 0
\(261\) −318.021 + 886.539i −0.0754214 + 0.210250i
\(262\) 0 0
\(263\) 534.553 0.125331 0.0626653 0.998035i \(-0.480040\pi\)
0.0626653 + 0.998035i \(0.480040\pi\)
\(264\) 0 0
\(265\) 1261.26 0.292373
\(266\) 0 0
\(267\) −4949.57 860.902i −1.13449 0.197327i
\(268\) 0 0
\(269\) 862.225i 0.195430i 0.995214 + 0.0977152i \(0.0311534\pi\)
−0.995214 + 0.0977152i \(0.968847\pi\)
\(270\) 0 0
\(271\) −1434.10 −0.321458 −0.160729 0.986999i \(-0.551385\pi\)
−0.160729 + 0.986999i \(0.551385\pi\)
\(272\) 0 0
\(273\) −1503.14 + 8641.99i −0.333239 + 1.91589i
\(274\) 0 0
\(275\) 16063.3 3.52237
\(276\) 0 0
\(277\) 203.521 0.0441458 0.0220729 0.999756i \(-0.492973\pi\)
0.0220729 + 0.999756i \(0.492973\pi\)
\(278\) 0 0
\(279\) −140.424 50.3733i −0.0301326 0.0108092i
\(280\) 0 0
\(281\) −1807.02 −0.383622 −0.191811 0.981432i \(-0.561436\pi\)
−0.191811 + 0.981432i \(0.561436\pi\)
\(282\) 0 0
\(283\) 4149.51i 0.871600i 0.900044 + 0.435800i \(0.143535\pi\)
−0.900044 + 0.435800i \(0.856465\pi\)
\(284\) 0 0
\(285\) −1278.78 + 7352.06i −0.265783 + 1.52806i
\(286\) 0 0
\(287\) −14327.8 −2.94683
\(288\) 0 0
\(289\) −1363.06 −0.277439
\(290\) 0 0
\(291\) −951.118 + 5468.25i −0.191600 + 1.10156i
\(292\) 0 0
\(293\) −9833.94 −1.96077 −0.980384 0.197099i \(-0.936848\pi\)
−0.980384 + 0.197099i \(0.936848\pi\)
\(294\) 0 0
\(295\) 3035.72i 0.599141i
\(296\) 0 0
\(297\) −7069.40 4016.14i −1.38117 0.784647i
\(298\) 0 0
\(299\) −1238.98 5452.05i −0.239638 1.05452i
\(300\) 0 0
\(301\) 8808.47 1.68675
\(302\) 0 0
\(303\) −1044.53 + 6005.32i −0.198043 + 1.13860i
\(304\) 0 0
\(305\) 11027.5i 2.07026i
\(306\) 0 0
\(307\) 6517.24 1.21159 0.605796 0.795620i \(-0.292855\pi\)
0.605796 + 0.795620i \(0.292855\pi\)
\(308\) 0 0
\(309\) −1479.81 + 8507.83i −0.272438 + 1.56632i
\(310\) 0 0
\(311\) 1323.87i 0.241381i 0.992690 + 0.120691i \(0.0385109\pi\)
−0.992690 + 0.120691i \(0.961489\pi\)
\(312\) 0 0
\(313\) 5770.09i 1.04200i 0.853558 + 0.520998i \(0.174440\pi\)
−0.853558 + 0.520998i \(0.825560\pi\)
\(314\) 0 0
\(315\) 6089.01 16974.2i 1.08913 3.03615i
\(316\) 0 0
\(317\) 7870.38i 1.39446i −0.716846 0.697231i \(-0.754415\pi\)
0.716846 0.697231i \(-0.245585\pi\)
\(318\) 0 0
\(319\) 2021.59i 0.354820i
\(320\) 0 0
\(321\) −831.041 144.547i −0.144499 0.0251334i
\(322\) 0 0
\(323\) 4266.78i 0.735015i
\(324\) 0 0
\(325\) −14049.5 −2.39793
\(326\) 0 0
\(327\) 1289.28 7412.43i 0.218034 1.25354i
\(328\) 0 0
\(329\) −7188.94 −1.20468
\(330\) 0 0
\(331\) −2918.55 −0.484647 −0.242324 0.970195i \(-0.577910\pi\)
−0.242324 + 0.970195i \(0.577910\pi\)
\(332\) 0 0
\(333\) −1314.99 + 3665.78i −0.216400 + 0.603253i
\(334\) 0 0
\(335\) 10551.7i 1.72089i
\(336\) 0 0
\(337\) 1579.31i 0.255283i −0.991820 0.127642i \(-0.959259\pi\)
0.991820 0.127642i \(-0.0407407\pi\)
\(338\) 0 0
\(339\) 1561.17 + 271.542i 0.250122 + 0.0435048i
\(340\) 0 0
\(341\) −320.213 −0.0508518
\(342\) 0 0
\(343\) 14093.8i 2.21865i
\(344\) 0 0
\(345\) 588.744 + 11479.2i 0.0918751 + 1.79136i
\(346\) 0 0
\(347\) 9345.12i 1.44574i 0.690983 + 0.722871i \(0.257178\pi\)
−0.690983 + 0.722871i \(0.742822\pi\)
\(348\) 0 0
\(349\) 2015.77 0.309174 0.154587 0.987979i \(-0.450595\pi\)
0.154587 + 0.987979i \(0.450595\pi\)
\(350\) 0 0
\(351\) 6183.16 + 3512.67i 0.940264 + 0.534166i
