Properties

Label 552.2.j.d.323.39
Level $552$
Weight $2$
Character 552.323
Analytic conductor $4.408$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [552,2,Mod(323,552)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(552, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("552.323"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42,0,2,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(42\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.39
Character \(\chi\) \(=\) 552.323
Dual form 552.2.j.d.323.40

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29483 - 0.568707i) q^{2} +(-1.25835 + 1.19019i) q^{3} +(1.35315 - 1.47275i) q^{4} +0.156681 q^{5} +(-0.952479 + 2.25672i) q^{6} -3.17007i q^{7} +(0.914523 - 2.67650i) q^{8} +(0.166904 - 2.99535i) q^{9} +(0.202875 - 0.0891057i) q^{10} +3.38771i q^{11} +(0.0501168 + 3.46374i) q^{12} -3.13303i q^{13} +(-1.80284 - 4.10469i) q^{14} +(-0.197160 + 0.186480i) q^{15} +(-0.337995 - 3.98569i) q^{16} -3.67452i q^{17} +(-1.48737 - 3.97338i) q^{18} +5.24729 q^{19} +(0.212013 - 0.230753i) q^{20} +(3.77298 + 3.98907i) q^{21} +(1.92661 + 4.38649i) q^{22} +1.00000 q^{23} +(2.03474 + 4.45644i) q^{24} -4.97545 q^{25} +(-1.78178 - 4.05673i) q^{26} +(3.35501 + 3.96786i) q^{27} +(-4.66873 - 4.28957i) q^{28} +6.81728 q^{29} +(-0.149236 + 0.353586i) q^{30} +2.63390i q^{31} +(-2.70433 - 4.96856i) q^{32} +(-4.03201 - 4.26293i) q^{33} +(-2.08972 - 4.75786i) q^{34} -0.496691i q^{35} +(-4.18557 - 4.29896i) q^{36} -3.68893i q^{37} +(6.79432 - 2.98417i) q^{38} +(3.72890 + 3.94246i) q^{39} +(0.143289 - 0.419357i) q^{40} +3.21361i q^{41} +(7.15396 + 3.01943i) q^{42} -9.14455 q^{43} +(4.98925 + 4.58406i) q^{44} +(0.0261508 - 0.469316i) q^{45} +(1.29483 - 0.568707i) q^{46} +11.1268 q^{47} +(5.16904 + 4.61313i) q^{48} -3.04935 q^{49} +(-6.44234 + 2.82957i) q^{50} +(4.37337 + 4.62384i) q^{51} +(-4.61418 - 4.23945i) q^{52} +1.24333 q^{53} +(6.60070 + 3.22967i) q^{54} +0.530790i q^{55} +(-8.48469 - 2.89910i) q^{56} +(-6.60294 + 6.24526i) q^{57} +(8.82719 - 3.87703i) q^{58} +9.90197i q^{59} +(0.00785237 + 0.542703i) q^{60} -0.598751i q^{61} +(1.49791 + 3.41043i) q^{62} +(-9.49548 - 0.529099i) q^{63} +(-6.32729 - 4.89544i) q^{64} -0.490888i q^{65} +(-7.64511 - 3.22672i) q^{66} -6.22235 q^{67} +(-5.41165 - 4.97216i) q^{68} +(-1.25835 + 1.19019i) q^{69} +(-0.282471 - 0.643128i) q^{70} -11.9654 q^{71} +(-7.86442 - 3.18604i) q^{72} -8.73037 q^{73} +(-2.09792 - 4.77653i) q^{74} +(6.26087 - 5.92172i) q^{75} +(7.10034 - 7.72795i) q^{76} +10.7393 q^{77} +(7.07038 + 2.98415i) q^{78} +12.5424i q^{79} +(-0.0529574 - 0.624484i) q^{80} +(-8.94429 - 0.999875i) q^{81} +(1.82760 + 4.16106i) q^{82} +8.47249i q^{83} +(10.9803 - 0.158874i) q^{84} -0.575728i q^{85} +(-11.8406 + 5.20057i) q^{86} +(-8.57855 + 8.11385i) q^{87} +(9.06720 + 3.09814i) q^{88} -4.22264i q^{89} +(-0.233042 - 0.622554i) q^{90} -9.93194 q^{91} +(1.35315 - 1.47275i) q^{92} +(-3.13483 - 3.31437i) q^{93} +(14.4073 - 6.32790i) q^{94} +0.822152 q^{95} +(9.31653 + 3.03353i) q^{96} +9.28707 q^{97} +(-3.94837 + 1.73419i) q^{98} +(10.1474 + 0.565423i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q + 2 q^{3} + 4 q^{4} + 8 q^{5} + 4 q^{6} - 9 q^{8} + 2 q^{9} - 4 q^{10} - 21 q^{12} - 4 q^{14} - 8 q^{15} - 12 q^{16} - 11 q^{18} + 4 q^{19} - 2 q^{20} + 8 q^{21} + 18 q^{22} + 42 q^{23} + 28 q^{24}+ \cdots + 64 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29483 0.568707i 0.915580 0.402136i
\(3\) −1.25835 + 1.19019i −0.726510 + 0.687155i
\(4\) 1.35315 1.47275i 0.676573 0.736376i
\(5\) 0.156681 0.0700700 0.0350350 0.999386i \(-0.488846\pi\)
0.0350350 + 0.999386i \(0.488846\pi\)
\(6\) −0.952479 + 2.25672i −0.388848 + 0.921302i
\(7\) 3.17007i 1.19817i −0.800684 0.599087i \(-0.795530\pi\)
0.800684 0.599087i \(-0.204470\pi\)
\(8\) 0.914523 2.67650i 0.323333 0.946285i
\(9\) 0.166904 2.99535i 0.0556348 0.998451i
\(10\) 0.202875 0.0891057i 0.0641547 0.0281777i
\(11\) 3.38771i 1.02143i 0.859749 + 0.510716i \(0.170620\pi\)
−0.859749 + 0.510716i \(0.829380\pi\)
\(12\) 0.0501168 + 3.46374i 0.0144675 + 0.999895i
\(13\) 3.13303i 0.868947i −0.900685 0.434474i \(-0.856934\pi\)
0.900685 0.434474i \(-0.143066\pi\)
\(14\) −1.80284 4.10469i −0.481829 1.09702i
\(15\) −0.197160 + 0.186480i −0.0509066 + 0.0481490i
\(16\) −0.337995 3.98569i −0.0844986 0.996424i
\(17\) 3.67452i 0.891202i −0.895232 0.445601i \(-0.852990\pi\)
0.895232 0.445601i \(-0.147010\pi\)
\(18\) −1.48737 3.97338i −0.350575 0.936535i
\(19\) 5.24729 1.20381 0.601905 0.798568i \(-0.294409\pi\)
0.601905 + 0.798568i \(0.294409\pi\)
\(20\) 0.212013 0.230753i 0.0474075 0.0515979i
\(21\) 3.77298 + 3.98907i 0.823332 + 0.870486i
\(22\) 1.92661 + 4.38649i 0.410755 + 0.935203i
\(23\) 1.00000 0.208514
\(24\) 2.03474 + 4.45644i 0.415340 + 0.909666i
\(25\) −4.97545 −0.995090
\(26\) −1.78178 4.05673i −0.349435 0.795590i
\(27\) 3.35501 + 3.96786i 0.645672 + 0.763615i
\(28\) −4.66873 4.28957i −0.882306 0.810652i
\(29\) 6.81728 1.26594 0.632969 0.774177i \(-0.281836\pi\)
0.632969 + 0.774177i \(0.281836\pi\)
\(30\) −0.149236 + 0.353586i −0.0272466 + 0.0645556i
\(31\) 2.63390i 0.473062i 0.971624 + 0.236531i \(0.0760104\pi\)
−0.971624 + 0.236531i \(0.923990\pi\)
\(32\) −2.70433 4.96856i −0.478063 0.878325i
\(33\) −4.03201 4.26293i −0.701883 0.742081i
\(34\) −2.08972 4.75786i −0.358385 0.815966i
\(35\) 0.496691i 0.0839561i
\(36\) −4.18557 4.29896i −0.697594 0.716493i
\(37\) 3.68893i 0.606457i −0.952918 0.303228i \(-0.901935\pi\)
0.952918 0.303228i \(-0.0980645\pi\)
\(38\) 6.79432 2.98417i 1.10218 0.484096i
\(39\) 3.72890 + 3.94246i 0.597102 + 0.631299i
\(40\) 0.143289 0.419357i 0.0226559 0.0663062i
\(41\) 3.21361i 0.501881i 0.968002 + 0.250941i \(0.0807399\pi\)
−0.968002 + 0.250941i \(0.919260\pi\)
\(42\) 7.15396 + 3.01943i 1.10388 + 0.465908i
\(43\) −9.14455 −1.39453 −0.697265 0.716813i \(-0.745600\pi\)
−0.697265 + 0.716813i \(0.745600\pi\)
\(44\) 4.98925 + 4.58406i 0.752158 + 0.691073i
\(45\) 0.0261508 0.469316i 0.00389833 0.0699615i
\(46\) 1.29483 0.568707i 0.190912 0.0838512i
\(47\) 11.1268 1.62301 0.811507 0.584343i \(-0.198648\pi\)
0.811507 + 0.584343i \(0.198648\pi\)
\(48\) 5.16904 + 4.61313i 0.746087 + 0.665848i
\(49\) −3.04935 −0.435621
\(50\) −6.44234 + 2.82957i −0.911084 + 0.400162i
\(51\) 4.37337 + 4.62384i 0.612394 + 0.647467i
\(52\) −4.61418 4.23945i −0.639872 0.587906i
\(53\) 1.24333 0.170784 0.0853922 0.996347i \(-0.472786\pi\)
0.0853922 + 0.996347i \(0.472786\pi\)
\(54\) 6.60070 + 3.22967i 0.898241 + 0.439502i
\(55\) 0.530790i 0.0715718i
\(56\) −8.48469 2.89910i −1.13381 0.387409i
\(57\) −6.60294 + 6.24526i −0.874581 + 0.827205i
\(58\) 8.82719 3.87703i 1.15907 0.509080i
\(59\) 9.90197i 1.28913i 0.764551 + 0.644563i \(0.222961\pi\)
−0.764551 + 0.644563i \(0.777039\pi\)
\(60\) 0.00785237 + 0.542703i 0.00101374 + 0.0700627i
\(61\) 0.598751i 0.0766623i −0.999265 0.0383311i \(-0.987796\pi\)
0.999265 0.0383311i \(-0.0122042\pi\)
\(62\) 1.49791 + 3.41043i 0.190235 + 0.433126i
\(63\) −9.49548 0.529099i −1.19632 0.0666602i
\(64\) −6.32729 4.89544i −0.790912 0.611930i
\(65\) 0.490888i 0.0608871i
\(66\) −7.64511 3.22672i −0.941047 0.397182i
