Newspace parameters
Level: | \( N \) | \(=\) | \( 552 = 2^{3} \cdot 3 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 552.j (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.40774219157\) |
Analytic rank: | \(0\) |
Dimension: | \(42\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
323.1 | −1.41381 | − | 0.0336448i | 0.124259 | − | 1.72759i | 1.99774 | + | 0.0951350i | 1.31688 | −0.233803 | + | 2.43831i | 2.00880i | −2.82122 | − | 0.201717i | −2.96912 | − | 0.429336i | −1.86182 | − | 0.0443062i | ||||
323.2 | −1.41381 | + | 0.0336448i | 0.124259 | + | 1.72759i | 1.99774 | − | 0.0951350i | 1.31688 | −0.233803 | − | 2.43831i | − | 2.00880i | −2.82122 | + | 0.201717i | −2.96912 | + | 0.429336i | −1.86182 | + | 0.0443062i | |||
323.3 | −1.40766 | − | 0.136034i | −1.50629 | − | 0.855045i | 1.96299 | + | 0.382978i | −2.98020 | 2.00402 | + | 1.40851i | − | 1.36209i | −2.71112 | − | 0.806135i | 1.53780 | + | 2.57588i | 4.19509 | + | 0.405409i | |||
323.4 | −1.40766 | + | 0.136034i | −1.50629 | + | 0.855045i | 1.96299 | − | 0.382978i | −2.98020 | 2.00402 | − | 1.40851i | 1.36209i | −2.71112 | + | 0.806135i | 1.53780 | − | 2.57588i | 4.19509 | − | 0.405409i | ||||
323.5 | −1.33226 | − | 0.474424i | 0.873799 | − | 1.49549i | 1.54984 | + | 1.26411i | −1.38336 | −1.87362 | + | 1.57783i | − | 5.18286i | −1.46507 | − | 2.41942i | −1.47295 | − | 2.61351i | 1.84300 | + | 0.656301i | |||
323.6 | −1.33226 | + | 0.474424i | 0.873799 | + | 1.49549i | 1.54984 | − | 1.26411i | −1.38336 | −1.87362 | − | 1.57783i | 5.18286i | −1.46507 | + | 2.41942i | −1.47295 | + | 2.61351i | 1.84300 | − | 0.656301i | ||||
323.7 | −1.30785 | − | 0.538067i | −1.71722 | + | 0.226158i | 1.42097 | + | 1.40743i | 3.49837 | 2.36757 | + | 0.628199i | − | 1.83575i | −1.10113 | − | 2.60529i | 2.89771 | − | 0.776727i | −4.57536 | − | 1.88236i | |||
323.8 | −1.30785 | + | 0.538067i | −1.71722 | − | 0.226158i | 1.42097 | − | 1.40743i | 3.49837 | 2.36757 | − | 0.628199i | 1.83575i | −1.10113 | + | 2.60529i | 2.89771 | + | 0.776727i | −4.57536 | + | 1.88236i | ||||
323.9 | −1.07807 | − | 0.915298i | 1.49079 | + | 0.881788i | 0.324458 | + | 1.97351i | 1.83050 | −0.800072 | − | 2.31514i | 4.30356i | 1.45656 | − | 2.42455i | 1.44490 | + | 2.62912i | −1.97340 | − | 1.67545i | ||||
323.10 | −1.07807 | + | 0.915298i | 1.49079 | − | 0.881788i | 0.324458 | − | 1.97351i | 1.83050 | −0.800072 | + | 2.31514i | − | 4.30356i | 1.45656 | + | 2.42455i | 1.44490 | − | 2.62912i | −1.97340 | + | 1.67545i | |||
323.11 | −0.975618 | − | 1.02380i | 1.69183 | + | 0.371101i | −0.0963383 | + | 1.99768i | −1.56730 | −1.27065 | − | 2.09415i | − | 0.668312i | 2.13922 | − | 1.85034i | 2.72457 | + | 1.25568i | 1.52908 | + | 1.60460i | |||
323.12 | −0.975618 | + | 1.02380i | 1.69183 | − | 0.371101i | −0.0963383 | − | 1.99768i | −1.56730 | −1.27065 | + | 2.09415i | 0.668312i | 2.13922 | + | 1.85034i | 2.72457 | − | 1.25568i | 1.52908 | − | 1.60460i | ||||