\(352\) 0 0
\(353\) 515.899i 0.0777862i 0.999243 + 0.0388931i \(0.0123832\pi\)
−0.999243 + 0.0388931i \(0.987617\pi\)
\(354\) 0 0
\(355\) 4451.64i 0.665545i
\(356\) 0 0
\(357\) 1766.88 10158.3i 0.261942 1.50598i
\(358\) 0 0
\(359\) −3438.96 −0.505575 −0.252787 0.967522i \(-0.581347\pi\)
−0.252787 + 0.967522i \(0.581347\pi\)
\(360\) 0 0
\(361\) 1730.63 0.252316
\(362\) 0 0
\(363\) −10379.5 1805.35i −1.50077 0.261037i
\(364\) 0 0
\(365\) 16115.2 2.31098
\(366\) 0 0
\(367\) 4236.03i 0.602504i −0.953545 0.301252i \(-0.902595\pi\)
0.953545 0.301252i \(-0.0974046\pi\)
\(368\) 0 0
\(369\) −3922.04 + 10933.4i −0.553315 + 1.54246i
\(370\) 0 0
\(371\) 2094.59i 0.293115i
\(372\) 0 0
\(373\) 8604.37i 1.19442i 0.802086 + 0.597208i \(0.203723\pi\)
−0.802086 + 0.597208i \(0.796277\pi\)
\(374\) 0 0
\(375\) 15623.3 + 2717.43i 2.15142 + 0.374207i
\(376\) 0 0
\(377\) 1768.16i 0.241551i
\(378\) 0 0
\(379\) 3190.97i 0.432478i 0.976340 + 0.216239i \(0.0693790\pi\)
−0.976340 + 0.216239i \(0.930621\pi\)
\(380\) 0 0
\(381\) 13892.3 + 2416.34i 1.86804 + 0.324916i
\(382\) 0 0
\(383\) −5211.50 −0.695288 −0.347644 0.937627i \(-0.613018\pi\)
−0.347644 + 0.937627i \(0.613018\pi\)
\(384\) 0 0
\(385\) 38706.6i 5.12382i
\(386\) 0 0
\(387\) 2411.21 6721.67i 0.316715 0.882898i
\(388\) 0 0
\(389\) 6735.90 0.877953 0.438976 0.898499i \(-0.355341\pi\)
0.438976 + 0.898499i \(0.355341\pi\)
\(390\) 0 0
\(391\) 1456.37 + 6408.68i 0.188368 + 0.828902i
\(392\) 0 0
\(393\) −259.633 + 1492.70i −0.0333251 + 0.191595i
\(394\) 0 0
\(395\) 19519.1i 2.48636i
\(396\) 0 0
\(397\) −8708.38 −1.10091 −0.550455 0.834865i \(-0.685546\pi\)
−0.550455 + 0.834865i \(0.685546\pi\)
\(398\) 0 0
\(399\) 12209.6 + 2123.67i 1.53194 + 0.266457i
\(400\) 0 0
\(401\) 4057.38 0.505276 0.252638 0.967561i \(-0.418702\pi\)
0.252638 + 0.967561i \(0.418702\pi\)
\(402\) 0 0
\(403\) 280.070 0.0346185
\(404\) 0 0
\(405\) −11286.1 9292.94i −1.38471 1.14017i
\(406\) 0 0
\(407\) 8359.15i 1.01805i
\(408\) 0 0
\(409\) 6583.44 0.795918 0.397959 0.917403i \(-0.369719\pi\)
0.397959 + 0.917403i \(0.369719\pi\)
\(410\) 0 0
\(411\) 1014.18 + 176.401i 0.121717 + 0.0211708i
\(412\) 0 0
\(413\) −5041.43 −0.600660
\(414\) 0 0
\(415\) 4900.34 0.579634
\(416\) 0 0
\(417\) 7840.74 + 1363.78i 0.920773 + 0.160154i
\(418\) 0 0
\(419\) −4410.29 −0.514217 −0.257108 0.966383i \(-0.582770\pi\)
−0.257108 + 0.966383i \(0.582770\pi\)
\(420\) 0 0
\(421\) 23.2747i 0.00269439i −0.999999 0.00134720i \(-0.999571\pi\)
0.999999 0.00134720i \(-0.000428826\pi\)
\(422\) 0 0
\(423\) −1967.88 + 5485.82i −0.226198 + 0.630566i
\(424\) 0 0
\(425\) 16514.7 1.88489
\(426\) 0 0
\(427\) −18313.3 −2.07551
\(428\) 0 0
\(429\) 15037.9 + 2615.60i 1.69239 + 0.294365i
\(430\) 0 0
\(431\) −3734.23 −0.417335 −0.208667 0.977987i \(-0.566913\pi\)
−0.208667 + 0.977987i \(0.566913\pi\)
\(432\) 0 0
\(433\) 5952.10i 0.660600i −0.943876 0.330300i \(-0.892850\pi\)
0.943876 0.330300i \(-0.107150\pi\)
\(434\) 0 0
\(435\) −622.909 + 3581.28i −0.0686580 + 0.394734i
\(436\) 0 0
\(437\) −7702.77 + 1750.45i −0.843189 + 0.191614i
\(438\) 0 0
\(439\) −14010.4 −1.52319 −0.761594 0.648054i \(-0.775583\pi\)
−0.761594 + 0.648054i \(0.775583\pi\)
\(440\) 0 0
\(441\) −19472.0 6985.03i −2.10258 0.754241i