\(67\) −6.22235 −0.760181 −0.380090 0.924949i \(-0.624107\pi\)
−0.380090 + 0.924949i \(0.624107\pi\)
\(68\) −5.41165 4.97216i −0.656259 0.602963i
\(69\) −1.25835 + 1.19019i −0.151488 + 0.143282i
\(70\) −0.282471 0.643128i −0.0337618 0.0768685i
\(71\) −11.9654 −1.42003 −0.710015 0.704187i \(-0.751312\pi\)
−0.710015 + 0.704187i \(0.751312\pi\)
\(72\) −7.86442 3.18604i −0.926831 0.375478i
\(73\) −8.73037 −1.02181 −0.510906 0.859637i \(-0.670690\pi\)
−0.510906 + 0.859637i \(0.670690\pi\)
\(74\) −2.09792 4.77653i −0.243878 0.555260i
\(75\) 6.26087 5.92172i 0.722943 0.683782i
\(76\) 7.10034 7.72795i 0.814465 0.886457i
\(77\) 10.7393 1.22385
\(78\) 7.07038 + 2.98415i 0.800563 + 0.337888i
\(79\) 12.5424i 1.41113i 0.708648 + 0.705563i \(0.249306\pi\)
−0.708648 + 0.705563i \(0.750694\pi\)
\(80\) −0.0529574 0.624484i −0.00592082 0.0698194i
\(81\) −8.94429 0.999875i −0.993810 0.111097i
\(82\) 1.82760 + 4.16106i 0.201825 + 0.459512i
\(83\) 8.47249i 0.929977i 0.885317 + 0.464988i \(0.153941\pi\)
−0.885317 + 0.464988i \(0.846059\pi\)
\(84\) 10.9803 0.158874i 1.19805 0.0173346i
\(85\) 0.575728i 0.0624465i
\(86\) −11.8406 + 5.20057i −1.27680 + 0.560791i
\(87\) −8.57855 + 8.11385i −0.919717 + 0.869896i
\(88\) 9.06720 + 3.09814i 0.966566 + 0.330263i
\(89\) 4.22264i 0.447599i −0.974635 0.223799i \(-0.928154\pi\)
0.974635 0.223799i \(-0.0718460\pi\)
\(90\) −0.233042 0.622554i −0.0245648 0.0656230i
\(91\) −9.93194 −1.04115
\(92\) 1.35315 1.47275i 0.141075 0.153545i
\(93\) −3.13483 3.31437i −0.325067 0.343684i
\(94\) 14.4073 6.32790i 1.48600 0.652673i
\(95\) 0.822152 0.0843510
\(96\) 9.31653 + 3.03353i 0.950864 + 0.309609i
\(97\) 9.28707 0.942959 0.471479 0.881877i \(-0.343720\pi\)
0.471479 + 0.881877i \(0.343720\pi\)
\(98\) −3.94837 + 1.73419i −0.398846 + 0.175179i
\(99\) 10.1474 + 0.565423i 1.01985 + 0.0568272i
\(100\) −6.73251 + 7.32760i −0.673251 + 0.732760i
\(101\) 4.13544 0.411492 0.205746 0.978605i \(-0.434038\pi\)
0.205746 + 0.978605i \(0.434038\pi\)
\(102\) 8.29236 + 3.49990i 0.821066 + 0.346542i
\(103\) 9.03244i 0.889993i 0.895532 + 0.444996i \(0.146795\pi\)
−0.895532 + 0.444996i \(0.853205\pi\)
\(104\) −8.38556 2.86523i −0.822272 0.280959i
\(105\) 0.591155 + 0.625012i 0.0576909 + 0.0609950i
\(106\) 1.60989 0.707090i 0.156367 0.0686786i
\(107\) 13.8812i 1.34194i 0.741483 + 0.670972i \(0.234123\pi\)
−0.741483 + 0.670972i \(0.765877\pi\)
\(108\) 10.3835 + 0.427996i 0.999152 + 0.0411839i
\(109\) 15.4440i 1.47926i 0.673011 + 0.739632i \(0.265000\pi\)
−0.673011 + 0.739632i \(0.735000\pi\)
\(110\) 0.301864 + 0.687281i 0.0287816 + 0.0655297i
\(111\) 4.39053 + 4.64198i 0.416730 + 0.440597i
\(112\) −12.6349 + 1.07147i −1.19389 + 0.101244i
\(113\) 0.682535i 0.0642075i −0.999485 0.0321037i \(-0.989779\pi\)
0.999485 0.0321037i \(-0.0102207\pi\)
\(114\) −4.99793 + 11.8417i −0.468099 + 1.10907i
\(115\) 0.156681 0.0146106
\(116\) 9.22478 10.0402i 0.856499 0.932206i
\(117\) −9.38454 0.522917i −0.867601 0.0483437i
\(118\) 5.63132 + 12.8213i 0.518405 + 1.18030i
\(119\) −11.6485 −1.06781
\(120\) 0.318806 + 0.698240i 0.0291029 + 0.0637403i
\(121\) −0.476561 −0.0433237
\(122\) −0.340514 0.775279i −0.0308287 0.0701904i
\(123\) −3.82480 4.04385i −0.344870 0.364622i
\(124\) 3.87907 + 3.56404i 0.348351 + 0.320061i
\(125\) −1.56297 −0.139796
\(126\) −12.5959 + 4.71505i −1.12213 + 0.420050i
\(127\) 20.6314i 1.83074i −0.402612 0.915371i \(-0.631898\pi\)
0.402612 0.915371i \(-0.368102\pi\)
\(128\) −10.9768 2.74037i −0.970222 0.242217i
\(129\) 11.5071 10.8837i 1.01314 0.958259i
\(130\) −0.279171 0.635614i −0.0244849 0.0557470i
\(131\) 7.14222i 0.624019i −0.950079 0.312010i \(-0.898998\pi\)
0.950079 0.312010i \(-0.101002\pi\)
\(132\) −11.7341 + 0.169781i −1.02133 + 0.0147776i
\(133\) 16.6343i 1.44237i
\(134\) −8.05686 + 3.53869i −0.696006 + 0.305696i
\(135\) 0.525667 + 0.621689i 0.0452422 + 0.0535065i
\(136\) −9.83484 3.36043i −0.843331 0.288155i
\(137\) 4.82633i 0.412341i 0.978516 + 0.206171i \(0.0661002\pi\)
−0.978516 + 0.206171i \(0.933900\pi\)
\(138\) −0.952479 + 2.25672i −0.0810804 + 0.192105i
\(139\) 21.9008 1.85760 0.928800 0.370583i \(-0.120842\pi\)
0.928800 + 0.370583i \(0.120842\pi\)
\(140\) −0.731502 0.672095i −0.0618232 0.0568024i
\(141\) −14.0015 + 13.2430i −1.17914 + 1.11526i
\(142\) −15.4931 + 6.80479i −1.30015 + 0.571046i
\(143\) 10.6138 0.887571
\(144\) −11.9950 + 0.347183i −0.999581 + 0.0289319i
\(145\) 1.06814 0.0887043
\(146\) −11.3043 + 4.96502i −0.935550 + 0.410908i
\(147\) 3.83716 3.62930i 0.316483 0.299340i
\(148\) −5.43288 4.99166i −0.446580 0.410312i
\(149\) −3.01335 −0.246864 −0.123432 0.992353i \(-0.539390\pi\)
−0.123432 + 0.992353i \(0.539390\pi\)
\(150\) 4.73901 11.2282i 0.386939 0.916778i
\(151\) 12.5857i 1.02421i −0.858924 0.512103i \(-0.828867\pi\)
0.858924 0.512103i \(-0.171133\pi\)
\(152\) 4.79877 14.0444i 0.389231 1.13915i
\(153\) −11.0065 0.613293i −0.889821 0.0495818i
\(154\) 13.9055 6.10750i 1.12054 0.492156i
\(155\) 0.412682i 0.0331474i
\(156\) 10.8520 0.157018i 0.868856 0.0125715i
\(157\) 8.69475i 0.693917i 0.937881 + 0.346958i \(0.112785\pi\)
−0.937881 + 0.346958i \(0.887215\pi\)
\(158\) 7.13292 + 16.2402i 0.567465 + 1.29200i
\(159\) −1.56455 + 1.47980i −0.124077 + 0.117355i
\(160\) −0.423719 0.778480i −0.0334979 0.0615443i
\(161\) 3.17007i 0.249837i
\(162\) −12.1499 + 3.79201i −0.954588 + 0.297929i
\(163\) 13.3602 1.04645 0.523226 0.852194i \(-0.324728\pi\)
0.523226 + 0.852194i \(0.324728\pi\)
\(164\) 4.73285 + 4.34848i 0.369573 + 0.339559i
\(165\) −0.631740 0.667922i −0.0491809 0.0519976i
\(166\) 4.81836 + 10.9704i 0.373977 + 0.851468i
\(167\) 11.9623 0.925672 0.462836 0.886444i \(-0.346832\pi\)
0.462836 + 0.886444i \(0.346832\pi\)
\(168\) 14.1272 6.45028i 1.08994 0.497650i
\(169\) 3.18410 0.244931
\(170\) −0.327420 0.745468i −0.0251120 0.0571748i
\(171\) 0.875795 15.7175i 0.0669737 1.20195i
\(172\) −12.3739 + 13.4676i −0.943501 + 1.02690i
\(173\) 1.64010 0.124695 0.0623473 0.998055i \(-0.480141\pi\)
0.0623473 + 0.998055i \(0.480141\pi\)
\(174\) −6.49332 + 15.3847i −0.492257 + 1.16631i
\(175\) 15.7725i 1.19229i
\(176\) 13.5024 1.14503i 1.01778 0.0863096i
\(177\) −11.7852 12.4602i −0.885830 0.936564i
\(178\) −2.40144 5.46758i −0.179996 0.409812i
\(179\) 1.54232i 0.115278i −0.998337 0.0576391i \(-0.981643\pi\)
0.998337 0.0576391i \(-0.0183573\pi\)
\(180\) −0.655800 0.673566i −0.0488804 0.0502047i
\(181\) 4.96408i 0.368978i 0.982835 + 0.184489i \(0.0590629\pi\)
−0.982835 + 0.184489i \(0.940937\pi\)
\(182\) −12.8601 + 5.64836i −0.953256 + 0.418684i
\(183\) 0.712627 + 0.753441i 0.0526789 + 0.0556959i
\(184\) 0.914523 2.67650i 0.0674196 0.197314i
\(185\) 0.577987i 0.0424944i
\(186\) −5.94396 2.50873i −0.435833 0.183949i
\(187\) 12.4482 0.910302
\(188\) 15.0562 16.3870i 1.09809 1.19515i
\(189\) 12.5784 10.6356i 0.914944 0.773627i
\(190\) 1.06454 0.467563i 0.0772301 0.0339206i
\(191\) 11.1627 0.807708 0.403854 0.914823i \(-0.367670\pi\)
0.403854 + 0.914823i \(0.367670\pi\)
\(192\) 13.7885 1.37048i 0.995097 0.0989055i
\(193\) 18.7063 1.34651 0.673253 0.739412i \(-0.264896\pi\)
0.673253 + 0.739412i \(0.264896\pi\)
\(194\) 12.0251 5.28162i 0.863354 0.379198i
