Properties

Label 552.2.q.c.73.3
Level $552$
Weight $2$
Character 552.73
Analytic conductor $4.408$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(25,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.q (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30,0,3,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(3\) over \(\Q(\zeta_{11})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 552.73
Dual form 552.2.q.c.121.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.959493 - 0.281733i) q^{3} +(2.64512 + 1.69992i) q^{5} +(0.0583451 + 0.405799i) q^{7} +(0.841254 - 0.540641i) q^{9} +(0.742783 - 1.62647i) q^{11} +(-0.395701 + 2.75216i) q^{13} +(3.01690 + 0.885841i) q^{15} +(1.07564 + 1.24136i) q^{17} +(0.916981 - 1.05825i) q^{19} +(0.170308 + 0.372923i) q^{21} +(-4.69916 - 0.958061i) q^{23} +(2.02987 + 4.44480i) q^{25} +(0.654861 - 0.755750i) q^{27} +(0.646092 + 0.745630i) q^{29} +(0.686370 + 0.201536i) q^{31} +(0.254466 - 1.76985i) q^{33} +(-0.535494 + 1.17257i) q^{35} +(-2.07448 + 1.33318i) q^{37} +(0.395701 + 2.75216i) q^{39} +(-6.15118 - 3.95312i) q^{41} +(7.39634 - 2.17176i) q^{43} +3.14426 q^{45} -2.85139 q^{47} +(6.55518 - 1.92478i) q^{49} +(1.38180 + 0.888030i) q^{51} +(0.372762 + 2.59262i) q^{53} +(4.72961 - 3.03954i) q^{55} +(0.581692 - 1.27373i) q^{57} +(1.19652 - 8.32198i) q^{59} +(7.71092 + 2.26413i) q^{61} +(0.268474 + 0.309836i) q^{63} +(-5.72512 + 6.60715i) q^{65} +(-4.60258 - 10.0782i) q^{67} +(-4.77873 + 0.404654i) q^{69} +(-0.0976848 - 0.213900i) q^{71} +(-4.37625 + 5.05046i) q^{73} +(3.19990 + 3.69288i) q^{75} +(0.703357 + 0.206524i) q^{77} +(1.17022 - 8.13904i) q^{79} +(0.415415 - 0.909632i) q^{81} +(-13.0290 + 8.37326i) q^{83} +(0.735001 + 5.11204i) q^{85} +(0.829989 + 0.533402i) q^{87} +(-12.6703 + 3.72034i) q^{89} -1.13991 q^{91} +0.715346 q^{93} +(4.22446 - 1.24041i) q^{95} +(6.89329 + 4.43005i) q^{97} +(-0.254466 - 1.76985i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 3 q^{3} - 2 q^{5} - 2 q^{7} - 3 q^{9} + 13 q^{11} - 13 q^{13} + 2 q^{15} - 11 q^{17} + 11 q^{19} - 9 q^{21} - 12 q^{23} + 17 q^{25} + 3 q^{27} + 9 q^{29} + 33 q^{31} + 9 q^{33} + 62 q^{35} + 11 q^{37}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{2}{11}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.959493 0.281733i 0.553964 0.162658i
\(4\) 0 0
\(5\) 2.64512 + 1.69992i 1.18293 + 0.760225i 0.975923 0.218113i \(-0.0699902\pi\)
0.207010 + 0.978339i \(0.433627\pi\)
\(6\) 0 0
\(7\) 0.0583451 + 0.405799i 0.0220524 + 0.153378i 0.997872 0.0651983i \(-0.0207680\pi\)
−0.975820 + 0.218576i \(0.929859\pi\)
\(8\) 0 0
\(9\) 0.841254 0.540641i 0.280418 0.180214i
\(10\) 0 0
\(11\) 0.742783 1.62647i 0.223958 0.490399i −0.763982 0.645237i \(-0.776759\pi\)
0.987940 + 0.154839i \(0.0494858\pi\)
\(12\) 0 0
\(13\) −0.395701 + 2.75216i −0.109748 + 0.763313i 0.858409 + 0.512967i \(0.171454\pi\)
−0.968156 + 0.250346i \(0.919456\pi\)
\(14\) 0 0
\(15\) 3.01690 + 0.885841i 0.778959 + 0.228723i
\(16\) 0 0
\(17\) 1.07564 + 1.24136i 0.260882 + 0.301073i 0.871046 0.491201i \(-0.163442\pi\)
−0.610164 + 0.792275i \(0.708897\pi\)
\(18\) 0 0
\(19\) 0.916981 1.05825i 0.210370 0.242780i −0.640752 0.767748i \(-0.721377\pi\)
0.851122 + 0.524968i \(0.175923\pi\)
\(20\) 0 0
\(21\) 0.170308 + 0.372923i 0.0371643 + 0.0813786i
\(22\) 0 0
\(23\) −4.69916 0.958061i −0.979843 0.199770i
\(24\) 0 0
\(25\) 2.02987 + 4.44480i 0.405975 + 0.888961i
\(26\) 0 0
\(27\) 0.654861 0.755750i 0.126028 0.145444i
\(28\) 0 0
\(29\) 0.646092 + 0.745630i 0.119976 + 0.138460i 0.812560 0.582877i \(-0.198073\pi\)
−0.692584 + 0.721337i \(0.743528\pi\)
\(30\) 0 0
\(31\) 0.686370 + 0.201536i 0.123276 + 0.0361970i 0.342788 0.939413i \(-0.388629\pi\)
−0.219513 + 0.975610i \(0.570447\pi\)
\(32\) 0 0
\(33\) 0.254466 1.76985i 0.0442969 0.308092i
\(34\) 0 0
\(35\) −0.535494 + 1.17257i −0.0905150 + 0.198200i
\(36\) 0 0
\(37\) −2.07448 + 1.33318i −0.341042 + 0.219174i −0.699939 0.714203i \(-0.746789\pi\)
0.358897 + 0.933377i \(0.383153\pi\)
\(38\) 0 0
\(39\) 0.395701 + 2.75216i 0.0633629 + 0.440699i
\(40\) 0 0
\(41\) −6.15118 3.95312i −0.960652 0.617374i −0.0364738 0.999335i \(-0.511613\pi\)
−0.924178 + 0.381961i \(0.875249\pi\)
\(42\) 0 0
\(43\) 7.39634 2.17176i 1.12793 0.331190i 0.336037 0.941849i \(-0.390913\pi\)
0.791894 + 0.610658i \(0.209095\pi\)
\(44\) 0 0
\(45\) 3.14426 0.468719
\(46\) 0 0
\(47\) −2.85139 −0.415918 −0.207959 0.978138i \(-0.566682\pi\)
−0.207959 + 0.978138i \(0.566682\pi\)
\(48\) 0 0
\(49\) 6.55518 1.92478i 0.936455 0.274968i
\(50\) 0 0
\(51\) 1.38180 + 0.888030i 0.193491 + 0.124349i
\(52\) 0 0
\(53\) 0.372762 + 2.59262i 0.0512028 + 0.356123i 0.999275 + 0.0380685i \(0.0121205\pi\)
−0.948072 + 0.318055i \(0.896970\pi\)
\(54\) 0 0
\(55\) 4.72961 3.03954i 0.637740 0.409851i
\(56\) 0 0
\(57\) 0.581692 1.27373i 0.0770470 0.168709i
\(58\) 0 0
\(59\) 1.19652 8.32198i 0.155774 1.08343i −0.750540 0.660825i \(-0.770207\pi\)
0.906314 0.422605i \(-0.138884\pi\)
\(60\) 0 0
\(61\) 7.71092 + 2.26413i 0.987283 + 0.289892i 0.735227 0.677821i \(-0.237075\pi\)
0.252055 + 0.967713i \(0.418894\pi\)
\(62\) 0 0
\(63\) 0.268474 + 0.309836i 0.0338246 + 0.0390357i
\(64\) 0 0
\(65\) −5.72512 + 6.60715i −0.710114 + 0.819516i
\(66\) 0 0
\(67\) −4.60258 10.0782i −0.562294 1.23125i −0.950800 0.309806i \(-0.899736\pi\)
0.388506 0.921446i \(-0.372991\pi\)
\(68\) 0 0
\(69\) −4.77873 + 0.404654i −0.575291 + 0.0487146i
\(70\) 0 0
\(71\) −0.0976848 0.213900i −0.0115930 0.0253852i 0.903747 0.428067i \(-0.140805\pi\)