\(442\) 0 0
\(443\) 840.098i 0.0900999i 0.998985 + 0.0450500i \(0.0143447\pi\)
−0.998985 + 0.0450500i \(0.985655\pi\)
\(444\) 0 0
\(445\) −19389.5 −2.06551
\(446\) 0 0
\(447\) −3392.72 590.111i −0.358993 0.0624413i
\(448\) 0 0
\(449\) 12556.3i 1.31975i −0.751375 0.659875i \(-0.770609\pi\)
0.751375 0.659875i \(-0.229391\pi\)
\(450\) 0 0
\(451\) 24931.6i 2.60307i
\(452\) 0 0
\(453\) −16554.6 2879.42i −1.71700 0.298647i
\(454\) 0 0
\(455\) 33854.2i 3.48816i
\(456\) 0 0
\(457\) 5646.01i 0.577920i 0.957341 + 0.288960i \(0.0933095\pi\)
−0.957341 + 0.288960i \(0.906691\pi\)
\(458\) 0 0
\(459\) −7268.07 4129.01i −0.739094 0.419881i
\(460\) 0 0
\(461\) 12972.6i 1.31062i −0.755359 0.655311i \(-0.772538\pi\)
0.755359 0.655311i \(-0.227462\pi\)
\(462\) 0 0
\(463\) 14034.2 1.40869 0.704346 0.709857i \(-0.251240\pi\)
0.704346 + 0.709857i \(0.251240\pi\)
\(464\) 0 0
\(465\) −567.262 98.6665i −0.0565723 0.00983989i
\(466\) 0 0
\(467\) 2862.18 0.283610 0.141805 0.989895i \(-0.454709\pi\)
0.141805 + 0.989895i \(0.454709\pi\)
\(468\) 0 0
\(469\) 17523.2 1.72526
\(470\) 0 0
\(471\) −147.302 + 846.879i −0.0144104 + 0.0828495i
\(472\) 0 0
\(473\) 15327.6i 1.48998i
\(474\) 0 0
\(475\) 19849.5i 1.91738i
\(476\) 0 0
\(477\) −1598.36 573.367i −0.153425 0.0550370i
\(478\) 0 0
\(479\) −14342.1 −1.36808 −0.684038 0.729446i \(-0.739778\pi\)
−0.684038 + 0.729446i \(0.739778\pi\)
\(480\) 0 0
\(481\) 7311.22i 0.693063i
\(482\) 0 0
\(483\) 19063.6 977.730i 1.79591 0.0921082i
\(484\) 0 0
\(485\) 21421.4i 2.00556i
\(486\) 0 0
\(487\) 1338.32 0.124528 0.0622641 0.998060i \(-0.480168\pi\)
0.0622641 + 0.998060i \(0.480168\pi\)
\(488\) 0 0
\(489\) 5994.75 + 1042.69i 0.554380 + 0.0964259i
\(490\) 0 0
\(491\) 1238.33i 0.113819i 0.998379 + 0.0569095i \(0.0181246\pi\)
−0.998379 + 0.0569095i \(0.981875\pi\)
\(492\) 0 0
\(493\) 2078.40i 0.189871i
\(494\) 0 0
\(495\) −29536.7 10595.4i −2.68197 0.962080i
\(496\) 0 0
\(497\) 7392.85 0.667233
\(498\) 0 0
\(499\) −16838.6 −1.51062 −0.755312 0.655365i \(-0.772515\pi\)
−0.755312 + 0.655365i \(0.772515\pi\)
\(500\) 0 0
\(501\) −2447.03 + 14068.7i −0.218214 + 1.25457i
\(502\) 0 0
\(503\) 3495.77 0.309878 0.154939 0.987924i \(-0.450482\pi\)
0.154939 + 0.987924i \(0.450482\pi\)
\(504\) 0 0
\(505\) 23525.3i 2.07300i
\(506\) 0 0
\(507\) −1905.59 331.449i −0.166924 0.0290338i
\(508\) 0 0
\(509\) 7029.51i 0.612137i −0.952010 0.306068i \(-0.900986\pi\)
0.952010 0.306068i \(-0.0990136\pi\)
\(510\) 0 0
\(511\) 26762.6i 2.31685i
\(512\) 0 0
\(513\) 4962.78 8735.70i 0.427119 0.751834i
\(514\) 0 0
\(515\) 33328.7i 2.85172i
\(516\) 0 0
\(517\) 12509.4i 1.06415i
\(518\) 0 0
\(519\) 142.818 821.102i 0.0120790 0.0694458i
\(520\) 0 0
\(521\) −8244.43 −0.693272 −0.346636 0.938000i \(-0.612676\pi\)
−0.346636 + 0.938000i \(0.612676\pi\)
\(522\) 0 0
\(523\) 13656.2i 1.14176i −0.821032 0.570882i \(-0.806601\pi\)
0.821032 0.570882i \(-0.193399\pi\)
\(524\) 0 0
\(525\) 8219.72 47257.5i 0.683310 3.92855i
\(526\) 0 0
\(527\) −329.211 −0.0272119
\(528\) 0 0
\(529\) −10972.0 + 5258.34i −0.901787 + 0.432180i
\(530\) 0 0
\(531\) −1380.03 + 3847.07i −0.112784 + 0.314405i
\(532\) 0 0
\(533\) 21806.1i 1.77210i
\(534\) 0 0
\(535\) −3255.53 −0.263082
\(536\) 0 0
\(537\) −1179.10 + 6779.00i −0.0947525 + 0.544759i