\(195\) 0.584249 + 0.617710i 0.0418389 + 0.0442351i
\(196\) −4.12621 + 4.49093i −0.294729 + 0.320781i
\(197\) −19.4982 −1.38919 −0.694596 0.719400i \(-0.744417\pi\)
−0.694596 + 0.719400i \(0.744417\pi\)
\(198\) 13.4606 5.03876i 0.956607 0.358089i
\(199\) 18.9995i 1.34684i −0.739262 0.673418i \(-0.764825\pi\)
0.739262 0.673418i \(-0.235175\pi\)
\(200\) −4.55017 + 13.3168i −0.321745 + 0.941639i
\(201\) 7.82991 7.40577i 0.552279 0.522363i
\(202\) 5.35468 2.35185i 0.376754 0.165476i
\(203\) 21.6113i 1.51681i
\(204\) 12.7276 0.184155i 0.891108 0.0128934i
\(205\) 0.503512i 0.0351668i
\(206\) 5.13681 + 11.6954i 0.357898 + 0.814859i
\(207\) 0.166904 2.99535i 0.0116007 0.208191i
\(208\) −12.4873 + 1.05895i −0.865839 + 0.0734249i
\(209\) 17.7763i 1.22961i
\(210\) 1.12089 + 0.473088i 0.0773489 + 0.0326462i
\(211\) −20.3679 −1.40218 −0.701091 0.713072i \(-0.747303\pi\)
−0.701091 + 0.713072i \(0.747303\pi\)
\(212\) 1.68241 1.83112i 0.115548 0.125762i
\(213\) 15.0567 14.2411i 1.03167 0.975781i
\(214\) 7.89432 + 17.9737i 0.539645 + 1.22866i
\(215\) −1.43278 −0.0977148
\(216\) 13.6882 5.35098i 0.931365 0.364088i
\(217\) 8.34964 0.566810
\(218\) 8.78309 + 19.9972i 0.594866 + 1.35438i
\(219\) 10.9859 10.3908i 0.742357 0.702144i
\(220\) 0.781722 + 0.718237i 0.0527037 + 0.0484235i
\(221\) −11.5124 −0.774407
\(222\) 8.32489 + 3.51363i 0.558730 + 0.235820i
\(223\) 18.6142i 1.24650i −0.782024 0.623248i \(-0.785813\pi\)
0.782024 0.623248i \(-0.214187\pi\)
\(224\) −15.7507 + 8.57293i −1.05239 + 0.572803i
\(225\) −0.830425 + 14.9032i −0.0553616 + 0.993549i
\(226\) −0.388162 0.883763i −0.0258202 0.0587871i
\(227\) 20.5103i 1.36131i 0.732603 + 0.680657i \(0.238305\pi\)
−0.732603 + 0.680657i \(0.761695\pi\)
\(228\) 0.262977 + 18.1752i 0.0174161 + 1.20368i
\(229\) 20.8719i 1.37925i −0.724166 0.689626i \(-0.757775\pi\)
0.724166 0.689626i \(-0.242225\pi\)
\(230\) 0.202875 0.0891057i 0.0133772 0.00587546i
\(231\) −13.5138 + 12.7818i −0.889142 + 0.840978i
\(232\) 6.23457 18.2465i 0.409319 1.19794i
\(233\) 0.629101i 0.0412137i 0.999788 + 0.0206069i \(0.00655984\pi\)
−0.999788 + 0.0206069i \(0.993440\pi\)
\(234\) −12.4487 + 4.65997i −0.813799 + 0.304631i
\(235\) 1.74336 0.113725
\(236\) 14.5831 + 13.3988i 0.949282 + 0.872188i
\(237\) −14.9278 15.7827i −0.969662 1.02520i
\(238\) −15.0828 + 6.62457i −0.977670 + 0.429407i
\(239\) −14.6090 −0.944980 −0.472490 0.881336i \(-0.656645\pi\)
−0.472490 + 0.881336i \(0.656645\pi\)
\(240\) 0.809892 + 0.722792i 0.0522783 + 0.0466560i
\(241\) −18.4840 −1.19066 −0.595330 0.803481i \(-0.702979\pi\)
−0.595330 + 0.803481i \(0.702979\pi\)
\(242\) −0.617064 + 0.271024i −0.0396663 + 0.0174221i
\(243\) 12.4451 9.38719i 0.798354 0.602188i
\(244\) −0.881812 0.810198i −0.0564522 0.0518676i
\(245\) −0.477776 −0.0305240
\(246\) −7.25221 3.06089i −0.462384 0.195156i
\(247\) 16.4399i 1.04605i
\(248\) 7.04962 + 2.40876i 0.447651 + 0.152956i
\(249\) −10.0839 10.6614i −0.639038 0.675638i
\(250\) −2.02377 + 0.888869i −0.127994 + 0.0562170i
\(251\) 17.1737i 1.08399i 0.840381 + 0.541996i \(0.182331\pi\)
−0.840381 + 0.541996i \(0.817669\pi\)
\(252\) −13.6280 + 13.2685i −0.858483 + 0.835839i
\(253\) 3.38771i 0.212983i
\(254\) −11.7332 26.7141i −0.736208 1.67619i
\(255\) 0.685225 + 0.724469i 0.0429105 + 0.0453680i
\(256\) −15.7715 + 2.69429i −0.985720 + 0.168393i
\(257\) 5.99822i 0.374159i 0.982345 + 0.187079i \(0.0599022\pi\)
−0.982345 + 0.187079i \(0.940098\pi\)
\(258\) 8.70999 20.6367i 0.542261 1.28478i
\(259\) −11.6942 −0.726641
\(260\) −0.722956 0.664243i −0.0448358 0.0411946i
\(261\) 1.13783 20.4202i 0.0704302 1.26398i
\(262\) −4.06183 9.24793i −0.250941 0.571339i
\(263\) −25.9591 −1.60070 −0.800352 0.599531i \(-0.795354\pi\)
−0.800352 + 0.599531i \(0.795354\pi\)
\(264\) −15.0971 + 6.89312i −0.929162 + 0.424242i
\(265\) 0.194806 0.0119669
\(266\) −9.46002 21.5385i −0.580031 1.32061i
\(267\) 5.02573 + 5.31357i 0.307570 + 0.325185i
\(268\) −8.41974 + 9.16398i −0.514318 + 0.559779i
\(269\) 10.5130 0.640988 0.320494 0.947251i \(-0.396151\pi\)
0.320494 + 0.947251i \(0.396151\pi\)
\(270\) 1.03421 + 0.506029i 0.0629398 + 0.0307959i
\(271\) 5.20394i 0.316117i 0.987430 + 0.158058i \(0.0505234\pi\)
−0.987430 + 0.158058i \(0.949477\pi\)
\(272\) −14.6455 + 1.24197i −0.888014 + 0.0753053i
\(273\) 12.4979 11.8209i 0.756406 0.715432i
\(274\) 2.74477 + 6.24926i 0.165817 + 0.377531i
\(275\) 16.8554i 1.01642i
\(276\) 0.0501168 + 3.46374i 0.00301668 + 0.208493i
\(277\) 2.97385i 0.178681i −0.996001 0.0893407i \(-0.971524\pi\)
0.996001 0.0893407i \(-0.0284760\pi\)
\(278\) 28.3577 12.4551i 1.70078 0.747008i
\(279\) 7.88945 + 0.439609i 0.472329 + 0.0263187i
\(280\) −1.32939 0.454235i −0.0794464 0.0271458i
\(281\) 25.9535i 1.54825i 0.633030 + 0.774127i \(0.281811\pi\)
−0.633030 + 0.774127i \(0.718189\pi\)
\(282\) −10.5981 + 25.1101i −0.631106 + 1.49529i
\(283\) −18.9612 −1.12713 −0.563563 0.826073i \(-0.690570\pi\)
−0.563563 + 0.826073i \(0.690570\pi\)
\(284\) −16.1909 + 17.6220i −0.960754 + 1.04568i
\(285\) −1.03456 + 0.978515i −0.0612819 + 0.0579622i
\(286\) 13.7430 6.03614i 0.812642 0.356924i
\(287\) 10.1874 0.601341
\(288\) −15.3340 + 7.27116i −0.903562 + 0.428457i
\(289\) 3.49792 0.205760
\(290\) 1.38306 0.607459i 0.0812158 0.0356712i
\(291\) −11.6864 + 11.0534i −0.685070 + 0.647959i
\(292\) −11.8135 + 12.8577i −0.691330 + 0.752438i
\(293\) 24.8220 1.45011 0.725057 0.688688i \(-0.241813\pi\)
0.725057 + 0.688688i \(0.241813\pi\)
\(294\) 2.90444 6.88153i 0.169391 0.401339i
\(295\) 1.55145i 0.0903291i
\(296\) −9.87343 3.37362i −0.573881 0.196087i
\(297\) −13.4419 + 11.3658i −0.779981 + 0.659510i
\(298\) −3.90177 + 1.71371i −0.226023 + 0.0992728i
\(299\) 3.13303i 0.181188i
\(300\) −0.249354 17.2337i −0.0143965 0.994986i
\(301\) 28.9889i 1.67089i
\(302\) −7.15754 16.2962i −0.411870 0.937742i
\(303\) −5.20385 + 4.92196i −0.298953 + 0.282759i
\(304\) −1.77355 20.9141i −0.101720 1.19950i
\(305\) 0.0938131i 0.00537173i
\(306\) −14.6003 + 5.46535i −0.834641 + 0.312433i
\(307\) −20.1823 −1.15187 −0.575933 0.817497i \(-0.695361\pi\)
−0.575933 + 0.817497i \(0.695361\pi\)
\(308\) 14.5318 15.8163i 0.828026 0.901216i
\(309\) −10.7503 11.3660i −0.611563 0.646589i
\(310\) 0.234695 + 0.534351i 0.0133298 + 0.0303491i
\(311\) 26.9576 1.52862 0.764312 0.644846i \(-0.223079\pi\)
0.764312 + 0.644846i \(0.223079\pi\)
\(312\) 13.9622 6.37492i 0.790452 0.360909i
\(313\) 27.5544 1.55746 0.778732 0.627356i \(-0.215863\pi\)
0.778732 + 0.627356i \(0.215863\pi\)
\(314\) 4.94476 + 11.2582i 0.279049 + 0.635336i
\(315\) −1.48776 0.0828999i −0.0838260 0.00467088i
\(316\) 18.4718 + 16.9716i 1.03912 + 0.954729i
\(317\) 10.8555 0.609704 0.304852 0.952400i \(-0.401393\pi\)
0.304852 + 0.952400i \(0.401393\pi\)
\(318\) −1.18425 + 2.80585i −0.0664092 + 0.157344i
\(319\) 23.0950i 1.29307i
\(320\) −0.991369 0.767024i −0.0554192 0.0428780i
\(321\) −16.5212 17.4674i −0.922124 0.974936i
\(322\) −1.80284 4.10469i −0.100468 0.228745i
\(323\) 19.2813i 1.07284i
\(324\) −13.5755 + 11.8197i −0.754194 + 0.656652i
\(325\) 15.5883i 0.864681i
\(326\) 17.2991 7.59803i 0.958110 0.420816i
\(327\) −18.3812 19.4340i −1.01648 1.07470i
\(328\) 8.60122 + 2.93892i 0.474923 + 0.162275i