−0.915340 + 0.402682i \(0.868078\pi\)
\(72\) 0 0
\(73\) −4.37625 + 5.05046i −0.512201 + 0.591111i −0.951661 0.307151i \(-0.900624\pi\)
0.439460 + 0.898262i \(0.355170\pi\)
\(74\) 0 0
\(75\) 3.19990 + 3.69288i 0.369492 + 0.426417i
\(76\) 0 0
\(77\) 0.703357 + 0.206524i 0.0801549 + 0.0235356i
\(78\) 0 0
\(79\) 1.17022 8.13904i 0.131660 0.915713i −0.811731 0.584031i \(-0.801475\pi\)
0.943391 0.331682i \(-0.107616\pi\)
\(80\) 0 0
\(81\) 0.415415 0.909632i 0.0461572 0.101070i
\(82\) 0 0
\(83\) −13.0290 + 8.37326i −1.43012 + 0.919085i −0.430258 + 0.902706i \(0.641577\pi\)
−0.999866 + 0.0163789i \(0.994786\pi\)
\(84\) 0 0
\(85\) 0.735001 + 5.11204i 0.0797220 + 0.554479i
\(86\) 0 0
\(87\) 0.829989 + 0.533402i 0.0889842 + 0.0571867i
\(88\) 0 0
\(89\) −12.6703 + 3.72034i −1.34305 + 0.394355i −0.872757 0.488155i \(-0.837670\pi\)
−0.470293 + 0.882510i \(0.655852\pi\)
\(90\) 0 0
\(91\) −1.13991 −0.119495
\(92\) 0 0
\(93\) 0.715346 0.0741779
\(94\) 0 0
\(95\) 4.22446 1.24041i 0.433421 0.127264i
\(96\) 0 0
\(97\) 6.89329 + 4.43005i 0.699907 + 0.449803i 0.841596 0.540108i \(-0.181617\pi\)
−0.141688 + 0.989911i \(0.545253\pi\)
\(98\) 0 0
\(99\) −0.254466 1.76985i −0.0255748 0.177877i
\(100\) 0 0
\(101\) −6.64629 + 4.27131i −0.661331 + 0.425011i −0.827791 0.561037i \(-0.810403\pi\)
0.166460 + 0.986048i \(0.446766\pi\)
\(102\) 0 0
\(103\) 1.54878 3.39135i 0.152605 0.334159i −0.817853 0.575427i \(-0.804836\pi\)
0.970459 + 0.241268i \(0.0775632\pi\)
\(104\) 0 0
\(105\) −0.183452 + 1.27594i −0.0179031 + 0.124519i
\(106\) 0 0
\(107\) −11.4215 3.35365i −1.10416 0.324210i −0.321654 0.946857i \(-0.604239\pi\)
−0.782502 + 0.622648i \(0.786057\pi\)
\(108\) 0 0
\(109\) −2.95416 3.40928i −0.282957 0.326550i 0.596423 0.802670i \(-0.296588\pi\)
−0.879380 + 0.476120i \(0.842043\pi\)
\(110\) 0 0
\(111\) −1.61484 + 1.86363i −0.153274 + 0.176888i
\(112\) 0 0
\(113\) −8.17894 17.9094i −0.769410 1.68477i −0.727948 0.685632i \(-0.759526\pi\)
−0.0414618 0.999140i \(-0.513201\pi\)
\(114\) 0 0
\(115\) −10.8012 10.5224i −1.00722 0.981216i
\(116\) 0 0
\(117\) 1.15505 + 2.52920i 0.106784 + 0.233825i
\(118\) 0 0
\(119\) −0.440983 + 0.508922i −0.0404249 + 0.0466528i
\(120\) 0 0
\(121\) 5.10980 + 5.89702i 0.464527 + 0.536093i
\(122\) 0 0
\(123\) −7.01573 2.06001i −0.632587 0.185744i
\(124\) 0 0
\(125\) 0.0508438 0.353627i 0.00454761 0.0316293i
\(126\) 0 0
\(127\) −3.95458 + 8.65933i −0.350913 + 0.768391i 0.649058 + 0.760739i \(0.275163\pi\)
−0.999971 + 0.00765257i \(0.997564\pi\)
\(128\) 0 0
\(129\) 6.48488 4.16758i 0.570962 0.366935i
\(130\) 0 0
\(131\) 0.0210243 + 0.146227i 0.00183690 + 0.0127759i 0.990719 0.135924i \(-0.0434003\pi\)
−0.988882 + 0.148700i \(0.952491\pi\)
\(132\) 0 0
\(133\) 0.482939 + 0.310366i 0.0418761 + 0.0269121i
\(134\) 0 0
\(135\) 3.01690 0.885841i 0.259653 0.0762410i
\(136\) 0 0
\(137\) −10.6025 −0.905834 −0.452917 0.891553i \(-0.649617\pi\)
−0.452917 + 0.891553i \(0.649617\pi\)
\(138\) 0 0
\(139\) −19.6055 −1.66292 −0.831460 0.555584i \(-0.812495\pi\)
−0.831460 + 0.555584i \(0.812495\pi\)
\(140\) 0 0
\(141\) −2.73589 + 0.803329i −0.230403 + 0.0676525i
\(142\) 0 0
\(143\) 4.18239 + 2.68786i 0.349749 + 0.224770i
\(144\) 0 0
\(145\) 0.441483 + 3.07058i 0.0366632 + 0.254998i
\(146\) 0 0
\(147\) 5.74738 3.69362i 0.474036 0.304644i
\(148\) 0 0
\(149\) 9.46724 20.7304i 0.775586 1.69830i 0.0616385 0.998099i \(-0.480367\pi\)
0.713948 0.700199i \(-0.246905\pi\)
\(150\) 0 0
\(151\) 0.225555 1.56877i 0.0183554 0.127664i −0.978583 0.205851i \(-0.934004\pi\)
0.996939 + 0.0781864i \(0.0249129\pi\)
\(152\) 0 0
\(153\) 1.57602 + 0.462760i 0.127413 + 0.0374119i
\(154\) 0 0
\(155\) 1.47294 + 1.69986i 0.118309 + 0.136536i
\(156\) 0 0
\(157\) −7.43802 + 8.58393i −0.593618 + 0.685072i −0.970476 0.241199i \(-0.922459\pi\)
0.376857 + 0.926271i \(0.377005\pi\)
\(158\) 0 0
\(159\) 1.08809 + 2.38258i 0.0862909 + 0.188951i
\(160\) 0 0
\(161\) 0.114607 1.96281i 0.00903231 0.154691i
\(162\) 0 0
\(163\) −1.67765 3.67355i −0.131404 0.287735i 0.832481 0.554054i \(-0.186920\pi\)
−0.963885 + 0.266319i \(0.914192\pi\)
\(164\) 0 0
\(165\) 3.68169 4.24890i 0.286619 0.330776i
\(166\) 0 0
\(167\) 14.0919 + 16.2629i 1.09046 + 1.25846i 0.963831 + 0.266513i \(0.0858714\pi\)
0.126632 + 0.991950i \(0.459583\pi\)
\(168\) 0 0
\(169\) 5.05558 + 1.48445i 0.388891 + 0.114189i
\(170\) 0 0
\(171\) 0.199279 1.38602i 0.0152392 0.105991i
\(172\) 0 0
\(173\) 5.50641 12.0574i 0.418645 0.916704i −0.576390 0.817175i \(-0.695539\pi\)
0.995035 0.0995295i \(-0.0317338\pi\)
\(174\) 0 0
\(175\) −1.68526 + 1.08305i −0.127394 + 0.0818711i
\(176\) 0 0
\(177\) −1.19652 8.32198i −0.0899360 0.625518i
\(178\) 0 0
\(179\) −4.33158 2.78374i −0.323758 0.208066i 0.368658 0.929565i \(-0.379817\pi\)
−0.692416 + 0.721499i \(0.743454\pi\)
\(180\) 0 0
\(181\) −23.9782 + 7.04063i −1.78229 + 0.523326i −0.995573 0.0939930i \(-0.970037\pi\)
−0.786713 + 0.617319i \(0.788219\pi\)
\(182\) 0 0
\(183\) 8.03646 0.594072
\(184\) 0 0
\(185\) −7.75354 −0.570051
\(186\) 0 0
\(187\) 2.81800 0.827439i 0.206072 0.0605083i
\(188\) 0 0
\(189\) 0.344890 + 0.221647i 0.0250871 + 0.0161225i
\(190\) 0 0
\(191\) 2.57597 + 17.9163i 0.186391 + 1.29638i 0.841259 + 0.540633i \(0.181815\pi\)
−0.654868 + 0.755743i \(0.727276\pi\)
\(192\) 0 0
\(193\) 22.8182 14.6644i 1.64249 1.05556i 0.704034 0.710166i \(-0.251380\pi\)
0.938456 0.345398i \(-0.112256\pi\)
\(194\) 0 0
\(195\) −3.63177 + 7.95246i −0.260076 + 0.569488i
\(196\) 0 0
\(197\) 0.560525 3.89854i 0.0399357 0.277759i −0.960062 0.279787i \(-0.909736\pi\)