\(538\) 0 0
\(539\) −44402.4 −3.54832
\(540\) 0 0
\(541\) −21151.7 −1.68093 −0.840464 0.541868i \(-0.817717\pi\)
−0.840464 + 0.541868i \(0.817717\pi\)
\(542\) 0 0
\(543\) 2640.26 15179.6i 0.208664 1.19967i
\(544\) 0 0
\(545\) 29037.6i 2.28226i
\(546\) 0 0
\(547\) 13822.1 1.08042 0.540211 0.841530i \(-0.318344\pi\)
0.540211 + 0.841530i \(0.318344\pi\)
\(548\) 0 0
\(549\) −5013.05 + 13974.7i −0.389711 + 1.08639i
\(550\) 0 0
\(551\) −2498.10 −0.193144
\(552\) 0 0
\(553\) −32415.5 −2.49267
\(554\) 0 0
\(555\) −2575.69 + 14808.4i −0.196994 + 1.13258i
\(556\) 0 0
\(557\) −17563.3 −1.33606 −0.668028 0.744136i \(-0.732861\pi\)
−0.668028 + 0.744136i \(0.732861\pi\)
\(558\) 0 0
\(559\) 13406.1i 1.01434i
\(560\) 0 0
\(561\) −17676.4 3074.54i −1.33030 0.231386i
\(562\) 0 0
\(563\) 9217.05 0.689968 0.344984 0.938608i \(-0.387884\pi\)
0.344984 + 0.938608i \(0.387884\pi\)
\(564\) 0 0
\(565\) 6115.76 0.455384
\(566\) 0 0
\(567\) −15432.8 + 18742.8i −1.14306 + 1.38823i
\(568\) 0 0
\(569\) 1380.04 0.101677 0.0508387 0.998707i \(-0.483811\pi\)
0.0508387 + 0.998707i \(0.483811\pi\)
\(570\) 0 0
\(571\) 9745.55i 0.714253i −0.934056 0.357127i \(-0.883756\pi\)
0.934056 0.357127i \(-0.116244\pi\)
\(572\) 0 0
\(573\) −21448.6 3730.66i −1.56375 0.271990i
\(574\) 0 0
\(575\) 6775.17 + 29813.8i 0.491381 + 2.16230i
\(576\) 0 0
\(577\) −6481.97 −0.467674 −0.233837 0.972276i \(-0.575128\pi\)
−0.233837 + 0.972276i \(0.575128\pi\)
\(578\) 0 0
\(579\) 7644.54 + 1329.65i 0.548698 + 0.0954377i
\(580\) 0 0
\(581\) 8138.01i 0.581104i
\(582\) 0 0
\(583\) −3644.78 −0.258921
\(584\) 0 0
\(585\) 25833.9 + 9267.17i 1.82581 + 0.654958i
\(586\) 0 0
\(587\) 18352.4i 1.29043i −0.764000 0.645216i \(-0.776767\pi\)
0.764000 0.645216i \(-0.223233\pi\)
\(588\) 0 0
\(589\) 395.689i 0.0276809i
\(590\) 0 0
\(591\) −3992.41 + 22953.5i −0.277878 + 1.59760i
\(592\) 0 0
\(593\) 5951.20i 0.412119i 0.978539 + 0.206059i \(0.0660640\pi\)
−0.978539 + 0.206059i \(0.933936\pi\)
\(594\) 0 0
\(595\) 39794.4i 2.74186i
\(596\) 0 0
\(597\) 1952.68 11226.5i 0.133866 0.769632i
\(598\) 0 0
\(599\) 16582.5i 1.13112i −0.824707 0.565561i \(-0.808660\pi\)
0.824707 0.565561i \(-0.191340\pi\)
\(600\) 0 0
\(601\) −1178.04 −0.0799554 −0.0399777 0.999201i \(-0.512729\pi\)
−0.0399777 + 0.999201i \(0.512729\pi\)
\(602\) 0 0
\(603\) 4796.75 13371.8i 0.323945 0.903053i
\(604\) 0 0
\(605\) −40660.7 −2.73238
\(606\) 0 0
\(607\) 18457.2 1.23419 0.617097 0.786887i \(-0.288309\pi\)
0.617097 + 0.786887i \(0.288309\pi\)
\(608\) 0 0
\(609\) 5947.45 + 1034.47i 0.395735 + 0.0688321i
\(610\) 0 0
\(611\) 10941.2i 0.724442i
\(612\) 0 0
\(613\) 8799.63i 0.579794i 0.957058 + 0.289897i \(0.0936211\pi\)
−0.957058 + 0.289897i \(0.906379\pi\)
\(614\) 0 0
\(615\) −7682.13 + 44166.8i −0.503697 + 2.89590i
\(616\) 0 0
\(617\) 8358.12 0.545357 0.272679 0.962105i \(-0.412090\pi\)
0.272679 + 0.962105i \(0.412090\pi\)
\(618\) 0 0
\(619\) 6442.47i 0.418327i 0.977881 + 0.209164i \(0.0670741\pi\)
−0.977881 + 0.209164i \(0.932926\pi\)
\(620\) 0 0
\(621\) 4472.32 14814.9i 0.288999 0.957330i
\(622\) 0 0
\(623\) 32200.3i 2.07075i
\(624\) 0 0
\(625\) 26555.6 1.69956
\(626\) 0 0
\(627\) 3695.38 21245.8i 0.235374 1.35323i
\(628\) 0 0
\(629\) 8594.06i 0.544782i