\(329\) 35.2728i 1.94465i
\(330\) −1.19784 0.505567i −0.0659392 0.0278305i
\(331\) 5.50051 0.302335 0.151168 0.988508i \(-0.451697\pi\)
0.151168 + 0.988508i \(0.451697\pi\)
\(332\) 12.4779 + 11.4645i 0.684812 + 0.629197i
\(333\) −11.0497 0.615699i −0.605518 0.0337401i
\(334\) 15.4891 6.80305i 0.847527 0.372246i
\(335\) −0.974926 −0.0532659
\(336\) 14.6240 16.3862i 0.797802 0.893942i
\(337\) 25.3175 1.37913 0.689565 0.724223i \(-0.257802\pi\)
0.689565 + 0.724223i \(0.257802\pi\)
\(338\) 4.12286 1.81082i 0.224254 0.0984956i
\(339\) 0.812345 + 0.858870i 0.0441205 + 0.0466474i
\(340\) −0.847905 0.779044i −0.0459841 0.0422496i
\(341\) −8.92287 −0.483200
\(342\) −7.80463 20.8495i −0.422026 1.12741i
\(343\) 12.5238i 0.676224i
\(344\) −8.36290 + 24.4754i −0.450898 + 1.31962i
\(345\) −0.197160 + 0.186480i −0.0106148 + 0.0100398i
\(346\) 2.12365 0.932737i 0.114168 0.0501443i
\(347\) 3.32681i 0.178593i −0.996005 0.0892963i \(-0.971538\pi\)
0.996005 0.0892963i \(-0.0284618\pi\)
\(348\) 0.341661 + 23.6133i 0.0183149 + 1.26581i
\(349\) 20.6654i 1.10620i 0.833116 + 0.553098i \(0.186554\pi\)
−0.833116 + 0.553098i \(0.813446\pi\)
\(350\) 8.96994 + 20.4227i 0.479464 + 1.09164i
\(351\) 12.4314 10.5114i 0.663541 0.561055i
\(352\) 16.8320 9.16150i 0.897150 0.488309i
\(353\) 28.0934i 1.49526i −0.664116 0.747630i \(-0.731192\pi\)
0.664116 0.747630i \(-0.268808\pi\)
\(354\) −22.3460 9.43142i −1.18767 0.501274i
\(355\) −1.87475 −0.0995015
\(356\) −6.21890 5.71384i −0.329601 0.302833i
\(357\) 14.6579 13.8639i 0.775778 0.733755i
\(358\) −0.877126 1.99703i −0.0463575 0.105546i
\(359\) −26.2038 −1.38299 −0.691493 0.722383i \(-0.743047\pi\)
−0.691493 + 0.722383i \(0.743047\pi\)
\(360\) −1.23221 0.499193i −0.0649431 0.0263098i
\(361\) 8.53402 0.449159
\(362\) 2.82311 + 6.42762i 0.148379 + 0.337828i
\(363\) 0.599682 0.567198i 0.0314752 0.0297701i
\(364\) −13.4394 + 14.6273i −0.704414 + 0.766678i
\(365\) −1.36788 −0.0715984
\(366\) 1.35121 + 0.570298i 0.0706291 + 0.0298100i
\(367\) 18.4607i 0.963639i 0.876271 + 0.481819i \(0.160024\pi\)
−0.876271 + 0.481819i \(0.839976\pi\)
\(368\) −0.337995 3.98569i −0.0176192 0.207769i
\(369\) 9.62589 + 0.536365i 0.501104 + 0.0279221i
\(370\) −0.328705 0.748392i −0.0170886 0.0389071i
\(371\) 3.94144i 0.204629i
\(372\) −9.12313 + 0.132003i −0.473012 + 0.00684401i
\(373\) 2.70030i 0.139816i −0.997553 0.0699082i \(-0.977729\pi\)
0.997553 0.0699082i \(-0.0222706\pi\)
\(374\) 16.1182 7.07937i 0.833454 0.366065i
\(375\) 1.96676 1.86022i 0.101563 0.0960616i
\(376\) 10.1757 29.7809i 0.524774 1.53583i
\(377\) 21.3588i 1.10003i
\(378\) 10.2383 20.9247i 0.526600 1.07625i
\(379\) −21.6100 −1.11003 −0.555015 0.831840i \(-0.687288\pi\)
−0.555015 + 0.831840i \(0.687288\pi\)
\(380\) 1.11249 1.21083i 0.0570696 0.0621140i
\(381\) 24.5553 + 25.9616i 1.25800 + 1.33005i
\(382\) 14.4538 6.34833i 0.739521 0.324809i
\(383\) 15.1956 0.776457 0.388229 0.921563i \(-0.373087\pi\)
0.388229 + 0.921563i \(0.373087\pi\)
\(384\) 17.0743 9.61612i 0.871317 0.490721i
\(385\) 1.68264 0.0857554
\(386\) 24.2213 10.6384i 1.23283 0.541479i
\(387\) −1.52627 + 27.3912i −0.0775844 + 1.39237i
\(388\) 12.5668 13.6775i 0.637980 0.694372i
\(389\) −29.0818 −1.47450 −0.737252 0.675617i \(-0.763877\pi\)
−0.737252 + 0.675617i \(0.763877\pi\)
\(390\) 1.10780 + 0.467560i 0.0560954 + 0.0236758i
\(391\) 3.67452i 0.185828i
\(392\) −2.78870 + 8.16158i −0.140851 + 0.412222i
\(393\) 8.50059 + 8.98744i 0.428798 + 0.453356i
\(394\) −25.2468 + 11.0888i −1.27192 + 0.558644i
\(395\) 1.96515i 0.0988776i
\(396\) 14.5636 14.1795i 0.731849 0.712545i
\(397\) 6.31520i 0.316951i 0.987363 + 0.158476i \(0.0506579\pi\)
−0.987363 + 0.158476i \(0.949342\pi\)
\(398\) −10.8051 24.6010i −0.541612 1.23314i
\(399\) 19.7979 + 20.9318i 0.991135 + 1.04790i
\(400\) 1.68168 + 19.8306i 0.0840838 + 0.991531i
\(401\) 23.9318i 1.19510i 0.801833 + 0.597548i \(0.203858\pi\)
−0.801833 + 0.597548i \(0.796142\pi\)
\(402\) 5.92666 14.0421i 0.295595 0.700356i
\(403\) 8.25208 0.411066
\(404\) 5.59586 6.09048i 0.278404 0.303013i
\(405\) −1.40140 0.156662i −0.0696362 0.00778459i
\(406\) −12.2905 27.9828i −0.609966 1.38876i
\(407\) 12.4970 0.619455
\(408\) 16.3753 7.47670i 0.810696 0.370152i
\(409\) 12.5587 0.620988 0.310494 0.950575i \(-0.399506\pi\)
0.310494 + 0.950575i \(0.399506\pi\)
\(410\) 0.286351 + 0.651960i 0.0141419 + 0.0321980i
\(411\) −5.74424 6.07323i −0.283343 0.299570i
\(412\) 13.3025 + 12.2222i 0.655369 + 0.602145i
\(413\) 31.3899 1.54460
\(414\) −1.48737 3.97338i −0.0731000 0.195281i
\(415\) 1.32748i 0.0651635i
\(416\) −15.5667 + 8.47277i −0.763218 + 0.415412i
\(417\) −27.5589 + 26.0660i −1.34957 + 1.27646i
\(418\) 10.1095 + 23.0172i 0.494471 + 1.12581i
\(419\) 2.96910i 0.145050i −0.997367 0.0725249i \(-0.976894\pi\)
0.997367 0.0725249i \(-0.0231057\pi\)
\(420\) 1.72041 0.0248926i 0.0839473 0.00121463i
\(421\) 20.4350i 0.995942i −0.867194 0.497971i \(-0.834079\pi\)
0.867194 0.497971i \(-0.165921\pi\)
\(422\) −26.3728 + 11.5833i −1.28381 + 0.563868i
\(423\) 1.85712 33.3288i 0.0902960 1.62050i
\(424\) 1.13705 3.32777i 0.0552202 0.161611i
\(425\) 18.2824i 0.886826i
\(426\) 11.3968 27.0025i 0.552176 1.30828i
\(427\) −1.89808 −0.0918547
\(428\) 20.4435 + 18.7833i 0.988175 + 0.907923i
\(429\) −13.3559 + 12.6324i −0.644829 + 0.609899i
\(430\) −1.85520 + 0.814831i −0.0894657 + 0.0392947i
\(431\) −11.2843 −0.543545 −0.271773 0.962361i \(-0.587610\pi\)
−0.271773 + 0.962361i \(0.587610\pi\)
\(432\) 14.6807 14.7132i 0.706326 0.707887i
\(433\) −1.53424 −0.0737311 −0.0368655 0.999320i \(-0.511737\pi\)
−0.0368655 + 0.999320i \(0.511737\pi\)
\(434\) 10.8113 4.74849i 0.518960 0.227935i
\(435\) −1.34410 + 1.27129i −0.0644446 + 0.0609536i
\(436\) 22.7451 + 20.8979i 1.08929 + 1.00083i
\(437\) 5.24729 0.251012
\(438\) 8.31549 19.7020i 0.397330 0.941397i
\(439\) 11.5991i 0.553597i −0.960928 0.276798i \(-0.910727\pi\)
0.960928 0.276798i \(-0.0892734\pi\)
\(440\) 1.42066 + 0.485420i 0.0677273 + 0.0231415i
\(441\) −0.508950 + 9.13388i −0.0242357 + 0.434947i
\(442\) −14.9065 + 6.54717i −0.709031 + 0.311417i
\(443\) 19.7938i 0.940430i 0.882552 + 0.470215i \(0.155824\pi\)
−0.882552 + 0.470215i \(0.844176\pi\)
\(444\) 12.7775 0.184878i 0.606394 0.00877391i
\(445\) 0.661608i 0.0313632i
\(446\) −10.5860 24.1021i −0.501262 1.14127i
\(447\) 3.79186 3.58646i 0.179349 0.169634i
\(448\) −15.5189 + 20.0580i −0.733199 + 0.947650i
\(449\) 12.3624i 0.583419i −0.956507 0.291709i \(-0.905776\pi\)
0.956507 0.291709i \(-0.0942240\pi\)
\(450\) 7.40031 + 19.7694i 0.348854 + 0.931936i
\(451\) −10.8868 −0.512638
\(452\) −1.00520 0.923569i −0.0472808 0.0434410i
\(453\) 14.9793 + 15.8372i 0.703789 + 0.744096i
\(454\) 11.6643 + 26.5572i 0.547434 + 1.24639i
\(455\) −1.55615 −0.0729534
\(456\) 10.6769 + 23.3842i 0.499991 + 1.09507i
\(457\) 10.8345 0.506816 0.253408 0.967359i \(-0.418448\pi\)
0.253408 + 0.967359i \(0.418448\pi\)
\(458\) −11.8700 27.0254i −0.554647 1.26282i
\(459\) 14.5800 12.3280i 0.680535 0.575424i
\(460\) 0.212013 0.230753i 0.00988514 0.0107589i
\(461\) −34.2633 −1.59580 −0.797901 0.602788i \(-0.794056\pi\)
−0.797901 + 0.602788i \(0.794056\pi\)
