L(s) = 1 | + (−5.11 − 0.890i)3-s − 20.0·5-s + 33.3i·7-s + (25.4 + 9.11i)9-s + 57.9·11-s − 50.6·13-s + (102. + 17.8i)15-s + 59.5·17-s + 71.6i·19-s + (29.6 − 170. i)21-s + (24.4 + 107. i)23-s + 277.·25-s + (−121. − 69.3i)27-s + 34.8i·29-s − 5.52·31-s + ⋯ |
L(s) = 1 | + (−0.985 − 0.171i)3-s − 1.79·5-s + 1.79i·7-s + (0.941 + 0.337i)9-s + 1.58·11-s − 1.08·13-s + (1.76 + 0.307i)15-s + 0.850·17-s + 0.864i·19-s + (0.308 − 1.77i)21-s + (0.221 + 0.975i)23-s + 2.21·25-s + (−0.869 − 0.493i)27-s + 0.223i·29-s − 0.0320·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0512i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0512i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5129379683\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5129379683\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (5.11 + 0.890i)T \) |
| 23 | \( 1 + (-24.4 - 107. i)T \) |
good | 5 | \( 1 + 20.0T + 125T^{2} \) |
| 7 | \( 1 - 33.3iT - 343T^{2} \) |
| 11 | \( 1 - 57.9T + 1.33e3T^{2} \) |
| 13 | \( 1 + 50.6T + 2.19e3T^{2} \) |
| 17 | \( 1 - 59.5T + 4.91e3T^{2} \) |
| 19 | \( 1 - 71.6iT - 6.85e3T^{2} \) |
| 29 | \( 1 - 34.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 5.52T + 2.97e4T^{2} \) |
| 37 | \( 1 - 144. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 430. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 264. iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 215. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 62.8T + 1.48e5T^{2} \) |
| 59 | \( 1 - 151. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 549. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 526. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 221. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 803.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 973. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 244.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 966.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.06e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33828054955512193776921139607, −9.933756098782128196209925643652, −9.035147998243369883350880123721, −8.035295650861598574461997543142, −7.25216904569540098092750809335, −6.23534922984393690768221918616, −5.27607164199082106951486941738, −4.30380896503168314812774243636, −3.17705648285723660113772373344, −1.39455246320183761169231041228,
0.25584548811376933151732051498, 0.942823668266497615571461610024, 3.58563850355072197774263377105, 4.18597591822480248412006699240, 4.85673383297585718854590655109, 6.63537574018702468085047800490, 7.15389355586518987988906365931, 7.77206347930962490347560410910, 9.144172004903099739975017677558, 10.23633519540628372458909722994