\(630\) 0 0
\(631\) 24060.7i 1.51797i −0.651105 0.758987i \(-0.725694\pi\)
0.651105 0.758987i \(-0.274306\pi\)
\(632\) 0 0
\(633\) 5522.32 + 960.523i 0.346750 + 0.0603118i
\(634\) 0 0
\(635\) 54421.7 3.40104
\(636\) 0 0
\(637\) 38836.0 2.41560
\(638\) 0 0
\(639\) 2023.70 5641.42i 0.125284 0.349251i
\(640\) 0 0
\(641\) −14564.2 −0.897430 −0.448715 0.893675i \(-0.648118\pi\)
−0.448715 + 0.893675i \(0.648118\pi\)
\(642\) 0 0
\(643\) 7514.39i 0.460869i −0.973088 0.230435i \(-0.925985\pi\)
0.973088 0.230435i \(-0.0740147\pi\)
\(644\) 0 0
\(645\) 4722.85 27153.0i 0.288313 1.65760i
\(646\) 0 0
\(647\) 1735.28i 0.105442i −0.998609 0.0527208i \(-0.983211\pi\)
0.998609 0.0527208i \(-0.0167893\pi\)
\(648\) 0 0
\(649\) 8772.56i 0.530590i
\(650\) 0 0
\(651\) −163.856 + 942.054i −0.00986484 + 0.0567158i
\(652\) 0 0
\(653\) 4420.65i 0.264921i 0.991188 + 0.132460i \(0.0422878\pi\)
−0.991188 + 0.132460i \(0.957712\pi\)
\(654\) 0 0
\(655\) 5847.54i 0.348828i
\(656\) 0 0
\(657\) −20422.3 7325.93i −1.21271 0.435026i
\(658\) 0 0
\(659\) −3532.82 −0.208830 −0.104415 0.994534i \(-0.533297\pi\)
−0.104415 + 0.994534i \(0.533297\pi\)
\(660\) 0 0
\(661\) 9876.59i 0.581172i −0.956849 0.290586i \(-0.906150\pi\)
0.956849 0.290586i \(-0.0938503\pi\)
\(662\) 0 0
\(663\) 15460.5 + 2689.11i 0.905633 + 0.157521i
\(664\) 0 0
\(665\) 47830.0 2.78912
\(666\) 0 0
\(667\) −3752.12 + 852.669i −0.217815 + 0.0494985i
\(668\) 0 0
\(669\) 13565.5 + 2359.51i 0.783967 + 0.136359i
\(670\) 0 0
\(671\) 31866.9i 1.83340i
\(672\) 0 0
\(673\) 2629.87 0.150630 0.0753151 0.997160i \(-0.476004\pi\)
0.0753151 + 0.997160i \(0.476004\pi\)
\(674\) 0 0
\(675\) −33811.8 19208.5i −1.92802 1.09531i
\(676\) 0 0
\(677\) 27298.3 1.54972 0.774859 0.632134i \(-0.217821\pi\)
0.774859 + 0.632134i \(0.217821\pi\)
\(678\) 0 0
\(679\) 35574.6 2.01064
\(680\) 0 0
\(681\) −17685.4 3076.10i −0.995161 0.173093i
\(682\) 0 0
\(683\) 11097.0i 0.621689i −0.950461 0.310844i \(-0.899388\pi\)
0.950461 0.310844i \(-0.100612\pi\)
\(684\) 0 0
\(685\) 3972.96 0.221604
\(686\) 0 0
\(687\) 848.104 4875.99i 0.0470992 0.270787i
\(688\) 0 0
\(689\) 3187.86 0.176267
\(690\) 0 0
\(691\) 23414.6 1.28905 0.644525 0.764583i \(-0.277055\pi\)
0.644525 + 0.764583i \(0.277055\pi\)
\(692\) 0 0
\(693\) −17595.9 + 49051.7i −0.964521 + 2.68877i
\(694\) 0 0
\(695\) 30715.4 1.67641
\(696\) 0 0
\(697\) 25632.3i 1.39296i
\(698\) 0 0
\(699\) 4276.97 24589.5i 0.231431 1.33056i
\(700\) 0 0
\(701\) 25705.7 1.38501 0.692503 0.721415i \(-0.256508\pi\)
0.692503 + 0.721415i \(0.256508\pi\)
\(702\) 0 0
\(703\) −10329.5 −0.554172
\(704\) 0 0
\(705\) −3854.50 + 22160.6i −0.205913 + 1.18386i
\(706\) 0 0
\(707\) 39068.6 2.07826
\(708\) 0 0
\(709\) 24217.6i 1.28281i 0.767204 + 0.641403i \(0.221648\pi\)
−0.767204 + 0.641403i \(0.778352\pi\)
\(710\) 0 0
\(711\) −8873.33 + 24736.0i −0.468039 + 1.30474i
\(712\) 0 0
\(713\) −135.060 594.322i −0.00709400 0.0312167i
\(714\) 0 0
\(715\) 58909.5 3.08125
\(716\) 0 0
\(717\) −4086.84 + 23496.4i −0.212867 + 1.22384i
\(718\) 0 0
\(719\) 12407.4i 0.643557i −0.946815 0.321778i \(-0.895719\pi\)
0.946815 0.321778i \(-0.104281\pi\)
\(720\) 0 0
\(721\) 55349.1 2.85896
\(722\) 0 0
\(723\) −1387.42 + 7976.69i −0.0713676 + 0.410313i
\(724\) 0 0