\(462\) −10.2289 + 24.2355i −0.475893 + 1.12754i
\(463\) 26.9297i 1.25153i 0.780012 + 0.625764i \(0.215213\pi\)
−0.780012 + 0.625764i \(0.784787\pi\)
\(464\) −2.30420 27.1716i −0.106970 1.26141i
\(465\) −0.491169 0.519300i −0.0227774 0.0240820i
\(466\) 0.357774 + 0.814575i 0.0165735 + 0.0377345i
\(467\) 33.3521i 1.54335i −0.636017 0.771675i \(-0.719419\pi\)
0.636017 0.771675i \(-0.280581\pi\)
\(468\) −13.4688 + 13.1135i −0.622595 + 0.606173i
\(469\) 19.7253i 0.910829i
\(470\) 2.25735 0.991463i 0.104124 0.0457328i
\(471\) −10.3484 10.9411i −0.476829 0.504138i
\(472\) 26.5026 + 9.05558i 1.21988 + 0.416817i
\(473\) 30.9791i 1.42442i
\(474\) −28.3046 11.9463i −1.30007 0.548713i
\(475\) −26.1076 −1.19790
\(476\) −15.7621 + 17.1553i −0.722454 + 0.786313i
\(477\) 0.207517 3.72421i 0.00950156 0.170520i
\(478\) −18.9161 + 8.30825i −0.865204 + 0.380011i
\(479\) 12.6737 0.579074 0.289537 0.957167i \(-0.406499\pi\)
0.289537 + 0.957167i \(0.406499\pi\)
\(480\) 1.45973 + 0.475298i 0.0666270 + 0.0216943i
\(481\) −11.5576 −0.526979
\(482\) −23.9336 + 10.5120i −1.09014 + 0.478808i
\(483\) 3.77298 + 3.98907i 0.171677 + 0.181509i
\(484\) −0.644857 + 0.701856i −0.0293117 + 0.0319026i
\(485\) 1.45511 0.0660731
\(486\) 10.7757 19.2324i 0.488795 0.872399i
\(487\) 22.4756i 1.01847i −0.860628 0.509234i \(-0.829929\pi\)
0.860628 0.509234i \(-0.170071\pi\)
\(488\) −1.60256 0.547572i −0.0725444 0.0247874i
\(489\) −16.8118 + 15.9012i −0.760258 + 0.719075i
\(490\) −0.618636 + 0.271714i −0.0279471 + 0.0122748i
\(491\) 3.49545i 0.157747i 0.996885 + 0.0788736i \(0.0251324\pi\)
−0.996885 + 0.0788736i \(0.974868\pi\)
\(492\) −11.1311 + 0.161056i −0.501829 + 0.00726096i
\(493\) 25.0502i 1.12821i
\(494\) −9.34949 21.2868i −0.420654 0.957740i
\(495\) 1.58990 + 0.0885912i 0.0714609 + 0.00398188i
\(496\) 10.4979 0.890242i 0.471370 0.0399731i
\(497\) 37.9311i 1.70144i
\(498\) −19.1200 8.06987i −0.856789 0.361620i
\(499\) 20.7414 0.928512 0.464256 0.885701i \(-0.346322\pi\)
0.464256 + 0.885701i \(0.346322\pi\)
\(500\) −2.11492 + 2.30186i −0.0945821 + 0.102942i
\(501\) −15.0528 + 14.2374i −0.672511 + 0.636081i
\(502\) 9.76678 + 22.2369i 0.435913 + 0.992481i
\(503\) −13.1051 −0.584329 −0.292165 0.956368i \(-0.594375\pi\)
−0.292165 + 0.956368i \(0.594375\pi\)
\(504\) −10.1000 + 24.9308i −0.449889 + 1.11051i
\(505\) 0.647947 0.0288332
\(506\) 1.92661 + 4.38649i 0.0856483 + 0.195003i
\(507\) −4.00672 + 3.78968i −0.177945 + 0.168306i
\(508\) −30.3849 27.9173i −1.34811 1.23863i
\(509\) −21.8298 −0.967590 −0.483795 0.875181i \(-0.660742\pi\)
−0.483795 + 0.875181i \(0.660742\pi\)
\(510\) 1.29926 + 0.548369i 0.0575321 + 0.0242822i
\(511\) 27.6759i 1.22431i
\(512\) −18.8891 + 12.4580i −0.834788 + 0.550571i
\(513\) 17.6047 + 20.8205i 0.777266 + 0.919247i
\(514\) 3.41123 + 7.76665i 0.150463 + 0.342572i
\(515\) 1.41521i 0.0623618i
\(516\) −0.458296 31.6743i −0.0201754 1.39438i
\(517\) 37.6944i 1.65780i
\(518\) −15.1419 + 6.65056i −0.665298 + 0.292209i
\(519\) −2.06383 + 1.95203i −0.0905920 + 0.0856846i
\(520\) −1.31386 0.448928i −0.0576166 0.0196868i
\(521\) 14.9878i 0.656629i 0.944568 + 0.328315i \(0.106481\pi\)
−0.944568 + 0.328315i \(0.893519\pi\)
\(522\) −10.1398 27.0877i −0.443807 1.18559i
\(523\) −8.55595 −0.374126 −0.187063 0.982348i \(-0.559897\pi\)
−0.187063 + 0.982348i \(0.559897\pi\)
\(524\) −10.5187 9.66447i −0.459513 0.422194i
\(525\) −18.7723 19.8474i −0.819289 0.866212i
\(526\) −33.6124 + 14.7631i −1.46557 + 0.643701i
\(527\) 9.67830 0.421593
\(528\) −15.6279 + 17.5112i −0.680119 + 0.762077i
\(529\) 1.00000 0.0434783
\(530\) 0.252240 0.110788i 0.0109566 0.00481231i
\(531\) 29.6599 + 1.65268i 1.28713 + 0.0717203i
\(532\) −24.4981 22.5086i −1.06213 0.975871i
\(533\) 10.0683 0.436108
\(534\) 9.52931 + 4.02198i 0.412374 + 0.174048i
\(535\) 2.17492i 0.0940300i
\(536\) −5.69048 + 16.6541i −0.245792 + 0.719348i
\(537\) 1.83565 + 1.94078i 0.0792140 + 0.0837508i
\(538\) 13.6125 5.97880i 0.586876 0.257765i
\(539\) 10.3303i 0.444958i
\(540\) 1.62690 + 0.0670589i 0.0700106 + 0.00288576i
\(541\) 1.58937i 0.0683323i −0.999416 0.0341661i \(-0.989122\pi\)
0.999416 0.0341661i \(-0.0108775\pi\)
\(542\) 2.95951 + 6.73819i 0.127122 + 0.289430i
\(543\) −5.90819 6.24657i −0.253545 0.268066i
\(544\) −18.2571 + 9.93713i −0.782765 + 0.426051i
\(545\) 2.41978i 0.103652i
\(546\) 9.45997 22.4136i 0.404849 0.959213i
\(547\) 13.1282 0.561320 0.280660 0.959807i \(-0.409447\pi\)
0.280660 + 0.959807i \(0.409447\pi\)
\(548\) 7.10799 + 6.53073i 0.303638 + 0.278979i
\(549\) −1.79347 0.0999342i −0.0765435 0.00426509i
\(550\) −9.58576 21.8248i −0.408738 0.930611i
\(551\) 35.7722 1.52395
\(552\) 2.03474 + 4.45644i 0.0866045 + 0.189678i
\(553\) 39.7602 1.69077
\(554\) −1.69125 3.85062i −0.0718543 0.163597i
\(555\) 0.687913 + 0.727312i 0.0292003 + 0.0308727i
\(556\) 29.6349 32.2544i 1.25680 1.36789i
\(557\) −29.5816 −1.25341 −0.626706 0.779255i \(-0.715597\pi\)
−0.626706 + 0.779255i \(0.715597\pi\)
\(558\) 10.4655 3.91757i 0.443039 0.165844i
\(559\) 28.6502i 1.21177i
\(560\) −1.97966 + 0.167879i −0.0836558 + 0.00709417i
\(561\) −15.6642 + 14.8157i −0.661344 + 0.625519i
\(562\) 14.7599 + 33.6052i 0.622609 + 1.41755i
\(563\) 30.9529i 1.30451i 0.758001 + 0.652254i \(0.226176\pi\)
−0.758001 + 0.652254i \(0.773824\pi\)
\(564\) 0.557641 + 38.5404i 0.0234809 + 1.62284i
\(565\) 0.106940i 0.00449902i
\(566\) −24.5514 + 10.7834i −1.03197 + 0.453258i
\(567\) −3.16968 + 28.3540i −0.133114 + 1.19076i
\(568\) −10.9426 + 32.0253i −0.459142 + 1.34375i
\(569\) 6.91099i 0.289724i 0.989452 + 0.144862i \(0.0462738\pi\)
−0.989452 + 0.144862i \(0.953726\pi\)
\(570\) −0.783083 + 1.85537i −0.0327997 + 0.0777127i
\(571\) −41.1665 −1.72277 −0.861383 0.507956i \(-0.830401\pi\)
−0.861383 + 0.507956i \(0.830401\pi\)
\(572\) 14.3620 15.6315i 0.600506 0.653586i
\(573\) −14.0467 + 13.2858i −0.586808 + 0.555021i
\(574\) 13.1909 5.79362i 0.550576 0.241821i
\(575\) −4.97545 −0.207491
\(576\) −15.7196 + 18.1354i −0.654985 + 0.755642i
\(577\) −14.3761 −0.598487 −0.299243 0.954177i \(-0.596734\pi\)
−0.299243 + 0.954177i \(0.596734\pi\)
\(578\) 4.52919 1.98929i 0.188389 0.0827435i
\(579\) −23.5391 + 22.2640i −0.978251 + 0.925259i
\(580\) 1.44535 1.57311i 0.0600149 0.0653197i
\(581\) 26.8584 1.11427
\(582\) −8.84574 + 20.9583i −0.366668 + 0.868750i
\(583\) 4.21204i 0.174445i
\(584\) −7.98412 + 23.3668i −0.330385 + 0.966926i
\(585\) −1.47038 0.0819313i −0.0607928 0.00338744i
\(586\) 32.1401 14.1164i 1.32770 0.583144i
\(587\) 39.1480i 1.61581i −0.589312 0.807906i \(-0.700601\pi\)
0.589312 0.807906i \(-0.299399\pi\)
\(588\) −0.152824 10.5621i −0.00630234 0.435576i
\(589\) 13.8208i 0.569476i
\(590\) 0.882322 + 2.00886i 0.0363246 + 0.0827035i
\(591\) 24.5357 23.2066i 1.00926 0.954590i
\(592\) −14.7030 + 1.24684i −0.604288 + 0.0512448i
\(593\) 5.67397i 0.233002i 0.993191 + 0.116501i \(0.0371678\pi\)
−0.993191 + 0.116501i \(0.962832\pi\)
\(594\) −10.9412 + 22.3612i −0.448922 + 0.917493i
\(595\) −1.82510 −0.0748218
\(596\) −4.07751 + 4.43792i −0.167021 + 0.181784i
\(597\) 22.6129 + 23.9080i 0.925486 + 0.978490i
\(598\) −1.78178 4.05673i −0.0728623 0.165892i
\(599\) −14.8700 −0.607570 −0.303785 0.952741i \(-0.598250\pi\)