323.13 | −0.964429 | − | 1.03435i | −0.513686 | + | 1.65412i | −0.139754 | + | 1.99511i | 2.51134 | 2.20635 | − | 1.06396i | − | 2.77384i | 2.19842 | − | 1.77959i | −2.47225 | − | 1.69940i | −2.42201 | − | 2.59760i | |||
323.14 | −0.964429 | + | 1.03435i | −0.513686 | − | 1.65412i | −0.139754 | − | 1.99511i | 2.51134 | 2.20635 | + | 1.06396i | 2.77384i | 2.19842 | + | 1.77959i | −2.47225 | + | 1.69940i | −2.42201 | + | 2.59760i | ||||
323.15 | −0.734855 | − | 1.20830i | −1.73179 | − | 0.0302019i | −0.919975 | + | 1.77585i | −0.871841 | 1.23612 | + | 2.11471i | 3.09231i | 2.82181 | − | 0.193388i | 2.99818 | + | 0.104607i | 0.640677 | + | 1.05344i | ||||
323.16 | −0.734855 | + | 1.20830i | −1.73179 | + | 0.0302019i | −0.919975 | − | 1.77585i | −0.871841 | 1.23612 | − | 2.11471i | − | 3.09231i | 2.82181 | + | 0.193388i | 2.99818 | − | 0.104607i | 0.640677 | − | 1.05344i | |||
323.17 | −0.242573 | − | 1.39325i | 1.04780 | + | 1.37917i | −1.88232 | + | 0.675933i | −2.15601 | 1.66736 | − | 1.79441i | − | 2.22228i | 1.39835 | + | 2.45858i | −0.804216 | + | 2.89020i | 0.522991 | + | 3.00387i | |||
323.18 | −0.242573 | + | 1.39325i | 1.04780 | − | 1.37917i | −1.88232 | − | 0.675933i | −2.15601 | 1.66736 | + | 1.79441i | 2.22228i | 1.39835 | − | 2.45858i | −0.804216 | − | 2.89020i | 0.522991 | − | 3.00387i | ||||
323.19 | −0.218758 | − | 1.39719i | 0.262136 | − | 1.71210i | −1.90429 | + | 0.611292i | −0.130526 | −2.44948 | + | 0.00827965i | 3.77863i | 1.27067 | + | 2.52693i | −2.86257 | − | 0.897607i | 0.0285535 | + | 0.182369i | ||||
323.20 | −0.218758 | + | 1.39719i | 0.262136 | + | 1.71210i | −1.90429 | − | 0.611292i | −0.130526 | −2.44948 | − | 0.00827965i | − | 3.77863i | 1.27067 | − | 2.52693i | −2.86257 | + | 0.897607i | 0.0285535 | − | 0.182369i | |||
See all 42 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
24.f | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 552.2.j.d | yes | 42 |
3.b | odd | 2 | 1 | 552.2.j.c | ✓ | 42 | |
4.b | odd | 2 | 1 | 2208.2.j.d | 42 | ||
8.b | even | 2 | 1 | 2208.2.j.c | 42 | ||
8.d | odd | 2 | 1 | 552.2.j.c | ✓ | 42 | |
12.b | even | 2 | 1 | 2208.2.j.c | 42 | ||
24.f | even | 2 | 1 | inner | 552.2.j.d | yes | 42 |
24.h | odd | 2 | 1 | 2208.2.j.d | 42 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
552.2.j.c | ✓ | 42 | 3.b | odd | 2 | 1 | |
552.2.j.c | ✓ | 42 | 8.d | odd | 2 | 1 | |
552.2.j.d | yes | 42 | 1.a | even | 1 | 1 | trivial |
552.2.j.d | yes | 42 | 24.f | even | 2 | 1 | inner |
2208.2.j.c | 42 | 8.b | even | 2 | 1 | ||
2208.2.j.c | 42 | 12.b | even | 2 | 1 | ||
2208.2.j.d | 42 | 4.b | odd | 2 | 1 | ||
2208.2.j.d | 42 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{21} - 4 T_{5}^{20} - 50 T_{5}^{19} + 192 T_{5}^{18} + 1064 T_{5}^{17} - 3716 T_{5}^{16} + \cdots + 24576 \)
acting on \(S_{2}^{\mathrm{new}}(552, [\chi])\).