\(725\) 9668.94i 0.495304i
\(726\) 0 0
\(727\) 30245.8i 1.54299i 0.636236 + 0.771494i \(0.280490\pi\)
−0.636236 + 0.771494i \(0.719510\pi\)
\(728\) 0 0
\(729\) 10077.9 + 16907.3i 0.512012 + 0.858978i
\(730\) 0 0
\(731\) 15758.3i 0.797321i
\(732\) 0 0
\(733\) 7723.66i 0.389195i 0.980883 + 0.194597i \(0.0623401\pi\)
−0.980883 + 0.194597i \(0.937660\pi\)
\(734\) 0 0
\(735\) −78659.6 13681.6i −3.94749 0.686604i
\(736\) 0 0
\(737\) 30492.0i 1.52400i
\(738\) 0 0
\(739\) 14577.4 0.725628 0.362814 0.931862i \(-0.381816\pi\)
0.362814 + 0.931862i \(0.381816\pi\)
\(740\) 0 0
\(741\) −3232.12 + 18582.4i −0.160236 + 0.921243i
\(742\) 0 0
\(743\) 20240.5 0.999395 0.499697 0.866200i \(-0.333445\pi\)
0.499697 + 0.866200i \(0.333445\pi\)
\(744\) 0 0
\(745\) −13290.7 −0.653601
\(746\) 0 0
\(747\) −6210.04 2227.68i −0.304168 0.109112i
\(748\) 0 0
\(749\) 5406.47i 0.263749i
\(750\) 0 0
\(751\) 18003.6i 0.874779i −0.899272 0.437390i \(-0.855903\pi\)
0.899272 0.437390i \(-0.144097\pi\)
\(752\) 0 0
\(753\) −2079.47 361.692i −0.100638 0.0175043i
\(754\) 0 0
\(755\) −64851.2 −3.12606
\(756\) 0 0
\(757\) 11315.8i 0.543301i 0.962396 + 0.271650i \(0.0875695\pi\)
−0.962396 + 0.271650i \(0.912431\pi\)
\(758\) 0 0
\(759\) −1701.34 33172.4i −0.0813633 1.58641i
\(760\) 0 0
\(761\) 10.6496i 0.000507289i 1.00000 0.000253645i \(8.07376e-5\pi\)
−1.00000 0.000253645i \(0.999919\pi\)
\(762\) 0 0
\(763\) −48222.8 −2.28805
\(764\) 0 0
\(765\) −30366.7 10893.2i −1.43518 0.514830i
\(766\) 0 0
\(767\) 7672.81i 0.361212i
\(768\) 0 0
\(769\) 24642.3i 1.15556i −0.816194 0.577778i \(-0.803920\pi\)
0.816194 0.577778i \(-0.196080\pi\)
\(770\) 0 0
\(771\) 4467.74 25686.3i 0.208692 1.19983i
\(772\) 0 0
\(773\) 7708.00 0.358651 0.179326 0.983790i \(-0.442608\pi\)
0.179326 + 0.983790i \(0.442608\pi\)
\(774\) 0 0
\(775\) −1531.52 −0.0709857
\(776\) 0 0
\(777\) 24592.3 + 4277.45i 1.13545 + 0.197494i
\(778\) 0 0
\(779\) −30808.2 −1.41697
\(780\) 0 0
\(781\) 12864.3i 0.589397i
\(782\) 0 0
\(783\) 2417.43 4255.28i 0.110335 0.194216i
\(784\) 0 0
\(785\) 3317.57i 0.150840i
\(786\) 0 0
\(787\) 22970.2i 1.04040i −0.854043 0.520202i \(-0.825857\pi\)
0.854043 0.520202i \(-0.174143\pi\)
\(788\) 0 0
\(789\) −2736.53 475.977i −0.123477 0.0214769i
\(790\) 0 0
\(791\) 10156.5i 0.456539i
\(792\) 0 0
\(793\) 27872.0i 1.24813i
\(794\) 0 0
\(795\) −6456.78 1123.06i −0.288048 0.0501016i
\(796\) 0 0
\(797\) −17743.4 −0.788588 −0.394294 0.918984i \(-0.629011\pi\)
−0.394294 + 0.918984i \(0.629011\pi\)
\(798\) 0 0
\(799\) 12861.0i 0.569447i
\(800\) 0 0
\(801\) 24571.7 + 8814.42i 1.08389 + 0.388817i
\(802\) 0 0
\(803\) −46569.4 −2.04658
\(804\) 0 0
\(805\) 71840.4 16325.7i 3.14539 0.714789i
\(806\) 0 0
\(807\) 767.744 4413.98i 0.0334893 0.192540i
\(808\) 0 0
\(809\) 22418.5i 0.974281i −0.873324 0.487141i \(-0.838040\pi\)
0.873324 0.487141i \(-0.161960\pi\)
\(810\) 0 0
\(811\) 18917.8 0.819105 0.409553 0.912286i \(-0.365685\pi\)
0.409553 + 0.912286i \(0.365685\pi\)
\(812\) 0 0
\(813\) 7341.56 + 1276.95i 0.316703 + 0.0550857i
\(814\) 0 0
\(815\) 23483.9 1.00933
\(816\) 0 0
\(817\) 18940.4 0.811064
\(818\) 0 0
\(819\) 15390.0 42902.4i 0.656619 1.83044i
\(820\) 0 0
\(821\) 39044.4i 1.65975i 0.557946 + 0.829877i \(0.311589\pi\)