−0.303785 + 0.952741i \(0.598250\pi\)
\(600\) −10.1238 22.1728i −0.413301 0.905200i
\(601\) 7.39318 0.301574 0.150787 0.988566i \(-0.451819\pi\)
0.150787 + 0.988566i \(0.451819\pi\)
\(602\) 16.4862 + 37.5355i 0.671926 + 1.52983i
\(603\) −1.03854 + 18.6381i −0.0422925 + 0.759004i
\(604\) −18.5355 17.0302i −0.754200 0.692950i
\(605\) −0.0746682 −0.00303570
\(606\) −3.93892 + 9.33254i −0.160008 + 0.379108i
\(607\) 15.8401i 0.642929i −0.946922 0.321465i \(-0.895825\pi\)
0.946922 0.321465i \(-0.104175\pi\)
\(608\) −14.1904 26.0715i −0.575498 1.05734i
\(609\) 25.7215 + 27.1946i 1.04229 + 1.10198i
\(610\) −0.0533522 0.121472i −0.00216017 0.00491824i
\(611\) 34.8607i 1.41031i
\(612\) −15.7966 + 15.3799i −0.638540 + 0.621697i
\(613\) 38.9904i 1.57481i −0.616438 0.787403i \(-0.711425\pi\)
0.616438 0.787403i \(-0.288575\pi\)
\(614\) −26.1326 + 11.4778i −1.05462 + 0.463207i
\(615\) −0.599274 0.633596i −0.0241651 0.0255491i
\(616\) 9.82132 28.7437i 0.395712 1.15811i
\(617\) 20.5392i 0.826877i 0.910532 + 0.413439i \(0.135672\pi\)
−0.910532 + 0.413439i \(0.864328\pi\)
\(618\) −20.3837 8.60321i −0.819952 0.346072i
\(619\) −9.41085 −0.378254 −0.189127 0.981953i \(-0.560566\pi\)
−0.189127 + 0.981953i \(0.560566\pi\)
\(620\) 0.607778 + 0.558419i 0.0244090 + 0.0224266i
\(621\) 3.35501 + 3.96786i 0.134632 + 0.159225i
\(622\) 34.9054 15.3310i 1.39958 0.614715i
\(623\) −13.3861 −0.536301
\(624\) 14.4531 16.1948i 0.578587 0.648310i
\(625\) 24.6324 0.985295
\(626\) 35.6781 15.6703i 1.42598 0.626313i
\(627\) −21.1571 22.3688i −0.844933 0.893325i
\(628\) 12.8052 + 11.7653i 0.510983 + 0.469485i
\(629\) −13.5551 −0.540475
\(630\) −1.97354 + 0.738761i −0.0786278 + 0.0294329i
\(631\) 19.9401i 0.793803i −0.917861 0.396901i \(-0.870085\pi\)
0.917861 0.396901i \(-0.129915\pi\)
\(632\) 33.5696 + 11.4703i 1.33533 + 0.456263i
\(633\) 25.6300 24.2416i 1.01870 0.963517i
\(634\) 14.0559 6.17358i 0.558233 0.245184i
\(635\) 3.23256i 0.128280i
\(636\) 0.0623117 + 4.30657i 0.00247082 + 0.170767i
\(637\) 9.55371i 0.378532i
\(638\) 13.1343 + 29.9039i 0.519990 + 1.18391i
\(639\) −1.99708 + 35.8406i −0.0790031 + 1.41783i
\(640\) −1.71986 0.429365i −0.0679835 0.0169721i
\(641\) 13.5184i 0.533944i 0.963704 + 0.266972i \(0.0860231\pi\)
−0.963704 + 0.266972i \(0.913977\pi\)
\(642\) −31.3259 13.2215i −1.23634 0.521812i
\(643\) −29.6496 −1.16927 −0.584634 0.811297i \(-0.698762\pi\)
−0.584634 + 0.811297i \(0.698762\pi\)
\(644\) −4.66873 4.28957i −0.183974 0.169033i
\(645\) 1.80294 1.70528i 0.0709908 0.0671452i
\(646\) −10.9654 24.9659i −0.431427 0.982268i
\(647\) −30.4388 −1.19667 −0.598337 0.801244i \(-0.704172\pi\)
−0.598337 + 0.801244i \(0.704172\pi\)
\(648\) −10.8559 + 23.0250i −0.426461 + 0.904506i
\(649\) −33.5450 −1.31676
\(650\) 8.86514 + 20.1841i 0.347720 + 0.791684i
\(651\) −10.5068 + 9.93764i −0.411794 + 0.389487i
\(652\) 18.0783 19.6763i 0.708001 0.770582i
\(653\) −0.0649892 −0.00254322 −0.00127161 0.999999i \(-0.500405\pi\)
−0.00127161 + 0.999999i \(0.500405\pi\)
\(654\) −34.8527 14.7101i −1.36285 0.575209i
\(655\) 1.11905i 0.0437250i
\(656\) 12.8085 1.08618i 0.500086 0.0424083i
\(657\) −1.45714 + 26.1505i −0.0568483 + 1.02023i
\(658\) −20.0599 45.6721i −0.782015 1.78048i
\(659\) 28.7385i 1.11949i 0.828664 + 0.559746i \(0.189101\pi\)
−0.828664 + 0.559746i \(0.810899\pi\)
\(660\) −1.83852 + 0.0266015i −0.0715643 + 0.00103546i
\(661\) 38.9333i 1.51433i 0.653223 + 0.757166i \(0.273416\pi\)
−0.653223 + 0.757166i \(0.726584\pi\)
\(662\) 7.12220 3.12818i 0.276812 0.121580i
\(663\) 14.4866 13.7019i 0.562615 0.532138i
\(664\) 22.6766 + 7.74829i 0.880023 + 0.300692i
\(665\) 2.60628i 0.101067i
\(666\) −14.6575 + 5.48679i −0.567968 + 0.212609i
\(667\) 6.81728 0.263966
\(668\) 16.1868 17.6175i 0.626285 0.681643i
\(669\) 22.1544 + 23.4232i 0.856537 + 0.905593i
\(670\) −1.26236 + 0.554447i −0.0487692 + 0.0214201i
\(671\) 2.02839 0.0783053
\(672\) 9.61651 29.5341i 0.370965 1.13930i
\(673\) −39.5327 −1.52387 −0.761937 0.647651i \(-0.775751\pi\)
−0.761937 + 0.647651i \(0.775751\pi\)
\(674\) 32.7817 14.3982i 1.26270 0.554599i
\(675\) −16.6927 19.7419i −0.642502 0.759866i
\(676\) 4.30855 4.68939i 0.165714 0.180361i
\(677\) 18.9301 0.727543 0.363772 0.931488i \(-0.381489\pi\)
0.363772 + 0.931488i \(0.381489\pi\)
\(678\) 1.54029 + 0.650100i 0.0591545 + 0.0249670i
\(679\) 29.4407i 1.12983i
\(680\) −1.54094 0.526517i −0.0590922 0.0201910i
\(681\) −24.4111 25.8091i −0.935434 0.989008i
\(682\) −11.5536 + 5.07449i −0.442408 + 0.194312i
\(683\) 7.59568i 0.290641i −0.989385 0.145320i \(-0.953579\pi\)
0.989385 0.145320i \(-0.0464213\pi\)
\(684\) −21.9629 22.5579i −0.839771 0.862521i
\(685\) 0.756196i 0.0288928i
\(686\) −7.12239 16.2162i −0.271934 0.619137i
\(687\) 24.8415 + 26.2642i 0.947761 + 1.00204i
\(688\) 3.09081 + 36.4474i 0.117836 + 1.38954i
\(689\) 3.89539i 0.148403i
\(690\) −0.149236 + 0.353586i −0.00568131 + 0.0134608i
\(691\) −12.9224 −0.491591 −0.245795 0.969322i \(-0.579049\pi\)
−0.245795 + 0.969322i \(0.579049\pi\)
\(692\) 2.21930 2.41546i 0.0843650 0.0918221i
\(693\) 1.79243 32.1679i 0.0680889 1.22196i
\(694\) −1.89198 4.30764i −0.0718185 0.163516i
\(695\) 3.43144 0.130162
\(696\) 13.8714 + 30.3808i 0.525795 + 1.15158i
\(697\) 11.8085 0.447277
\(698\) 11.7526 + 26.7581i 0.444842 + 1.01281i
\(699\) −0.748748 0.791631i −0.0283203 0.0299422i
\(700\) 23.2290 + 21.3425i 0.877974 + 0.806672i
\(701\) 17.9538 0.678107 0.339053 0.940767i \(-0.389893\pi\)
0.339053 + 0.940767i \(0.389893\pi\)
\(702\) 10.1187 20.6802i 0.381904 0.780524i
\(703\) 19.3569i 0.730059i
\(704\) 16.5843 21.4350i 0.625045 0.807863i
\(705\) −2.19377 + 2.07493i −0.0826221 + 0.0781464i
\(706\) −15.9769 36.3760i −0.601298 1.36903i
\(707\) 13.1096i 0.493039i
\(708\) −34.2978 + 0.496255i −1.28899 + 0.0186504i
\(709\) 15.9683i 0.599701i −0.953986 0.299850i \(-0.903063\pi\)
0.953986 0.299850i \(-0.0969367\pi\)
\(710\) −2.42748 + 1.06618i −0.0911016 + 0.0400132i
\(711\) 37.5688 + 2.09337i 1.40894 + 0.0785077i
\(712\) −11.3019 3.86170i −0.423556 0.144723i
\(713\) 2.63390i 0.0986402i
\(714\) 11.0949 26.2874i 0.415218 0.983780i
\(715\) 1.66298 0.0621921
\(716\) −2.27145 2.08698i −0.0848880 0.0779941i
\(717\) 18.3833 17.3875i 0.686538 0.649348i
\(718\) −33.9294 + 14.9023i −1.26623 + 0.556149i
\(719\) −7.62509 −0.284368 −0.142184 0.989840i \(-0.545412\pi\)
−0.142184 + 0.989840i \(0.545412\pi\)
\(720\) −1.87939 + 0.0543971i −0.0700407 + 0.00202726i
\(721\) 28.6335 1.06637
\(722\) 11.0501 4.85335i 0.411241 0.180623i
\(723\) 23.2594 21.9995i 0.865027 0.818169i
\(724\) 7.31086 + 6.71713i 0.271706 + 0.249640i
\(725\) −33.9191 −1.25972
\(726\) 0.453915 1.07547i 0.0168464 0.0399143i
\(727\) 41.4515i 1.53735i 0.639640 + 0.768675i \(0.279084\pi\)
−0.639640 + 0.768675i \(0.720916\pi\)
\(728\) −9.08299 + 26.5828i −0.336638 + 0.985225i
\(729\) −4.48782 + 26.6244i −0.166216 + 0.986089i
\(730\) −1.77117 + 0.777925i −0.0655540 + 0.0287923i
\(731\) 33.6018i 1.24281i
\(732\) 2.07392 0.0300075i 0.0766542 0.00110911i
\(733\) 33.2881i 1.22952i −0.788713 0.614762i \(-0.789252\pi\)
0.788713 0.614762i \(-0.210748\pi\)
\(734\) 10.4987 + 23.9033i 0.387514 + 0.882288i