0.999998 + 0.00202747i \(0.000645365\pi\)
\(198\) 0 0
\(199\) 8.58410 + 2.52052i 0.608510 + 0.178675i 0.571448 0.820638i \(-0.306382\pi\)
0.0370623 + 0.999313i \(0.488200\pi\)
\(200\) 0 0
\(201\) −7.25551 8.37330i −0.511764 0.590607i
\(202\) 0 0
\(203\) −0.264880 + 0.305687i −0.0185909 + 0.0214550i
\(204\) 0 0
\(205\) −9.55063 20.9130i −0.667045 1.46062i
\(206\) 0 0
\(207\) −4.47115 + 1.73459i −0.310767 + 0.120562i
\(208\) 0 0
\(209\) −1.04010 2.27749i −0.0719449 0.157537i
\(210\) 0 0
\(211\) −4.11476 + 4.74869i −0.283272 + 0.326913i −0.879497 0.475904i \(-0.842121\pi\)
0.596225 + 0.802817i \(0.296666\pi\)
\(212\) 0 0
\(213\) −0.153990 0.177714i −0.0105512 0.0121768i
\(214\) 0 0
\(215\) 23.2560 + 6.82858i 1.58605 + 0.465705i
\(216\) 0 0
\(217\) −0.0417369 + 0.290287i −0.00283329 + 0.0197059i
\(218\) 0 0
\(219\) −2.77610 + 6.07881i −0.187591 + 0.410768i
\(220\) 0 0
\(221\) −3.84205 + 2.46914i −0.258444 + 0.166092i
\(222\) 0 0
\(223\) 1.71882 + 11.9547i 0.115101 + 0.800544i 0.962829 + 0.270113i \(0.0870609\pi\)
−0.847728 + 0.530431i \(0.822030\pi\)
\(224\) 0 0
\(225\) 4.11068 + 2.64177i 0.274045 + 0.176118i
\(226\) 0 0
\(227\) −6.55892 + 1.92587i −0.435331 + 0.127825i −0.492053 0.870565i \(-0.663753\pi\)
0.0567219 + 0.998390i \(0.481935\pi\)
\(228\) 0 0
\(229\) −2.44693 −0.161698 −0.0808489 0.996726i \(-0.525763\pi\)
−0.0808489 + 0.996726i \(0.525763\pi\)
\(230\) 0 0
\(231\) 0.733050 0.0482312
\(232\) 0 0
\(233\) −1.68535 + 0.494863i −0.110411 + 0.0324195i −0.336471 0.941694i \(-0.609233\pi\)
0.226060 + 0.974113i \(0.427415\pi\)
\(234\) 0 0
\(235\) −7.54226 4.84712i −0.492003 0.316191i
\(236\) 0 0
\(237\) −1.17022 8.13904i −0.0760137 0.528687i
\(238\) 0 0
\(239\) 6.54515 4.20631i 0.423370 0.272084i −0.311560 0.950227i \(-0.600851\pi\)
0.734930 + 0.678143i \(0.237215\pi\)
\(240\) 0 0
\(241\) −2.48822 + 5.44845i −0.160280 + 0.350965i −0.972685 0.232129i \(-0.925431\pi\)
0.812405 + 0.583094i \(0.198158\pi\)
\(242\) 0 0
\(243\) 0.142315 0.989821i 0.00912950 0.0634971i
\(244\) 0 0
\(245\) 20.6112 + 6.05200i 1.31680 + 0.386648i
\(246\) 0 0
\(247\) 2.54963 + 2.94243i 0.162229 + 0.187222i
\(248\) 0 0
\(249\) −10.1423 + 11.7048i −0.642740 + 0.741761i
\(250\) 0 0
\(251\) 0.824494 + 1.80539i 0.0520416 + 0.113955i 0.933867 0.357622i \(-0.116412\pi\)
−0.881825 + 0.471577i \(0.843685\pi\)
\(252\) 0 0
\(253\) −5.04871 + 6.93141i −0.317410 + 0.435774i
\(254\) 0 0
\(255\) 2.14546 + 4.69790i 0.134354 + 0.294194i
\(256\) 0 0
\(257\) 12.0654 13.9242i 0.752617 0.868566i −0.242202 0.970226i \(-0.577870\pi\)
0.994819 + 0.101659i \(0.0324152\pi\)
\(258\) 0 0
\(259\) −0.662040 0.764035i −0.0411372 0.0474748i
\(260\) 0 0
\(261\) 0.946645 + 0.277960i 0.0585959 + 0.0172053i
\(262\) 0 0
\(263\) −3.06518 + 21.3188i −0.189007 + 1.31457i 0.645579 + 0.763694i \(0.276616\pi\)
−0.834586 + 0.550878i \(0.814293\pi\)
\(264\) 0 0
\(265\) −3.42123 + 7.49145i −0.210164 + 0.460196i
\(266\) 0 0
\(267\) −11.1089 + 7.13928i −0.679856 + 0.436917i
\(268\) 0 0
\(269\) −2.71610 18.8909i −0.165603 1.15180i −0.887841 0.460151i \(-0.847795\pi\)
0.722237 0.691646i \(-0.243114\pi\)
\(270\) 0 0
\(271\) 21.1711 + 13.6058i 1.28605 + 0.826495i 0.991621 0.129178i \(-0.0412339\pi\)
0.294430 + 0.955673i \(0.404870\pi\)
\(272\) 0 0
\(273\) −1.09374 + 0.321150i −0.0661960 + 0.0194369i
\(274\) 0 0
\(275\) 8.73709 0.526866
\(276\) 0 0
\(277\) 25.7266 1.54576 0.772882 0.634550i \(-0.218815\pi\)
0.772882 + 0.634550i \(0.218815\pi\)
\(278\) 0 0
\(279\) 0.686370 0.201536i 0.0410919 0.0120657i
\(280\) 0 0
\(281\) 4.58284 + 2.94521i 0.273390 + 0.175697i 0.670151 0.742225i \(-0.266229\pi\)
−0.396761 + 0.917922i \(0.629866\pi\)
\(282\) 0 0
\(283\) 2.59233 + 18.0300i 0.154098 + 1.07177i 0.909258 + 0.416234i \(0.136650\pi\)
−0.755160 + 0.655541i \(0.772441\pi\)
\(284\) 0 0
\(285\) 3.70388 2.38034i 0.219399 0.140999i
\(286\) 0 0
\(287\) 1.24528 2.72679i 0.0735066 0.160957i
\(288\) 0 0
\(289\) 2.03539 14.1565i 0.119729 0.832732i
\(290\) 0 0
\(291\) 7.86215 + 2.30854i 0.460887 + 0.135329i
\(292\) 0 0
\(293\) 18.5619 + 21.4215i 1.08440 + 1.25146i 0.966014 + 0.258491i \(0.0832253\pi\)
0.118382 + 0.992968i \(0.462229\pi\)
\(294\) 0 0
\(295\) 17.3116 19.9787i 1.00792 1.16320i
\(296\) 0 0
\(297\) −0.742783 1.62647i −0.0431007 0.0943773i
\(298\) 0 0
\(299\) 4.49621 12.5538i 0.260022 0.726002i
\(300\) 0 0
\(301\) 1.31284 + 2.87471i 0.0756707 + 0.165696i
\(302\) 0 0
\(303\) −5.17370 + 5.97077i −0.297221 + 0.343012i
\(304\) 0 0
\(305\) 16.5475 + 19.0968i 0.947507 + 1.09348i
\(306\) 0 0
\(307\) −17.8337 5.23645i −1.01782 0.298860i −0.270073 0.962840i \(-0.587048\pi\)
−0.747751 + 0.663980i \(0.768866\pi\)
\(308\) 0 0
\(309\) 0.530587 3.69031i 0.0301840 0.209935i
\(310\) 0 0
\(311\) 1.30390 2.85515i 0.0739375 0.161901i −0.869054 0.494717i \(-0.835272\pi\)
0.942992 + 0.332817i \(0.107999\pi\)
\(312\) 0 0
\(313\) 10.8712 6.98653i 0.614479 0.394902i −0.196055 0.980593i \(-0.562813\pi\)
0.810534 + 0.585691i \(0.199177\pi\)
\(314\) 0 0
\(315\) 0.183452 + 1.27594i 0.0103364 + 0.0718909i
\(316\) 0 0
\(317\) 16.4628 + 10.5800i 0.924645 + 0.594233i 0.914002 0.405710i \(-0.132976\pi\)
0.0106432 + 0.999943i \(0.496612\pi\)
\(318\) 0 0
\(319\) 1.69265 0.497007i 0.0947702 0.0278270i
\(320\) 0 0
\(321\) −11.9037 −0.664398
\(322\) 0 0
\(323\) 2.30001 0.127976
\(324\) 0 0
\(325\) −13.0361 + 3.82773i −0.723110 + 0.212324i
\(326\) 0 0
\(327\) −3.79500 2.43890i −0.209864 0.134871i
\(328\) 0 0
\(329\) −0.166364 1.15709i −0.00917197 0.0637924i