−0.557946 + 0.829877i \(0.688411\pi\)
\(822\) 0 0
\(823\) 14917.5 0.631826 0.315913 0.948788i \(-0.397689\pi\)
0.315913 + 0.948788i \(0.397689\pi\)
\(824\) 0 0
\(825\) −82232.5 14303.1i −3.47026 0.603599i
\(826\) 0 0
\(827\) 42665.6 1.79399 0.896995 0.442042i \(-0.145746\pi\)
0.896995 + 0.442042i \(0.145746\pi\)
\(828\) 0 0
\(829\) −171.879 −0.00720097 −0.00360049 0.999994i \(-0.501146\pi\)
−0.00360049 + 0.999994i \(0.501146\pi\)
\(830\) 0 0
\(831\) −1041.88 181.219i −0.0434928 0.00756490i
\(832\) 0 0
\(833\) −45650.2 −1.89878
\(834\) 0 0
\(835\) 55112.8i 2.28414i
\(836\) 0 0
\(837\) 674.020 + 382.912i 0.0278346 + 0.0158129i
\(838\) 0 0
\(839\) −2047.36 −0.0842465 −0.0421232 0.999112i \(-0.513412\pi\)
−0.0421232 + 0.999112i \(0.513412\pi\)
\(840\) 0 0
\(841\) 23172.1 0.950106
\(842\) 0 0
\(843\) 9250.67 + 1609.01i 0.377948 + 0.0657382i
\(844\) 0 0
\(845\) −7465.00 −0.303910
\(846\) 0 0
\(847\) 67525.4i 2.73931i
\(848\) 0 0
\(849\) 3694.82 21242.6i 0.149359 0.858708i
\(850\) 0 0
\(851\) −15514.8 + 3525.73i −0.624959 + 0.142022i
\(852\) 0 0
\(853\) −25416.9 −1.02023 −0.510116 0.860106i \(-0.670397\pi\)
−0.510116 + 0.860106i \(0.670397\pi\)
\(854\) 0 0
\(855\) 13092.9 36498.7i 0.523704 1.45992i
\(856\) 0 0
\(857\) 21389.0i 0.852550i 0.904594 + 0.426275i \(0.140174\pi\)
−0.904594 + 0.426275i \(0.859826\pi\)
\(858\) 0 0
\(859\) 22121.7 0.878678 0.439339 0.898321i \(-0.355213\pi\)
0.439339 + 0.898321i \(0.355213\pi\)
\(860\) 0 0
\(861\) 73347.9 + 12757.7i 2.90324 + 0.504974i
\(862\) 0 0
\(863\) 15118.3i 0.596330i 0.954514 + 0.298165i \(0.0963745\pi\)
−0.954514 + 0.298165i \(0.903626\pi\)
\(864\) 0 0
\(865\) 3216.60i 0.126436i
\(866\) 0 0
\(867\) 6977.90 + 1213.70i 0.273335 + 0.0475425i
\(868\) 0 0
\(869\) 56405.9i 2.20189i
\(870\) 0 0
\(871\) 26669.4i 1.03750i
\(872\) 0 0
\(873\) 9738.10 27146.7i 0.377531 1.05243i
\(874\) 0 0
\(875\) 101640.i 3.92692i
\(876\) 0 0
\(877\) 5834.48 0.224648 0.112324 0.993672i \(-0.464171\pi\)
0.112324 + 0.993672i \(0.464171\pi\)
\(878\) 0 0
\(879\) 50342.8 + 8756.36i 1.93176 + 0.336001i
\(880\) 0 0
\(881\) −41979.2 −1.60535 −0.802677 0.596414i \(-0.796592\pi\)
−0.802677 + 0.596414i \(0.796592\pi\)
\(882\) 0 0
\(883\) −12504.3 −0.476560 −0.238280 0.971197i \(-0.576584\pi\)
−0.238280 + 0.971197i \(0.576584\pi\)
\(884\) 0 0
\(885\) −2703.07 + 15540.7i −0.102670 + 0.590278i
\(886\) 0 0
\(887\) 19431.7i 0.735572i 0.929911 + 0.367786i \(0.119884\pi\)
−0.929911 + 0.367786i \(0.880116\pi\)
\(888\) 0 0
\(889\) 90378.3i 3.40966i
\(890\) 0 0
\(891\) 32614.2 + 26854.6i 1.22628 + 1.00972i
\(892\) 0 0
\(893\) −15458.0 −0.579263
\(894\) 0 0
\(895\) 26556.2i 0.991815i
\(896\) 0 0
\(897\) 1488.06 + 29013.8i 0.0553899 + 1.07998i
\(898\) 0 0
\(899\) 192.745i 0.00715063i
\(900\) 0 0
\(901\) −3747.20 −0.138554
\(902\) 0 0
\(903\) −45093.1 7843.25i −1.66180 0.289044i
\(904\) 0 0
\(905\) 59464.9i 2.18418i
\(906\) 0 0
\(907\) 31295.0i 1.14568i 0.819666 + 0.572841i \(0.194159\pi\)
−0.819666 + 0.572841i \(0.805841\pi\)
\(908\) 0 0
\(909\) 10694.5 29812.9i 0.390226 1.08782i
\(910\) 0 0
\(911\) 26675.6 0.970144 0.485072 0.874474i \(-0.338793\pi\)
0.485072 + 0.874474i \(0.338793\pi\)
\(912\) 0 0
\(913\) −14160.9 −0.513316
\(914\) 0 0
\(915\) −9819.09 + 56452.8i −0.354764 + 2.03964i