\(735\) 0.601211 0.568643i 0.0221760 0.0209747i
\(736\) −2.70433 4.96856i −0.0996831 0.183143i
\(737\) 21.0795i 0.776473i
\(738\) 12.7689 4.77981i 0.470029 0.175947i
\(739\) 11.9136 0.438249 0.219124 0.975697i \(-0.429680\pi\)
0.219124 + 0.975697i \(0.429680\pi\)
\(740\) −0.851231 0.782100i −0.0312919 0.0287506i
\(741\) 19.5666 + 20.6872i 0.718797 + 0.759964i
\(742\) −2.24152 5.10348i −0.0822889 0.187355i
\(743\) 1.10266 0.0404526 0.0202263 0.999795i \(-0.493561\pi\)
0.0202263 + 0.999795i \(0.493561\pi\)
\(744\) −11.7378 + 5.35930i −0.430328 + 0.196482i
\(745\) −0.472136 −0.0172977
\(746\) −1.53568 3.49642i −0.0562253 0.128013i
\(747\) 25.3781 + 1.41410i 0.928536 + 0.0517391i
\(748\) 16.8442 18.3331i 0.615886 0.670324i
\(749\) 44.0043 1.60788
\(750\) 1.48869 3.52718i 0.0543594 0.128794i
\(751\) 3.29526i 0.120246i 0.998191 + 0.0601228i \(0.0191492\pi\)
−0.998191 + 0.0601228i \(0.980851\pi\)
\(752\) −3.76080 44.3481i −0.137142 1.61721i
\(753\) −20.4399 21.6105i −0.744871 0.787532i
\(754\) −12.1469 27.6559i −0.442363 1.00717i
\(755\) 1.97194i 0.0717661i
\(756\) 1.35678 32.9164i 0.0493455 1.19716i
\(757\) 2.70669i 0.0983762i 0.998790 + 0.0491881i \(0.0156634\pi\)
−0.998790 + 0.0491881i \(0.984337\pi\)
\(758\) −27.9812 + 12.2897i −1.01632 + 0.446384i
\(759\) −4.03201 4.26293i −0.146353 0.154735i
\(760\) 0.751877 2.20049i 0.0272734 0.0798201i
\(761\) 37.3083i 1.35243i 0.736707 + 0.676213i \(0.236380\pi\)
−0.736707 + 0.676213i \(0.763620\pi\)
\(762\) 46.5593 + 19.6510i 1.68667 + 0.711880i
\(763\) 48.9585 1.77242
\(764\) 15.1048 16.4400i 0.546473 0.594777i
\(765\) −1.72451 0.0960916i −0.0623498 0.00347420i
\(766\) 19.6756 8.64182i 0.710908 0.312242i
\(767\) 31.0232 1.12018
\(768\) 16.6394 22.1614i 0.600424 0.799682i
\(769\) 2.15675 0.0777744 0.0388872 0.999244i \(-0.487619\pi\)
0.0388872 + 0.999244i \(0.487619\pi\)
\(770\) 2.17873 0.956930i 0.0785159 0.0344854i
\(771\) −7.13902 7.54788i −0.257105 0.271830i
\(772\) 25.3123 27.5497i 0.911009 0.991535i
\(773\) −54.7357 −1.96870 −0.984352 0.176211i \(-0.943616\pi\)
−0.984352 + 0.176211i \(0.943616\pi\)
\(774\) 13.6013 + 36.3348i 0.488888 + 1.30603i
\(775\) 13.1048i 0.470739i
\(776\) 8.49324 24.8568i 0.304890 0.892308i
\(777\) 14.7154 13.9183i 0.527912 0.499315i
\(778\) −37.6558 + 16.5390i −1.35003 + 0.592952i
\(779\) 16.8627i 0.604170i
\(780\) 1.70031 0.0246017i 0.0608808 0.000880884i
\(781\) 40.5352i 1.45046i
\(782\) −2.08972 4.75786i −0.0747283 0.170141i
\(783\) 22.8720 + 27.0500i 0.817380 + 0.966689i
\(784\) 1.03066 + 12.1538i 0.0368094 + 0.434063i
\(785\) 1.36230i 0.0486227i
\(786\) 16.1180 + 6.80282i 0.574910 + 0.242649i
\(787\) −22.0076 −0.784485 −0.392243 0.919862i \(-0.628301\pi\)
−0.392243 + 0.919862i \(0.628301\pi\)
\(788\) −26.3839 + 28.7160i −0.939889 + 1.02297i
\(789\) 32.6657 30.8962i 1.16293 1.09993i
\(790\) 1.11760 + 2.54453i 0.0397623 + 0.0905303i
\(791\) −2.16368 −0.0769317
\(792\) 10.7934 26.6424i 0.383526 0.946695i
\(793\) −1.87591 −0.0666155
\(794\) 3.59150 + 8.17709i 0.127458 + 0.290194i
\(795\) −0.245135 + 0.231856i −0.00869405 + 0.00822310i
\(796\) −27.9815 25.7090i −0.991777 0.911232i
\(797\) 4.08475 0.144689 0.0723447 0.997380i \(-0.476952\pi\)
0.0723447 + 0.997380i \(0.476952\pi\)
\(798\) 37.5389 + 15.8438i 1.32886 + 0.560864i
\(799\) 40.8857i 1.44643i
\(800\) 13.4553 + 24.7208i 0.475716 + 0.874013i
\(801\) −12.6483 0.704777i −0.446905 0.0249021i
\(802\) 13.6102 + 30.9875i 0.480591 + 1.09421i
\(803\) 29.5759i 1.04371i
\(804\) −0.311844 21.5526i −0.0109979 0.760101i
\(805\) 0.496691i 0.0175061i
\(806\) 10.6850 4.69301i 0.376363 0.165304i
\(807\) −13.2290 + 12.5124i −0.465684 + 0.440458i
\(808\) 3.78196 11.0685i 0.133049 0.389389i
\(809\) 14.2082i 0.499534i −0.968306 0.249767i \(-0.919646\pi\)
0.968306 0.249767i \(-0.0803541\pi\)
\(810\) −1.90367 + 0.594137i −0.0668880 + 0.0208759i
\(811\) −15.6928 −0.551047 −0.275524 0.961294i \(-0.588851\pi\)
−0.275524 + 0.961294i \(0.588851\pi\)
\(812\) −31.8280 29.2432i −1.11694 1.02623i
\(813\) −6.19366 6.54839i −0.217221 0.229662i
\(814\) 16.1815 7.10714i 0.567160 0.249105i
\(815\) 2.09329 0.0733249
\(816\) 16.9510 18.9937i 0.593405 0.664914i
\(817\) −47.9841 −1.67875
\(818\) 16.2613 7.14222i 0.568564 0.249722i
\(819\) −1.65768 + 29.7497i −0.0579242 + 1.03954i
\(820\) 0.741548 + 0.681325i 0.0258960 + 0.0237929i
\(821\) −28.3906 −0.990838 −0.495419 0.868654i \(-0.664986\pi\)
−0.495419 + 0.868654i \(0.664986\pi\)
\(822\) −10.8917 4.59698i −0.379891 0.160338i
\(823\) 15.0615i 0.525012i −0.964930 0.262506i \(-0.915451\pi\)
0.964930 0.262506i \(-0.0845489\pi\)
\(824\) 24.1753 + 8.26038i 0.842187 + 0.287764i
\(825\) 20.0611 + 21.2100i 0.698437 + 0.738438i
\(826\) 40.6445 17.8517i 1.41420 0.621139i
\(827\) 39.7845i 1.38344i −0.722164 0.691721i \(-0.756853\pi\)
0.722164 0.691721i \(-0.243147\pi\)
\(828\) −4.18557 4.29896i −0.145458 0.149399i
\(829\) 2.50800i 0.0871064i 0.999051 + 0.0435532i \(0.0138678\pi\)
−0.999051 + 0.0435532i \(0.986132\pi\)
\(830\) 0.754947 + 1.71886i 0.0262046 + 0.0596624i
\(831\) 3.53944 + 3.74215i 0.122782 + 0.129814i
\(832\) −15.3376 + 19.8236i −0.531735 + 0.687260i
\(833\) 11.2049i 0.388226i
\(834\) −20.8600 + 49.4239i −0.722324 + 1.71141i
\(835\) 1.87427 0.0648619
\(836\) 26.1800 + 24.0539i 0.905455 + 0.831921i
\(837\) −10.4509 + 8.83674i −0.361237 + 0.305443i
\(838\) −1.68855 3.84446i −0.0583298 0.132805i
\(839\) −25.4051 −0.877080 −0.438540 0.898712i \(-0.644504\pi\)
−0.438540 + 0.898712i \(0.644504\pi\)
\(840\) 2.21347 1.01064i 0.0763720 0.0348703i
\(841\) 17.4753 0.602598
\(842\) −11.6215 26.4598i −0.400504 0.911864i
\(843\) −30.8895 32.6586i −1.06389 1.12482i
\(844\) −27.5607 + 29.9968i −0.948678 + 1.03253i
\(845\) 0.498889 0.0171623
\(846\) −16.5496 44.2111i −0.568989 1.52001i
\(847\) 1.51073i 0.0519094i
\(848\) −0.420239 4.95553i −0.0144311 0.170174i
\(849\) 23.8599 22.5674i 0.818868 0.774510i
\(850\) 10.3973 + 23.6725i 0.356625 + 0.811960i
\(851\) 3.68893i 0.126455i
\(852\) −0.599667 41.4450i −0.0205443 1.41988i
\(853\) 45.5424i 1.55934i 0.626190 + 0.779671i \(0.284614\pi\)
−0.626190 + 0.779671i \(0.715386\pi\)
\(854\) −2.45769 + 1.07945i −0.0841003 + 0.0369381i
\(855\) 0.137221 2.46263i 0.00469285 0.0842203i
\(856\) 37.1530 + 12.6947i 1.26986 + 0.433895i
\(857\) 13.1284i 0.448458i 0.974537 + 0.224229i \(0.0719863\pi\)
−0.974537 + 0.224229i \(0.928014\pi\)
\(858\) −10.1094 + 23.9524i −0.345130 + 0.817720i
\(859\) 22.9240 0.782158 0.391079 0.920357i \(-0.372102\pi\)
0.391079 + 0.920357i \(0.372102\pi\)
\(860\) −1.93876 + 2.11013i −0.0661111 + 0.0719548i
\(861\) −12.8193 + 12.1249i −0.436881 + 0.413215i
\(862\) −14.6112 + 6.41745i −0.497659 + 0.218579i
\(863\) 8.96510 0.305176 0.152588 0.988290i \(-0.451239\pi\)
0.152588 + 0.988290i \(0.451239\pi\)
\(864\) 10.6415 27.4000i 0.362030 0.932166i
\(865\) 0.256973 0.00873736
\(866\) −1.98658 + 0.872535i −0.0675067 + 0.0296500i
\(867\) −4.40161 + 4.16318i −0.149487 + 0.141389i
\(868\) 11.2983 12.2969i 0.383488 0.417385i
\(869\) −42.4898 −1.44137
\(870\) −1.01738 + 2.41049i −0.0344925 + 0.0817234i
\(871\) 19.4948i 0.660557i
\(872\) 41.3358 + 14.1239i 1.39981 + 0.478295i
