Properties

Label 550.4.b.l
Level $550$
Weight $4$
Character orbit 550.b
Analytic conductor $32.451$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,4,Mod(199,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 550.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,32,0,0,-74,0,-22,0,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.4510505032\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 4 \beta q^{3} - 4 q^{4} + 16 q^{6} + 6 \beta q^{7} + 4 \beta q^{8} - 37 q^{9} - 11 q^{11} - 16 \beta q^{12} - 17 \beta q^{13} + 24 q^{14} + 16 q^{16} + 43 \beta q^{17} + 37 \beta q^{18} + \cdots + 407 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 32 q^{6} - 74 q^{9} - 22 q^{11} + 48 q^{14} + 32 q^{16} + 8 q^{19} - 192 q^{21} - 128 q^{24} - 136 q^{26} - 268 q^{29} - 560 q^{31} + 344 q^{34} + 296 q^{36} + 544 q^{39} - 12 q^{41} + 88 q^{44}+ \cdots + 814 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
2.00000i 8.00000i −4.00000 0 16.0000 12.0000i 8.00000i −37.0000 0
199.2 2.00000i 8.00000i −4.00000 0 16.0000 12.0000i 8.00000i −37.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.4.b.l 2
5.b even 2 1 inner 550.4.b.l 2
5.c odd 4 1 110.4.a.h 1
5.c odd 4 1 550.4.a.a 1
15.e even 4 1 990.4.a.b 1
20.e even 4 1 880.4.a.b 1
55.e even 4 1 1210.4.a.h 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.a.h 1 5.c odd 4 1
550.4.a.a 1 5.c odd 4 1
550.4.b.l 2 1.a even 1 1 trivial
550.4.b.l 2 5.b even 2 1 inner
880.4.a.b 1 20.e even 4 1
990.4.a.b 1 15.e even 4 1
1210.4.a.h 1 55.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(550, [\chi])\):

\( T_{3}^{2} + 64 \) Copy content Toggle raw display
\( T_{7}^{2} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{2} + 64 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 144 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1156 \) Copy content Toggle raw display
$17$ \( T^{2} + 7396 \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 21904 \) Copy content Toggle raw display
$29$ \( (T + 134)^{2} \) Copy content Toggle raw display
$31$ \( (T + 280)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 184900 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 18496 \) Copy content Toggle raw display
$47$ \( T^{2} + 784 \) Copy content Toggle raw display
$53$ \( T^{2} + 432964 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 90)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 9216 \) Copy content Toggle raw display
$71$ \( (T - 816)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 184900 \) Copy content Toggle raw display
$79$ \( (T + 1296)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 369664 \) Copy content Toggle raw display
$89$ \( (T + 810)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 498436 \) Copy content Toggle raw display
show more
show less