\(916\) 0 0
\(917\) 9711.04 0.349713
\(918\) 0 0
\(919\) 8871.58i 0.318440i 0.987243 + 0.159220i \(0.0508979\pi\)
−0.987243 + 0.159220i \(0.949102\pi\)
\(920\) 0 0
\(921\) −33363.6 5803.09i −1.19367 0.207620i
\(922\) 0 0
\(923\) 11251.6i 0.401245i
\(924\) 0 0
\(925\) 39980.4i 1.42113i
\(926\) 0 0
\(927\) 15151.1 42236.4i 0.536816 1.49647i
\(928\) 0 0
\(929\) 37634.8i 1.32912i 0.747233 + 0.664562i \(0.231382\pi\)
−0.747233 + 0.664562i \(0.768618\pi\)
\(930\) 0 0
\(931\) 54868.3i 1.93151i
\(932\) 0 0
\(933\) 1178.80 6777.26i 0.0413635 0.237811i
\(934\) 0 0
\(935\) −69245.9 −2.42201
\(936\) 0 0
\(937\) 27696.6i 0.965644i 0.875719 + 0.482822i \(0.160388\pi\)
−0.875719 + 0.482822i \(0.839612\pi\)
\(938\) 0 0
\(939\) 5137.81 29538.8i 0.178558 1.02658i
\(940\) 0 0
\(941\) 11405.8 0.395133 0.197566 0.980290i \(-0.436696\pi\)
0.197566 + 0.980290i \(0.436696\pi\)
\(942\) 0 0
\(943\) −46273.7 + 10515.7i −1.59796 + 0.363137i
\(944\) 0 0
\(945\) −46285.6 + 81474.0i −1.59330 + 2.80460i
\(946\) 0 0
\(947\) 10982.8i 0.376868i 0.982086 + 0.188434i \(0.0603412\pi\)
−0.982086 + 0.188434i \(0.939659\pi\)
\(948\) 0 0
\(949\) 40731.4 1.39325
\(950\) 0 0
\(951\) −7007.96 + 40290.8i −0.238958 + 1.37384i
\(952\) 0 0
\(953\) 150.697 0.00512229 0.00256115 0.999997i \(-0.499185\pi\)
0.00256115 + 0.999997i \(0.499185\pi\)
\(954\) 0 0
\(955\) −84023.1 −2.84704
\(956\) 0 0
\(957\) 1800.07 10349.1i 0.0608025 0.349571i
\(958\) 0 0
\(959\) 6597.91i 0.222167i
\(960\) 0 0
\(961\) −29760.5 −0.998975
\(962\) 0 0
\(963\) 4125.63 + 1479.95i 0.138055 + 0.0495232i
\(964\) 0 0
\(965\) 29946.8 0.998988
\(966\) 0 0
\(967\) −35798.2 −1.19048 −0.595239 0.803549i \(-0.702943\pi\)
−0.595239 + 0.803549i \(0.702943\pi\)
\(968\) 0 0
\(969\) 3799.23 21842.9i 0.125954 0.724143i
\(970\) 0 0
\(971\) 49555.9 1.63782 0.818911 0.573920i \(-0.194578\pi\)
0.818911 + 0.573920i \(0.194578\pi\)
\(972\) 0 0
\(973\) 51009.2i 1.68066i
\(974\) 0 0
\(975\) 71923.6 + 12510.0i 2.36246 + 0.410914i
\(976\) 0 0
\(977\) −42576.7 −1.39422 −0.697109 0.716965i \(-0.745531\pi\)
−0.697109 + 0.716965i \(0.745531\pi\)
\(978\) 0 0
\(979\) 56031.5 1.82919
\(980\) 0 0
\(981\) −13200.4 + 36798.4i −0.429619 + 1.19764i
\(982\) 0 0
\(983\) 33552.1 1.08865 0.544327 0.838873i \(-0.316785\pi\)
0.544327 + 0.838873i \(0.316785\pi\)
\(984\) 0 0
\(985\) 89918.5i 2.90867i
\(986\) 0 0
\(987\) 36802.3 + 6401.19i 1.18686 + 0.206436i
\(988\) 0 0
\(989\) 28448.3 6464.87i 0.914665 0.207857i
\(990\) 0 0
\(991\) 37162.8 1.19124 0.595618 0.803268i \(-0.296907\pi\)
0.595618 + 0.803268i \(0.296907\pi\)
\(992\) 0 0
\(993\) 14940.9 + 2598.74i 0.477478 + 0.0830500i
\(994\) 0 0
\(995\) 43978.9i 1.40123i
\(996\) 0 0
\(997\) −48124.2 −1.52869 −0.764347 0.644805i \(-0.776939\pi\)
−0.764347 + 0.644805i \(0.776939\pi\)
\(998\) 0 0
\(999\) 9995.93 17595.3i 0.316574 0.557247i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.4.m.a.137.5 72
3.2 odd 2 inner 552.4.m.a.137.8 yes 72
23.22 odd 2 inner 552.4.m.a.137.6 yes 72
69.68 even 2 inner 552.4.m.a.137.7 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.4.m.a.137.5 72 1.1 even 1 trivial
552.4.m.a.137.6 yes 72 23.22 odd 2 inner
552.4.m.a.137.7 yes 72 69.68 even 2 inner
552.4.m.a.137.8 yes 72 3.2 odd 2 inner