\(330\) 0 0
\(331\) 22.2408 14.2933i 1.22246 0.785630i 0.239764 0.970831i \(-0.422930\pi\)
0.982701 + 0.185201i \(0.0592936\pi\)
\(332\) 0 0
\(333\) −1.02439 + 2.24309i −0.0561360 + 0.122921i
\(334\) 0 0
\(335\) 4.95778 34.4821i 0.270873 1.88396i
\(336\) 0 0
\(337\) 17.5100 + 5.14139i 0.953829 + 0.280070i 0.721380 0.692539i \(-0.243508\pi\)
0.232449 + 0.972609i \(0.425326\pi\)
\(338\) 0 0
\(339\) −12.8933 14.8796i −0.700267 0.808152i
\(340\) 0 0
\(341\) 0.837616 0.966661i 0.0453595 0.0523476i
\(342\) 0 0
\(343\) 2.35569 + 5.15825i 0.127195 + 0.278519i
\(344\) 0 0
\(345\) −13.3282 7.05308i −0.717566 0.379725i
\(346\) 0 0
\(347\) 10.4589 + 22.9019i 0.561465 + 1.22944i 0.951219 + 0.308518i \(0.0998329\pi\)
−0.389754 + 0.920919i \(0.627440\pi\)
\(348\) 0 0
\(349\) 3.60970 4.16581i 0.193223 0.222991i −0.650869 0.759190i \(-0.725595\pi\)
0.844091 + 0.536200i \(0.180141\pi\)
\(350\) 0 0
\(351\) 1.82082 + 2.10134i 0.0971880 + 0.112161i
\(352\) 0 0
\(353\) 27.6735 + 8.12566i 1.47291 + 0.432485i 0.917044 0.398786i \(-0.130568\pi\)
0.555866 + 0.831272i \(0.312387\pi\)
\(354\) 0 0
\(355\) 0.105224 0.731847i 0.00558469 0.0388424i
\(356\) 0 0
\(357\) −0.279740 + 0.612546i −0.0148054 + 0.0324194i
\(358\) 0 0
\(359\) −16.2496 + 10.4430i −0.857619 + 0.551158i −0.893942 0.448182i \(-0.852072\pi\)
0.0363234 + 0.999340i \(0.488435\pi\)
\(360\) 0 0
\(361\) 2.42494 + 16.8658i 0.127628 + 0.887674i
\(362\) 0 0
\(363\) 6.56420 + 4.21855i 0.344531 + 0.221417i
\(364\) 0 0
\(365\) −20.1610 + 5.91982i −1.05528 + 0.309857i
\(366\) 0 0
\(367\) −9.48280 −0.494998 −0.247499 0.968888i \(-0.579609\pi\)
−0.247499 + 0.968888i \(0.579609\pi\)
\(368\) 0 0
\(369\) −7.31192 −0.380643
\(370\) 0 0
\(371\) −1.03033 + 0.302533i −0.0534922 + 0.0157067i
\(372\) 0 0
\(373\) −10.6592 6.85024i −0.551911 0.354692i 0.234770 0.972051i \(-0.424566\pi\)
−0.786682 + 0.617359i \(0.788203\pi\)
\(374\) 0 0
\(375\) −0.0508438 0.353627i −0.00262556 0.0182612i
\(376\) 0 0
\(377\) −2.30776 + 1.48310i −0.118855 + 0.0763838i
\(378\) 0 0
\(379\) 2.33496 5.11285i 0.119939 0.262630i −0.840134 0.542378i \(-0.817524\pi\)
0.960073 + 0.279749i \(0.0902512\pi\)
\(380\) 0 0
\(381\) −1.35478 + 9.42270i −0.0694075 + 0.482740i
\(382\) 0 0
\(383\) 7.17557 + 2.10694i 0.366654 + 0.107659i 0.459869 0.887987i \(-0.347896\pi\)
−0.0932151 + 0.995646i \(0.529714\pi\)
\(384\) 0 0
\(385\) 1.50939 + 1.74193i 0.0769256 + 0.0887769i
\(386\) 0 0
\(387\) 5.04805 5.82576i 0.256607 0.296140i
\(388\) 0 0
\(389\) −3.67630 8.04997i −0.186396 0.408150i 0.793247 0.608901i \(-0.208389\pi\)
−0.979642 + 0.200751i \(0.935662\pi\)
\(390\) 0 0
\(391\) −3.86532 6.86387i −0.195478 0.347121i
\(392\) 0 0
\(393\) 0.0613696 + 0.134381i 0.00309569 + 0.00677861i
\(394\) 0 0
\(395\) 16.9310 19.5395i 0.851893 0.983137i
\(396\) 0 0
\(397\) −21.0462 24.2887i −1.05628 1.21901i −0.974973 0.222323i \(-0.928636\pi\)
−0.0813074 0.996689i \(-0.525910\pi\)
\(398\) 0 0
\(399\) 0.550817 + 0.161734i 0.0275753 + 0.00809684i
\(400\) 0 0
\(401\) −1.89656 + 13.1909i −0.0947098 + 0.658721i 0.886063 + 0.463566i \(0.153430\pi\)
−0.980772 + 0.195155i \(0.937479\pi\)
\(402\) 0 0
\(403\) −0.826258 + 1.80925i −0.0411589 + 0.0901253i
\(404\) 0 0
\(405\) 2.64512 1.69992i 0.131437 0.0844695i
\(406\) 0 0
\(407\) 0.627497 + 4.36434i 0.0311039 + 0.216332i
\(408\) 0 0
\(409\) 6.34194 + 4.07572i 0.313589 + 0.201531i 0.687962 0.725747i \(-0.258506\pi\)
−0.374373 + 0.927278i \(0.622142\pi\)
\(410\) 0 0
\(411\) −10.1730 + 2.98707i −0.501799 + 0.147341i
\(412\) 0 0
\(413\) 3.44686 0.169609
\(414\) 0 0
\(415\) −48.6972 −2.39045
\(416\) 0 0
\(417\) −18.8114 + 5.52352i −0.921198 + 0.270488i
\(418\) 0 0
\(419\) −8.68815 5.58353i −0.424444 0.272773i 0.310933 0.950432i \(-0.399358\pi\)
−0.735377 + 0.677658i \(0.762995\pi\)
\(420\) 0 0
\(421\) −2.56880 17.8664i −0.125196 0.870756i −0.951526 0.307569i \(-0.900484\pi\)
0.826330 0.563186i \(-0.190425\pi\)
\(422\) 0 0
\(423\) −2.39874 + 1.54158i −0.116631 + 0.0749540i
\(424\) 0 0
\(425\) −3.33417 + 7.30082i −0.161731 + 0.354142i
\(426\) 0 0
\(427\) −0.468888 + 3.26119i −0.0226911 + 0.157820i
\(428\) 0 0
\(429\) 4.77023 + 1.40067i 0.230309 + 0.0676248i
\(430\) 0 0
\(431\) −3.26048 3.76280i −0.157052 0.181248i 0.671771 0.740759i \(-0.265534\pi\)
−0.828822 + 0.559512i \(0.810989\pi\)
\(432\) 0 0
\(433\) −18.2737 + 21.0889i −0.878176 + 1.01347i 0.121606 + 0.992578i \(0.461196\pi\)
−0.999782 + 0.0208906i \(0.993350\pi\)
\(434\) 0 0
\(435\) 1.28868 + 2.82182i 0.0617876 + 0.135296i
\(436\) 0 0
\(437\) −5.32291 + 4.09437i −0.254629 + 0.195860i
\(438\) 0 0
\(439\) 7.99122 + 17.4983i 0.381400 + 0.835149i 0.998822 + 0.0485176i \(0.0154497\pi\)
−0.617422 + 0.786632i \(0.711823\pi\)
\(440\) 0 0
\(441\) 4.47396 5.16322i 0.213046 0.245868i
\(442\) 0 0
\(443\) −25.2157 29.1004i −1.19803 1.38260i −0.904400 0.426686i \(-0.859681\pi\)
−0.293633 0.955918i \(-0.594864\pi\)
\(444\) 0 0
\(445\) −39.8388 11.6977i −1.88854 0.554525i
\(446\) 0 0
\(447\) 3.24333 22.5579i 0.153404 1.06695i
\(448\) 0 0
\(449\) 12.7455 27.9087i 0.601496 1.31709i −0.326746 0.945112i \(-0.605952\pi\)
0.928241 0.371979i \(-0.121321\pi\)
\(450\) 0 0
\(451\) −10.9986 + 7.06838i −0.517905 + 0.332837i
\(452\) 0 0
\(453\) −0.225555 1.56877i −0.0105975 0.0737071i
\(454\) 0 0
\(455\) −3.01521 1.93775i −0.141355 0.0908433i
\(456\) 0 0
\(457\) −10.3508 + 3.03928i −0.484192 + 0.142172i −0.514713 0.857362i \(-0.672102\pi\)
0.0305209 + 0.999534i \(0.490283\pi\)
\(458\) 0 0
\(459\) 1.64255 0.0766677
\(460\) 0 0