\(873\) 1.55005 27.8181i 0.0524613 0.941498i
\(874\) 6.79432 2.98417i 0.229821 0.100941i
\(875\) 4.95471i 0.167500i
\(876\) −0.437538 30.2397i −0.0147831 1.02171i
\(877\) 5.11155i 0.172605i −0.996269 0.0863024i \(-0.972495\pi\)
0.996269 0.0863024i \(-0.0275051\pi\)
\(878\) −6.59651 15.0189i −0.222621 0.506862i
\(879\) −31.2348 + 29.5428i −1.05352 + 0.996454i
\(880\) 2.11557 0.179404i 0.0713158 0.00604772i
\(881\) 25.9825i 0.875372i −0.899128 0.437686i \(-0.855798\pi\)
0.899128 0.437686i \(-0.144202\pi\)
\(882\) 4.53550 + 12.1162i 0.152718 + 0.407974i
\(883\) 17.0676 0.574372 0.287186 0.957875i \(-0.407280\pi\)
0.287186 + 0.957875i \(0.407280\pi\)
\(884\) −15.5779 + 16.9549i −0.523943 + 0.570255i
\(885\) −1.84652 1.95228i −0.0620701 0.0656250i
\(886\) 11.2568 + 25.6295i 0.378181 + 0.861039i
\(887\) −55.7714 −1.87262 −0.936311 0.351172i \(-0.885783\pi\)
−0.936311 + 0.351172i \(0.885783\pi\)
\(888\) 16.4395 7.50604i 0.551673 0.251886i
\(889\) −65.4030 −2.19355
\(890\) −0.376261 0.856667i −0.0126123 0.0287156i
\(891\) 3.38729 30.3006i 0.113478 1.01511i
\(892\) −27.4140 25.1877i −0.917890 0.843346i
\(893\) 58.3856 1.95380
\(894\) 2.87016 6.80029i 0.0959924 0.227436i
\(895\) 0.241652i 0.00807754i
\(896\) −8.68716 + 34.7973i −0.290218 + 1.16250i
\(897\) 3.72890 + 3.94246i 0.124504 + 0.131635i
\(898\) −7.03059 16.0072i −0.234614 0.534166i
\(899\) 17.9560i 0.598866i
\(900\) 20.8251 + 21.3893i 0.694169 + 0.712975i
\(901\) 4.56864i 0.152203i
\(902\) −14.0965 + 6.19137i −0.469361 + 0.206150i
\(903\) −34.5022 36.4782i −1.14816 1.21392i
\(904\) −1.82680 0.624194i −0.0607586 0.0207604i
\(905\) 0.777779i 0.0258543i
\(906\) 28.4023 + 11.9876i 0.943603 + 0.398260i
\(907\) 34.1626 1.13435 0.567176 0.823597i \(-0.308036\pi\)
0.567176 + 0.823597i \(0.308036\pi\)
\(908\) 30.2065 + 27.7534i 1.00244 + 0.921028i
\(909\) 0.690224 12.3871i 0.0228933 0.410855i
\(910\) −2.01494 + 0.884992i −0.0667946 + 0.0293372i
\(911\) 47.1143 1.56097 0.780483 0.625176i \(-0.214973\pi\)
0.780483 + 0.625176i \(0.214973\pi\)
\(912\) 27.1234 + 24.2064i 0.898147 + 0.801555i
\(913\) −28.7023 −0.949908
\(914\) 14.0288 6.16165i 0.464031 0.203809i
\(915\) 0.111655 + 0.118050i 0.00369121 + 0.00390261i
\(916\) −30.7391 28.2427i −1.01565 0.933164i
\(917\) −22.6414 −0.747684
\(918\) 11.8675 24.2544i 0.391685 0.800514i
\(919\) 56.2370i 1.85509i −0.373716 0.927543i \(-0.621916\pi\)
0.373716 0.927543i \(-0.378084\pi\)
\(920\) 0.143289 0.419357i 0.00472409 0.0138258i
\(921\) 25.3965 24.0207i 0.836842 0.791511i
\(922\) −44.3650 + 19.4858i −1.46108 + 0.641730i
\(923\) 37.4880i 1.23393i
\(924\) 0.538218 + 37.1980i 0.0177061 + 1.22373i
\(925\) 18.3541i 0.603479i
\(926\) 15.3151 + 34.8692i 0.503285 + 1.14587i
\(927\) 27.0553 + 1.50755i 0.888614 + 0.0495146i
\(928\) −18.4362 33.8721i −0.605198 1.11191i
\(929\) 39.2159i 1.28663i −0.765601 0.643316i \(-0.777558\pi\)
0.765601 0.643316i \(-0.222442\pi\)
\(930\) −0.931308 0.393071i −0.0305388 0.0128893i
\(931\) −16.0008 −0.524405
\(932\) 0.926509 + 0.851265i 0.0303488 + 0.0278841i
\(933\) −33.9222 + 32.0846i −1.11056 + 1.05040i
\(934\) −18.9675 43.1851i −0.620637 1.41306i
\(935\) 1.95040 0.0637849
\(936\) −9.98197 + 24.6395i −0.326271 + 0.805367i
\(937\) −39.9576 −1.30536 −0.652679 0.757635i \(-0.726355\pi\)
−0.652679 + 0.757635i \(0.726355\pi\)
\(938\) 11.2179 + 25.5408i 0.366278 + 0.833937i
\(939\) −34.6731 + 32.7949i −1.13151 + 1.07022i
\(940\) 2.35903 2.56754i 0.0769429 0.0837440i
\(941\) 43.3232 1.41230 0.706148 0.708064i \(-0.250431\pi\)
0.706148 + 0.708064i \(0.250431\pi\)
\(942\) −19.6216 8.28157i −0.639307 0.269828i
\(943\) 3.21361i 0.104649i
\(944\) 39.4662 3.34681i 1.28452 0.108929i
\(945\) 1.97080 1.66640i 0.0641101 0.0542081i
\(946\) −17.6180 40.1125i −0.572810 1.30417i
\(947\) 45.8324i 1.48935i −0.667425 0.744677i \(-0.732604\pi\)
0.667425 0.744677i \(-0.267396\pi\)
\(948\) −43.4434 + 0.628583i −1.41098 + 0.0204154i
\(949\) 27.3525i 0.887901i
\(950\) −33.8048 + 14.8476i −1.09677 + 0.481719i
\(951\) −13.6600 + 12.9201i −0.442956 + 0.418961i
\(952\) −10.6528 + 31.1772i −0.345260 + 1.01046i
\(953\) 38.1665i 1.23633i −0.786047 0.618166i \(-0.787876\pi\)
0.786047 0.618166i \(-0.212124\pi\)
\(954\) −1.84929 4.94022i −0.0598728 0.159945i
\(955\) 1.74899 0.0565961
\(956\) −19.7681 + 21.5155i −0.639348 + 0.695860i
\(957\) −27.4873 29.0616i −0.888540 0.939428i
\(958\) 16.4102 7.20760i 0.530189 0.232867i
\(959\) 15.2998 0.494057
\(960\) 2.16039 0.214728i 0.0697264 0.00693031i
\(961\) 24.0626 0.776213
\(962\) −14.9650 + 6.57286i −0.482491 + 0.211917i
\(963\) 41.5790 + 2.31683i 1.33987 + 0.0746588i
\(964\) −25.0116 + 27.2224i −0.805568 + 0.876773i
\(965\) 2.93092 0.0943497
\(966\) 7.15396 + 3.01943i 0.230175 + 0.0971485i
\(967\) 53.3028i 1.71410i 0.515230 + 0.857052i \(0.327706\pi\)
−0.515230 + 0.857052i \(0.672294\pi\)
\(968\) −0.435826 + 1.27552i −0.0140080 + 0.0409966i
\(969\) 22.9483 + 24.2626i 0.737206 + 0.779428i
\(970\) 1.88411 0.827531i 0.0604952 0.0265704i
\(971\) 27.3322i 0.877133i −0.898699 0.438566i \(-0.855486\pi\)
0.898699 0.438566i \(-0.144514\pi\)
\(972\) 3.01505 31.0308i 0.0967077 0.995313i
\(973\) 69.4270i 2.22573i
\(974\) −12.7821 29.1020i −0.409563 0.932490i
\(975\) −18.5530 19.6155i −0.594170 0.628200i
\(976\) −2.38644 + 0.202375i −0.0763881 + 0.00647786i
\(977\) 37.3455i 1.19479i −0.801948 0.597394i \(-0.796203\pi\)
0.801948 0.597394i \(-0.203797\pi\)
\(978\) −12.7253 + 30.1502i −0.406911 + 0.964098i
\(979\) 14.3051 0.457192
\(980\) −0.646500 + 0.703645i −0.0206517 + 0.0224771i
\(981\) 46.2602 + 2.57767i 1.47697 + 0.0822986i
\(982\) 1.98788 + 4.52599i 0.0634359 + 0.144430i
\(983\) −44.5643 −1.42138 −0.710689 0.703506i \(-0.751617\pi\)
−0.710689 + 0.703506i \(0.751617\pi\)
\(984\) −14.3212 + 6.53887i −0.456544 + 0.208452i
\(985\) −3.05501 −0.0973406
\(986\) −14.2462 32.4357i −0.453692 1.03296i
\(987\) 41.9813 + 44.3856i 1.33628 + 1.41281i
\(988\) −24.2119 22.2456i −0.770284 0.707727i
\(989\) −9.14455 −0.290780
\(990\) 2.10903 0.789479i 0.0670294 0.0250913i
\(991\) 27.2208i 0.864698i −0.901706 0.432349i \(-0.857685\pi\)
0.901706 0.432349i \(-0.142315\pi\)
\(992\) 13.0867 7.12294i 0.415502 0.226153i
\(993\) −6.92158 + 6.54664i −0.219650 + 0.207751i
\(994\) 21.5717 + 49.1142i 0.684212 + 1.55781i
\(995\) 2.97686i 0.0943728i
\(996\) −29.3465 + 0.424614i −0.929879 + 0.0134544i
\(997\) 52.9741i 1.67771i −0.544358 0.838853i \(-0.683227\pi\)
0.544358 0.838853i \(-0.316773\pi\)
\(998\) 26.8565 11.7958i 0.850127 0.373389i
\(999\) 14.6372 12.3764i 0.463100 0.391572i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 552.2.j.d.323.39 yes 42
3.2 odd 2 552.2.j.c.323.4 yes 42
4.3 odd 2 2208.2.j.d.47.31 42
8.3 odd 2 552.2.j.c.323.3 42
8.5 even 2 2208.2.j.c.47.31 42
12.11 even 2 2208.2.j.c.47.32 42
24.5 odd 2 2208.2.j.d.47.32 42
24.11 even 2 inner 552.2.j.d.323.40 yes 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
552.2.j.c.323.3 42 8.3 odd 2
552.2.j.c.323.4 yes 42 3.2 odd 2
552.2.j.d.323.39 yes 42 1.1 even 1 trivial
552.2.j.d.323.40 yes 42 24.11 even 2 inner
2208.2.j.c.47.31 42 8.5 even 2
2208.2.j.c.47.32 42 12.11 even 2
2208.2.j.d.47.31 42 4.3 odd 2
2208.2.j.d.47.32 42 24.5 odd 2