L(s) = 1 | + (0.959 − 0.281i)3-s + (2.64 + 1.69i)5-s + (0.0583 + 0.405i)7-s + (0.841 − 0.540i)9-s + (0.742 − 1.62i)11-s + (−0.395 + 2.75i)13-s + (3.01 + 0.885i)15-s + (1.07 + 1.24i)17-s + (0.916 − 1.05i)19-s + (0.170 + 0.372i)21-s + (−4.69 − 0.958i)23-s + (2.02 + 4.44i)25-s + (0.654 − 0.755i)27-s + (0.646 + 0.745i)29-s + (0.686 + 0.201i)31-s + ⋯ |
L(s) = 1 | + (0.553 − 0.162i)3-s + (1.18 + 0.760i)5-s + (0.0220 + 0.153i)7-s + (0.280 − 0.180i)9-s + (0.223 − 0.490i)11-s + (−0.109 + 0.763i)13-s + (0.778 + 0.228i)15-s + (0.260 + 0.301i)17-s + (0.210 − 0.242i)19-s + (0.0371 + 0.0813i)21-s + (−0.979 − 0.199i)23-s + (0.405 + 0.888i)25-s + (0.126 − 0.145i)27-s + (0.119 + 0.138i)29-s + (0.123 + 0.0361i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 - 0.338i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.941 - 0.338i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.08317 + 0.362973i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.08317 + 0.362973i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.959 + 0.281i)T \) |
| 23 | \( 1 + (4.69 + 0.958i)T \) |
good | 5 | \( 1 + (-2.64 - 1.69i)T + (2.07 + 4.54i)T^{2} \) |
| 7 | \( 1 + (-0.0583 - 0.405i)T + (-6.71 + 1.97i)T^{2} \) |
| 11 | \( 1 + (-0.742 + 1.62i)T + (-7.20 - 8.31i)T^{2} \) |
| 13 | \( 1 + (0.395 - 2.75i)T + (-12.4 - 3.66i)T^{2} \) |
| 17 | \( 1 + (-1.07 - 1.24i)T + (-2.41 + 16.8i)T^{2} \) |
| 19 | \( 1 + (-0.916 + 1.05i)T + (-2.70 - 18.8i)T^{2} \) |
| 29 | \( 1 + (-0.646 - 0.745i)T + (-4.12 + 28.7i)T^{2} \) |
| 31 | \( 1 + (-0.686 - 0.201i)T + (26.0 + 16.7i)T^{2} \) |
| 37 | \( 1 + (2.07 - 1.33i)T + (15.3 - 33.6i)T^{2} \) |
| 41 | \( 1 + (6.15 + 3.95i)T + (17.0 + 37.2i)T^{2} \) |
| 43 | \( 1 + (-7.39 + 2.17i)T + (36.1 - 23.2i)T^{2} \) |
| 47 | \( 1 + 2.85T + 47T^{2} \) |
| 53 | \( 1 + (-0.372 - 2.59i)T + (-50.8 + 14.9i)T^{2} \) |
| 59 | \( 1 + (-1.19 + 8.32i)T + (-56.6 - 16.6i)T^{2} \) |
| 61 | \( 1 + (-7.71 - 2.26i)T + (51.3 + 32.9i)T^{2} \) |
| 67 | \( 1 + (4.60 + 10.0i)T + (-43.8 + 50.6i)T^{2} \) |
| 71 | \( 1 + (0.0976 + 0.213i)T + (-46.4 + 53.6i)T^{2} \) |
| 73 | \( 1 + (4.37 - 5.05i)T + (-10.3 - 72.2i)T^{2} \) |
| 79 | \( 1 + (-1.17 + 8.13i)T + (-75.7 - 22.2i)T^{2} \) |
| 83 | \( 1 + (13.0 - 8.37i)T + (34.4 - 75.4i)T^{2} \) |
| 89 | \( 1 + (12.6 - 3.72i)T + (74.8 - 48.1i)T^{2} \) |
| 97 | \( 1 + (-6.89 - 4.43i)T + (40.2 + 88.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63477266214996521241986040155, −9.920498120544555058054864651278, −9.150493931176398829742184717155, −8.285521660196531060146205704096, −7.08426418198738576677259424005, −6.35678969260970590808384363049, −5.46057023353817014146932301136, −3.95817038271867346484416898920, −2.74555213590200566630029181949, −1.76734732941506879183987981933,
1.42327200833309758053055455239, 2.64628039342493105796688778519, 4.07532965693483236326141314818, 5.19102226737416847067143128124, 5.96978489368664126191985664058, 7.24498939731569882885616956593, 8.212285232187454458729661636280, 9.077907540986827264750828483739, 9.888795173537655399124984468774, 10.29300355967371141380956640632