\(461\) 3.84745 0.179194 0.0895968 0.995978i \(-0.471442\pi\)
0.0895968 + 0.995978i \(0.471442\pi\)
\(462\) 0 0
\(463\) −28.2157 + 8.28488i −1.31129 + 0.385031i −0.861344 0.508023i \(-0.830377\pi\)
−0.449951 + 0.893053i \(0.648558\pi\)
\(464\) 0 0
\(465\) 1.89218 + 1.21603i 0.0877476 + 0.0563920i
\(466\) 0 0
\(467\) 3.36002 + 23.3695i 0.155483 + 1.08141i 0.906828 + 0.421500i \(0.138496\pi\)
−0.751345 + 0.659909i \(0.770595\pi\)
\(468\) 0 0
\(469\) 3.82120 2.45574i 0.176447 0.113395i
\(470\) 0 0
\(471\) −4.71835 + 10.3317i −0.217410 + 0.476062i
\(472\) 0 0
\(473\) 1.96158 13.6431i 0.0901933 0.627308i
\(474\) 0 0
\(475\) 6.56508 + 1.92768i 0.301226 + 0.0884481i
\(476\) 0 0
\(477\) 1.71526 + 1.97952i 0.0785364 + 0.0906359i
\(478\) 0 0
\(479\) 15.1162 17.4450i 0.690676 0.797083i −0.296785 0.954944i \(-0.595915\pi\)
0.987461 + 0.157862i \(0.0504600\pi\)
\(480\) 0 0
\(481\) −2.84827 6.23684i −0.129870 0.284375i
\(482\) 0 0
\(483\) −0.443023 1.91559i −0.0201583 0.0871625i
\(484\) 0 0
\(485\) 10.7029 + 23.4360i 0.485992 + 1.06417i
\(486\) 0 0
\(487\) 9.22674 10.6482i 0.418103 0.482517i −0.507155 0.861855i \(-0.669303\pi\)
0.925258 + 0.379338i \(0.123848\pi\)
\(488\) 0 0
\(489\) −2.64465 3.05209i −0.119595 0.138020i
\(490\) 0 0
\(491\) 28.9526 + 8.50125i 1.30661 + 0.383656i 0.859644 0.510893i \(-0.170685\pi\)
0.446969 + 0.894550i \(0.352503\pi\)
\(492\) 0 0
\(493\) −0.230629 + 1.60406i −0.0103870 + 0.0722434i
\(494\) 0 0
\(495\) 2.33550 5.11404i 0.104973 0.229859i
\(496\) 0 0
\(497\) 0.0811009 0.0521204i 0.00363787 0.00233792i
\(498\) 0 0
\(499\) −0.953362 6.63078i −0.0426783 0.296834i −0.999970 0.00771123i \(-0.997545\pi\)
0.957292 0.289123i \(-0.0933637\pi\)
\(500\) 0 0
\(501\) 18.1029 + 11.6340i 0.808777 + 0.519769i
\(502\) 0 0
\(503\) −27.4488 + 8.05969i −1.22388 + 0.359364i −0.828938 0.559341i \(-0.811054\pi\)
−0.394944 + 0.918705i \(0.629236\pi\)
\(504\) 0 0
\(505\) −24.8411 −1.10542
\(506\) 0 0
\(507\) 5.26901 0.234005
\(508\) 0 0
\(509\) −30.2653 + 8.88670i −1.34149 + 0.393896i −0.872200 0.489150i \(-0.837307\pi\)
−0.469287 + 0.883046i \(0.655489\pi\)
\(510\) 0 0
\(511\) −2.30480 1.48121i −0.101958 0.0655247i
\(512\) 0 0
\(513\) −0.199279 1.38602i −0.00879838 0.0611941i
\(514\) 0 0
\(515\) 9.86170 6.33773i 0.434559 0.279274i
\(516\) 0 0
\(517\) −2.11796 + 4.63769i −0.0931479 + 0.203965i
\(518\) 0 0
\(519\) 1.88641 13.1203i 0.0828043 0.575917i
\(520\) 0 0
\(521\) −2.11955 0.622355i −0.0928590 0.0272659i 0.234973 0.972002i \(-0.424500\pi\)
−0.327832 + 0.944736i \(0.606318\pi\)
\(522\) 0 0
\(523\) 20.3345 + 23.4673i 0.889166 + 1.02615i 0.999480 + 0.0322554i \(0.0102690\pi\)
−0.110314 + 0.993897i \(0.535186\pi\)
\(524\) 0 0
\(525\) −1.31187 + 1.51398i −0.0572546 + 0.0660753i
\(526\) 0 0
\(527\) 0.488110 + 1.06881i 0.0212624 + 0.0465581i
\(528\) 0 0
\(529\) 21.1642 + 9.00417i 0.920184 + 0.391486i
\(530\) 0 0
\(531\) −3.49263 7.64778i −0.151567 0.331886i
\(532\) 0 0
\(533\) 13.3137 15.3648i 0.576679 0.665523i
\(534\) 0 0
\(535\) −24.5103 28.2864i −1.05967 1.22293i
\(536\) 0 0
\(537\) −4.94039 1.45063i −0.213194 0.0625993i
\(538\) 0 0
\(539\) 1.73849 12.0915i 0.0748822 0.520817i
\(540\) 0 0
\(541\) −17.6667 + 38.6846i −0.759549 + 1.66318i −0.0111455 + 0.999938i \(0.503548\pi\)
−0.748404 + 0.663243i \(0.769179\pi\)
\(542\) 0 0
\(543\) −21.0233 + 13.5109i −0.902198 + 0.579807i
\(544\) 0 0
\(545\) −2.01862 14.0398i −0.0864680 0.601398i
\(546\) 0 0
\(547\) 21.0287 + 13.5143i 0.899123 + 0.577831i 0.906530 0.422142i \(-0.138721\pi\)
−0.00740733 + 0.999973i \(0.502358\pi\)
\(548\) 0 0
\(549\) 7.71092 2.26413i 0.329094 0.0966308i
\(550\) 0 0
\(551\) 1.38152 0.0588547
\(552\) 0 0
\(553\) 3.37109 0.143353
\(554\) 0 0
\(555\) −7.43947 + 2.18442i −0.315788 + 0.0927236i
\(556\) 0 0
\(557\) 1.11225 + 0.714799i 0.0471275 + 0.0302870i 0.563992 0.825780i \(-0.309265\pi\)
−0.516865 + 0.856067i \(0.672901\pi\)
\(558\) 0 0
\(559\) 3.05030 + 21.2153i 0.129014 + 0.897312i
\(560\) 0 0
\(561\) 2.47073 1.58784i 0.104314 0.0670388i
\(562\) 0 0
\(563\) −5.76292 + 12.6190i −0.242878 + 0.531829i −0.991336 0.131354i \(-0.958068\pi\)
0.748457 + 0.663183i \(0.230795\pi\)
\(564\) 0 0
\(565\) 8.81015 61.2760i 0.370646 2.57790i
\(566\) 0 0
\(567\) 0.393365 + 0.115502i 0.0165198 + 0.00485064i
\(568\) 0 0
\(569\) −9.11837 10.5232i −0.382262 0.441154i 0.531713 0.846925i \(-0.321549\pi\)
−0.913975 + 0.405771i \(0.867003\pi\)
\(570\) 0 0
\(571\) 3.31562 3.82642i 0.138754 0.160131i −0.682119 0.731241i \(-0.738942\pi\)
0.820874 + 0.571110i \(0.193487\pi\)
\(572\) 0 0
\(573\) 7.51923 + 16.4648i 0.314120 + 0.687827i
\(574\) 0 0
\(575\) −5.28031 22.8316i −0.220204 0.952143i
\(576\) 0 0
\(577\) 0.391494 + 0.857251i 0.0162981 + 0.0356878i 0.917606 0.397491i \(-0.130119\pi\)
−0.901308 + 0.433179i \(0.857392\pi\)
\(578\) 0 0
\(579\) 17.7625 20.4990i 0.738183 0.851909i
\(580\) 0 0
\(581\) −4.15804 4.79863i −0.172505 0.199081i
\(582\) 0 0
\(583\) 4.49369 + 1.31947i 0.186110 + 0.0546467i
\(584\) 0 0
\(585\) −1.24419 + 8.65352i −0.0514409 + 0.357779i
\(586\) 0 0
\(587\) 6.33288 13.8671i 0.261386 0.572355i −0.732749 0.680498i \(-0.761763\pi\)
0.994135 + 0.108143i \(0.0344906\pi\)
\(588\) 0 0
\(589\) 0.842664 0.541547i 0.0347214 0.0223141i
\(590\) 0 0
\(591\) −0.560525 3.89854i −0.0230569 0.160364i
\(592\) 0 0
\(593\) 10.8708 + 6.98625i 0.446411 + 0.286891i 0.744469 0.667657i \(-0.232703\pi\)
−0.298058 + 0.954548i \(0.596339\pi\)
\(594\) 0 0
\(595\) −2.03158 + 0.596525i −0.0832866 + 0.0244551i
\(596\) 0 0
\(597\) 8.94649 0.366156
\(598\) 0 0
\(599\) 2.48728 0.101628 0.0508138 0.998708i \(-0.483818\pi\)
0.0508138 + 0.998708i \(0.483818\pi\)
\(600\) 0 0
\(601\) −26.6806 + 7.83413i −1.08832 + 0.319561i −0.776204 0.630482i \(-0.782857\pi\)
−0.312120 + 0.950043i \(0.601039\pi\)
\(602\) 0 0
\(603\) −9.32064 5.99001i −0.379566 0.243932i
\(604\) 0 0
\(605\) 3.49159 + 24.2845i 0.141953 + 0.987307i
\(606\) 0 0
\(607\) 8.26559 5.31197i 0.335490 0.215606i −0.362039 0.932163i \(-0.617919\pi\)
0.697529 + 0.716557i \(0.254283\pi\)
\(608\) 0 0
\(609\) −0.168028 + 0.367930i −0.00680884 + 0.0149093i
\(610\) 0 0
\(611\) 1.12830 7.84749i 0.0456461 0.317475i
\(612\) 0 0
\(613\) 29.0432 + 8.52784i 1.17304 + 0.344436i 0.809488 0.587136i \(-0.199745\pi\)
0.363555 + 0.931573i \(0.381563\pi\)
\(614\) 0 0
\(615\) −15.0556 17.3751i −0.607101 0.700632i
\(616\) 0 0
\(617\) −18.7555 + 21.6450i −0.755067 + 0.871394i −0.995049 0.0993834i \(-0.968313\pi\)
0.239982 + 0.970777i \(0.422858\pi\)
\(618\) 0 0
\(619\) −17.6733 38.6991i −0.710349 1.55545i −0.826955 0.562269i \(-0.809929\pi\)
0.116606 0.993178i \(-0.462799\pi\)
\(620\) 0 0
\(621\) −3.80135 + 2.92399i −0.152543 + 0.117336i
\(622\) 0 0
\(623\) −2.24896 4.92453i −0.0901026 0.197297i
\(624\) 0 0
\(625\) 16.7351 19.3133i 0.669404 0.772534i
\(626\) 0 0
\(627\) −1.63961 1.89221i −0.0654796 0.0755675i
\(628\) 0 0
\(629\) −3.88635 1.14114i −0.154959 0.0455001i
\(630\) 0 0
\(631\) −0.597900 + 4.15849i −0.0238020 + 0.165547i −0.998255 0.0590430i \(-0.981195\pi\)
0.974453 + 0.224590i \(0.0721042\pi\)
\(632\) 0 0
\(633\) −2.61023 + 5.71560i −0.103747 + 0.227175i
\(634\) 0 0
\(635\) −25.1805 + 16.1825i −0.999257 + 0.642184i
\(636\) 0 0
\(637\) 2.70340 + 18.8026i 0.107113 + 0.744985i
\(638\) 0 0
\(639\) −0.197821 0.127132i −0.00782566 0.00502925i
\(640\) 0 0
\(641\) −3.23281 + 0.949239i −0.127688 + 0.0374927i −0.344952 0.938620i \(-0.612105\pi\)
0.217264 + 0.976113i \(0.430287\pi\)
\(642\) 0 0
\(643\) −32.8938 −1.29720 −0.648602 0.761128i \(-0.724646\pi\)
−0.648602 + 0.761128i \(0.724646\pi\)
\(644\) 0 0
\(645\) 24.2378 0.954363
\(646\) 0 0
\(647\) 1.23052 0.361313i 0.0483766 0.0142047i −0.257455 0.966290i \(-0.582884\pi\)
0.305831 + 0.952086i \(0.401066\pi\)
\(648\) 0 0
\(649\) −12.6467 8.12753i −0.496426 0.319033i
\(650\) 0 0
\(651\) 0.0417369 + 0.290287i 0.00163580 + 0.0113772i
\(652\) 0 0
\(653\) −30.3802 + 19.5241i −1.18887 + 0.764039i −0.976996 0.213258i \(-0.931592\pi\)
−0.211872 + 0.977297i \(0.567956\pi\)
\(654\) 0 0
\(655\) −0.192962 + 0.422528i −0.00753966 + 0.0165095i
\(656\) 0 0
\(657\) −0.951049 + 6.61469i −0.0371040 + 0.258064i
\(658\) 0 0
\(659\) −9.73106 2.85730i −0.379068 0.111304i 0.0866471 0.996239i \(-0.472385\pi\)
−0.465715 + 0.884935i \(0.654203\pi\)
\(660\) 0 0
\(661\) 22.4899 + 25.9547i 0.874756 + 1.00952i 0.999849 + 0.0173776i \(0.00553174\pi\)
−0.125093 + 0.992145i \(0.539923\pi\)
\(662\) 0 0
\(663\) −2.99079 + 3.45155i −0.116153 + 0.134047i
\(664\) 0 0
\(665\) 0.749835 + 1.64191i 0.0290774 + 0.0636706i
\(666\) 0 0
\(667\) −2.32173 4.12283i −0.0898978 0.159637i
\(668\) 0 0
\(669\) 5.01722 + 10.9862i 0.193977 + 0.424750i
\(670\) 0 0
\(671\) 9.41008 10.8598i 0.363272 0.419238i
\(672\) 0 0
\(673\) 30.2554 + 34.9166i 1.16626 + 1.34594i 0.927036 + 0.374973i \(0.122348\pi\)
0.239226 + 0.970964i \(0.423106\pi\)
\(674\) 0 0
\(675\) 4.68844 + 1.37665i 0.180458 + 0.0529873i
\(676\) 0 0
\(677\) −2.55762 + 17.7886i −0.0982972 + 0.683672i 0.879773 + 0.475395i \(0.157695\pi\)
−0.978070 + 0.208277i \(0.933214\pi\)
\(678\) 0 0
\(679\) −1.39552 + 3.05576i −0.0535551 + 0.117269i
\(680\) 0 0
\(681\) −5.75066 + 3.69572i −0.220366 + 0.141620i
\(682\) 0 0
\(683\) 2.55618 + 17.7786i 0.0978095 + 0.680280i 0.978448 + 0.206492i \(0.0662047\pi\)
−0.880639 + 0.473788i \(0.842886\pi\)
\(684\) 0 0
\(685\) −28.0449 18.0234i −1.07154 0.688638i
\(686\) 0 0
\(687\) −2.34781 + 0.689380i −0.0895747 + 0.0263015i
\(688\) 0 0
\(689\) −7.28281 −0.277453
\(690\) 0 0
\(691\) 26.5444 1.00979 0.504897 0.863179i \(-0.331530\pi\)
0.504897 + 0.863179i \(0.331530\pi\)
\(692\) 0 0
\(693\) 0.703357 0.206524i 0.0267183 0.00784520i
\(694\) 0 0
\(695\) −51.8590 33.3278i −1.96713 1.26419i
\(696\) 0 0
\(697\) −1.70923 11.8880i −0.0647417 0.450288i
\(698\) 0 0
\(699\) −1.47766 + 0.949635i −0.0558903 + 0.0359185i
\(700\) 0 0
\(701\) −11.4647 + 25.1042i −0.433015 + 0.948171i 0.559813 + 0.828619i \(0.310873\pi\)
−0.992828 + 0.119552i \(0.961854\pi\)
\(702\) 0 0
\(703\) −0.491409 + 3.41782i −0.0185338 + 0.128906i
\(704\) 0 0
\(705\) −8.60234 2.52587i −0.323983 0.0951300i
\(706\) 0 0
\(707\) −2.12107 2.44785i −0.0797711 0.0920608i
\(708\) 0 0
\(709\) 21.1025 24.3536i 0.792522 0.914619i −0.205424 0.978673i \(-0.565857\pi\)
0.997946 + 0.0640537i \(0.0204029\pi\)
\(710\) 0 0
\(711\) −3.41585 7.47966i −0.128104 0.280509i
\(712\) 0 0
\(713\) −3.03228 1.60464i −0.113560 0.0600941i
\(714\) 0 0
\(715\) 6.49379 + 14.2194i 0.242854 + 0.531776i
\(716\) 0 0
\(717\) 5.09497 5.87991i 0.190275 0.219589i
\(718\) 0 0
\(719\) −19.1880 22.1441i −0.715591 0.825836i 0.275178 0.961393i \(-0.411263\pi\)
−0.990770 + 0.135557i \(0.956718\pi\)
\(720\) 0 0
\(721\) 1.46657 + 0.430623i 0.0546178 + 0.0160372i
\(722\) 0 0
\(723\) −0.852427 + 5.92876i −0.0317021 + 0.220493i
\(724\) 0 0
\(725\) −2.00269 + 4.38529i −0.0743782 + 0.162866i
\(726\) 0 0
\(727\) 28.0045 17.9974i 1.03863 0.667487i 0.0939819 0.995574i \(-0.470040\pi\)
0.944647 + 0.328087i \(0.106404\pi\)
\(728\) 0 0
\(729\) −0.142315 0.989821i −0.00527092 0.0366601i
\(730\) 0 0
\(731\) 10.6517 + 6.84546i 0.393969 + 0.253189i
\(732\) 0 0
\(733\) −16.4857 + 4.84063i −0.608912 + 0.178793i −0.571629 0.820512i \(-0.693688\pi\)
−0.0372829 + 0.999305i \(0.511870\pi\)
\(734\) 0 0
\(735\) 21.4813 0.792351
\(736\) 0 0
\(737\) −19.8106 −0.729735
\(738\) 0 0
\(739\) 15.9438 4.68153i 0.586503 0.172213i 0.0249998 0.999687i \(-0.492041\pi\)
0.561503 + 0.827475i \(0.310223\pi\)
\(740\) 0 0
\(741\) 3.27533 + 2.10493i 0.120322 + 0.0773265i
\(742\) 0 0
\(743\) 3.44752 + 23.9780i 0.126477 + 0.879669i 0.949970 + 0.312342i \(0.101113\pi\)
−0.823492 + 0.567327i \(0.807977\pi\)
\(744\) 0 0
\(745\) 60.2819 38.7408i 2.20856 1.41935i
\(746\) 0 0
\(747\) −6.43381 + 14.0881i −0.235401 + 0.515456i
\(748\) 0 0
\(749\) 0.694520 4.83049i 0.0253772 0.176502i
\(750\) 0 0
\(751\) 16.7814 + 4.92746i 0.612362 + 0.179806i 0.573184 0.819427i \(-0.305708\pi\)
0.0391778 + 0.999232i \(0.487526\pi\)
\(752\) 0 0
\(753\) 1.29973 + 1.49997i 0.0473649 + 0.0546620i
\(754\) 0 0
\(755\) 3.26339 3.76615i 0.118767 0.137064i
\(756\) 0 0
\(757\) −8.97013 19.6418i −0.326025 0.713895i 0.673659 0.739042i \(-0.264722\pi\)
−0.999684 + 0.0251476i \(0.991994\pi\)
\(758\) 0 0
\(759\) −2.89140 + 8.07302i −0.104951 + 0.293032i
\(760\) 0 0
\(761\) −1.61316 3.53233i −0.0584770 0.128047i 0.878138 0.478408i \(-0.158786\pi\)
−0.936615 + 0.350361i \(0.886059\pi\)
\(762\) 0 0
\(763\) 1.21112 1.39771i 0.0438455 0.0506005i
\(764\) 0 0
\(765\) 3.38210 + 3.90315i 0.122280 + 0.141119i
\(766\) 0 0
\(767\) 22.4300 + 6.58604i 0.809900 + 0.237808i
\(768\) 0 0
\(769\) 0.656132 4.56350i 0.0236607 0.164564i −0.974565 0.224104i \(-0.928054\pi\)
0.998226 + 0.0595403i \(0.0189635\pi\)
\(770\) 0 0
\(771\) 7.65374 16.7594i 0.275643 0.603574i
\(772\) 0 0
\(773\) 13.8120 8.87645i 0.496784 0.319264i −0.268145 0.963379i \(-0.586410\pi\)
0.764929 + 0.644115i \(0.222774\pi\)
\(774\) 0 0
\(775\) 0.497454 + 3.45987i 0.0178691 + 0.124282i
\(776\) 0 0
\(777\) −0.850476 0.546568i −0.0305107 0.0196080i
\(778\) 0 0
\(779\) −9.82391 + 2.88456i −0.351978 + 0.103350i
\(780\) 0 0
\(781\) −0.420460 −0.0150452
\(782\) 0 0
\(783\) 0.986610 0.0352586
\(784\) 0 0
\(785\) −34.2664 + 10.0615i −1.22302 + 0.359111i
\(786\) 0 0
\(787\) 20.6595 + 13.2771i 0.736433 + 0.473277i 0.854318 0.519750i \(-0.173975\pi\)
−0.117885 + 0.993027i \(0.537611\pi\)
\(788\) 0 0
\(789\) 3.06518 + 21.3188i 0.109123 + 0.758969i
\(790\) 0 0
\(791\) 6.79040 4.36393i 0.241439 0.155163i
\(792\) 0 0
\(793\) −9.28248 + 20.3258i −0.329631 + 0.721791i
\(794\) 0 0
\(795\) −1.17206 + 8.15186i −0.0415687 + 0.289117i
\(796\) 0 0
\(797\) 23.8944 + 7.01603i 0.846383 + 0.248521i 0.676041 0.736864i \(-0.263694\pi\)
0.170343 + 0.985385i \(0.445513\pi\)
\(798\) 0 0
\(799\) −3.06707 3.53959i −0.108505 0.125222i
\(800\) 0 0
\(801\) −8.64757 + 9.97983i −0.305547 + 0.352620i
\(802\) 0 0
\(803\) 4.96381 + 10.8692i 0.175169 + 0.383566i
\(804\) 0 0
\(805\) 3.63977 4.99705i 0.128285 0.176123i
\(806\) 0 0
\(807\) −7.92825 17.3604i −0.279088 0.611117i
\(808\) 0 0
\(809\) 26.0288 30.0389i 0.915124 1.05611i −0.0830999 0.996541i \(-0.526482\pi\)
0.998224 0.0595685i \(-0.0189725\pi\)
\(810\) 0 0
\(811\) 2.47577 + 2.85719i 0.0869361 + 0.100330i 0.797551 0.603252i \(-0.206129\pi\)
−0.710615 + 0.703581i \(0.751583\pi\)
\(812\) 0 0
\(813\) 24.1467 + 7.09011i 0.846862 + 0.248661i
\(814\) 0 0
\(815\) 1.80713 12.5688i 0.0633009 0.440268i
\(816\) 0 0
\(817\) 4.48403 9.81865i 0.156876 0.343511i
\(818\) 0 0
\(819\) −0.958955 + 0.616283i −0.0335086 + 0.0215347i
\(820\) 0 0
\(821\) −6.03202 41.9536i −0.210519 1.46419i −0.771429 0.636315i \(-0.780458\pi\)
0.560910 0.827877i \(-0.310451\pi\)
\(822\) 0 0
\(823\) 46.6960 + 30.0097i 1.62772 + 1.04607i 0.950701 + 0.310110i \(0.100366\pi\)
0.677021 + 0.735964i \(0.263271\pi\)
\(824\) 0 0
\(825\) 8.38318 2.46152i 0.291865 0.0856992i
\(826\) 0 0
\(827\) −6.45170 −0.224348 −0.112174 0.993689i \(-0.535781\pi\)
−0.112174 + 0.993689i \(0.535781\pi\)
\(828\) 0 0
\(829\) 8.70197 0.302232 0.151116 0.988516i \(-0.451713\pi\)
0.151116 + 0.988516i \(0.451713\pi\)
\(830\) 0 0
\(831\) 24.6845 7.24803i 0.856297 0.251431i
\(832\) 0 0
\(833\) 9.44037 + 6.06696i 0.327089 + 0.210208i
\(834\) 0 0
\(835\) 9.62918 + 66.9724i 0.333231 + 2.31768i
\(836\) 0 0
\(837\) 0.601787 0.386745i 0.0208008 0.0133679i
\(838\) 0 0
\(839\) 12.8189 28.0694i 0.442556 0.969063i −0.548566 0.836107i \(-0.684826\pi\)
0.991122 0.132955i \(-0.0424467\pi\)
\(840\) 0 0
\(841\) 3.98860 27.7413i 0.137538 0.956598i
\(842\) 0 0
\(843\) 5.22697 + 1.53478i 0.180026 + 0.0528605i
\(844\) 0 0
\(845\) 10.8492 + 12.5206i 0.373223 + 0.430722i
\(846\) 0 0
\(847\) −2.09487 + 2.41761i −0.0719807 + 0.0830701i
\(848\) 0 0
\(849\) 7.56697 + 16.5694i 0.259698 + 0.568659i
\(850\) 0 0
\(851\) 11.0256 4.27737i 0.377952 0.146627i
\(852\) 0 0
\(853\) 6.87274 + 15.0492i 0.235318 + 0.515275i 0.990043 0.140767i \(-0.0449568\pi\)
−0.754725 + 0.656042i \(0.772230\pi\)
\(854\) 0 0
\(855\) 2.88323 3.32742i 0.0986042 0.113795i
\(856\) 0 0
\(857\) 34.9901 + 40.3807i 1.19524 + 1.37938i 0.906627 + 0.421933i \(0.138648\pi\)
0.288612 + 0.957446i \(0.406806\pi\)
\(858\) 0 0
\(859\) 42.4626 + 12.4682i 1.44881 + 0.425408i 0.909147 0.416475i \(-0.136735\pi\)
0.539659 + 0.841883i \(0.318553\pi\)
\(860\) 0 0
\(861\) 0.426614 2.96717i 0.0145390 0.101121i
\(862\) 0 0
\(863\) −9.10560 + 19.9385i −0.309958 + 0.678714i −0.998938 0.0460664i \(-0.985331\pi\)
0.688980 + 0.724780i \(0.258059\pi\)
\(864\) 0 0
\(865\) 35.0616 22.5327i 1.19213 0.766136i
\(866\) 0 0
\(867\) −2.03539 14.1565i −0.0691255 0.480778i
\(868\) 0 0
\(869\) −12.3687 7.94886i −0.419578 0.269647i
\(870\) 0 0
\(871\) 29.5582 8.67907i 1.00154 0.294079i
\(872\) 0 0
\(873\) 8.19407 0.277327
\(874\) 0 0
\(875\) 0.146468 0.00495151
\(876\) 0 0
\(877\) −37.3713 + 10.9732i −1.26194 + 0.370539i −0.843216 0.537575i \(-0.819341\pi\)
−0.418724 + 0.908114i \(0.637522\pi\)
\(878\) 0 0
\(879\) 23.8451 + 15.3243i 0.804276 + 0.516877i
\(880\) 0 0
\(881\) 3.84941 + 26.7733i 0.129690 + 0.902014i 0.945946 + 0.324324i \(0.105137\pi\)
−0.816256 + 0.577690i \(0.803954\pi\)
\(882\) 0 0
\(883\) −20.5109 + 13.1816i −0.690247 + 0.443595i −0.838174 0.545403i \(-0.816377\pi\)
0.147926 + 0.988998i \(0.452740\pi\)
\(884\) 0 0
\(885\) 10.9817 24.0466i 0.369147 0.808319i
\(886\) 0 0
\(887\) −4.35384 + 30.2816i −0.146188 + 1.01676i 0.776199 + 0.630488i \(0.217145\pi\)
−0.922386 + 0.386269i \(0.873764\pi\)
\(888\) 0 0
\(889\) −3.74468 1.09954i −0.125592 0.0368773i
\(890\) 0 0
\(891\) −1.17092 1.35132i −0.0392274 0.0452709i
\(892\) 0 0
\(893\) −2.61467 + 3.01749i −0.0874965 + 0.100976i
\(894\) 0 0
\(895\) −6.72544 14.7266i −0.224807 0.492258i
\(896\) 0 0
\(897\) 0.777276 13.3120i 0.0259525 0.444474i
\(898\) 0 0
\(899\) 0.293186 + 0.641989i 0.00977832 + 0.0214115i
\(900\) 0 0
\(901\) −2.81741 + 3.25146i −0.0938614 + 0.108322i
\(902\) 0 0
\(903\) 2.06956 + 2.38840i 0.0688706 + 0.0794809i
\(904\) 0 0
\(905\) −75.3937 22.1376i −2.50617 0.735878i
\(906\) 0 0
\(907\) 3.84914 26.7713i 0.127808 0.888928i −0.820516 0.571624i \(-0.806314\pi\)
0.948324 0.317303i \(-0.102777\pi\)
\(908\) 0 0
\(909\) −3.28197 + 7.18651i −0.108856 + 0.238362i
\(910\) 0 0
\(911\) −27.9210 + 17.9438i −0.925065 + 0.594503i −0.914123 0.405437i \(-0.867119\pi\)
−0.0109423 + 0.999940i \(0.503483\pi\)
\(912\) 0 0
\(913\) 3.94109 + 27.4109i 0.130431 + 0.907167i
\(914\) 0 0
\(915\) 21.2574 + 13.6613i 0.702748 + 0.451629i
\(916\) 0 0
\(917\) −0.0581122 + 0.0170633i −0.00191903 + 0.000563479i
\(918\) 0 0
\(919\) −32.0883 −1.05850 −0.529248 0.848467i \(-0.677526\pi\)
−0.529248 + 0.848467i \(0.677526\pi\)
\(920\) 0 0
\(921\) −18.5866 −0.612449
\(922\) 0 0
\(923\) 0.627341 0.184204i 0.0206492 0.00606315i
\(924\) 0 0
\(925\) −10.1367 6.51444i −0.333292 0.214193i
\(926\) 0 0
\(927\) −0.530587 3.69031i −0.0174268 0.121206i
\(928\) 0 0
\(929\) 12.8286 8.24447i 0.420894 0.270492i −0.313004 0.949752i \(-0.601335\pi\)
0.733898 + 0.679260i \(0.237699\pi\)
\(930\) 0 0
\(931\) 3.97408 8.70202i 0.130245 0.285197i
\(932\) 0 0
\(933\) 0.446697 3.10684i 0.0146242 0.101714i
\(934\) 0 0
\(935\) 8.86052 + 2.60168i 0.289770 + 0.0850842i
\(936\) 0 0
\(937\) 15.7812 + 18.2125i 0.515550 + 0.594977i 0.952511 0.304504i \(-0.0984907\pi\)
−0.436961 + 0.899480i \(0.643945\pi\)
\(938\) 0 0
\(939\) 8.46255 9.76631i 0.276165 0.318711i
\(940\) 0 0
\(941\) −7.37524 16.1495i −0.240426 0.526459i 0.750500 0.660871i \(-0.229813\pi\)
−0.990926 + 0.134412i \(0.957086\pi\)
\(942\) 0 0
\(943\) 25.1180 + 24.4696i 0.817956 + 0.796838i
\(944\) 0 0
\(945\) 0.535494 + 1.17257i 0.0174196 + 0.0381437i
\(946\) 0 0
\(947\) −20.9960 + 24.2307i −0.682279 + 0.787391i −0.986245 0.165291i \(-0.947144\pi\)
0.303966 + 0.952683i \(0.401689\pi\)
\(948\) 0 0
\(949\) −12.1680 14.0426i −0.394990 0.455843i
\(950\) 0 0
\(951\) 18.7767 + 5.51334i 0.608877 + 0.178782i
\(952\) 0 0
\(953\) 0.993681 6.91120i 0.0321885 0.223876i −0.967377 0.253340i \(-0.918471\pi\)
0.999566 + 0.0294640i \(0.00938003\pi\)
\(954\) 0 0
\(955\) −23.6424 + 51.7696i −0.765050 + 1.67523i
\(956\) 0 0
\(957\) 1.48406 0.953749i 0.0479729 0.0308303i
\(958\) 0 0
\(959\) −0.618604 4.30249i −0.0199758 0.138935i
\(960\) 0 0
\(961\) −25.6484 16.4832i −0.827367 0.531716i
\(962\) 0 0
\(963\) −11.4215 + 3.35365i −0.368052 + 0.108070i
\(964\) 0 0
\(965\) 85.2851 2.74542
\(966\) 0 0
\(967\) −8.64923 −0.278141 −0.139070 0.990283i \(-0.544411\pi\)
−0.139070 + 0.990283i \(0.544411\pi\)
\(968\) 0 0
\(969\) 2.20685 0.647988i 0.0708941 0.0208164i
\(970\) 0 0
\(971\) −20.5078 13.1796i −0.658128 0.422953i 0.168500 0.985702i \(-0.446108\pi\)
−0.826628 + 0.562748i \(0.809744\pi\)
\(972\) 0 0
\(973\) −1.14389 7.95591i −0.0366713 0.255055i
\(974\) 0 0
\(975\) −11.4296 + 7.34536i −0.366040 + 0.235240i
\(976\) 0 0
\(977\) −0.866836 + 1.89811i −0.0277325 + 0.0607258i −0.922991 0.384821i \(-0.874263\pi\)
0.895259 + 0.445546i \(0.146991\pi\)
\(978\) 0 0
\(979\) −3.36028 + 23.3713i −0.107395 + 0.746949i
\(980\) 0 0
\(981\) −4.32839 1.27093i −0.138195 0.0405777i
\(982\) 0 0
\(983\) −39.8815 46.0257i −1.27202 1.46799i −0.816033 0.578005i \(-0.803831\pi\)
−0.455988 0.889986i \(-0.650714\pi\)
\(984\) 0 0
\(985\) 8.10984 9.35925i 0.258401 0.298211i
\(986\) 0 0
\(987\) −0.485615 1.06335i −0.0154573 0.0338468i
\(988\) 0 0
\(989\) −36.8373 + 3.11931i −1.17136 + 0.0991883i
\(990\) 0 0
\(991\) −1.49697 3.27790i −0.0475527 0.104126i 0.884365 0.466797i \(-0.154592\pi\)
−0.931917 + 0.362671i \(0.881865\pi\)
\(992\) 0 0
\(993\) 17.3130 19.9803i 0.549411 0.634055i
\(994\) 0 0
\(995\) 18.4213 + 21.2593i 0.583995 + 0.673966i
\(996\) 0 0
\(997\) −4.68467 1.37554i −0.148365 0.0435639i 0.206707 0.978403i \(-0.433725\pi\)
−0.355072 + 0.934839i \(0.615544\pi\)
\(998\) 0 0
\(999\) −0.350939 + 2.44083i −0.0111032 + 0.0772246i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.q.c.73.3 30
23.6 even 11 inner 552.2.q.c.121.3 yes 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.q.c.73.3 30 1.1 even 1 trivial
552.2.q.c.121.3 yes 30 23.6 even 11 inner