Properties

Label 1210.4.a.h
Level $1210$
Weight $4$
Character orbit 1210.a
Self dual yes
Analytic conductor $71.392$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1210,4,Mod(1,1210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1210.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1210 = 2 \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,8,4,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.3923111069\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 8 q^{3} + 4 q^{4} + 5 q^{5} - 16 q^{6} + 12 q^{7} - 8 q^{8} + 37 q^{9} - 10 q^{10} + 32 q^{12} + 34 q^{13} - 24 q^{14} + 40 q^{15} + 16 q^{16} + 86 q^{17} - 74 q^{18} + 4 q^{19} + 20 q^{20}+ \cdots + 398 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 8.00000 4.00000 5.00000 −16.0000 12.0000 −8.00000 37.0000 −10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1210.4.a.h 1
11.b odd 2 1 110.4.a.h 1
33.d even 2 1 990.4.a.b 1
44.c even 2 1 880.4.a.b 1
55.d odd 2 1 550.4.a.a 1
55.e even 4 2 550.4.b.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.4.a.h 1 11.b odd 2 1
550.4.a.a 1 55.d odd 2 1
550.4.b.l 2 55.e even 4 2
880.4.a.b 1 44.c even 2 1
990.4.a.b 1 33.d even 2 1
1210.4.a.h 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1210))\):

\( T_{3} - 8 \) Copy content Toggle raw display
\( T_{7} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 8 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 12 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 34 \) Copy content Toggle raw display
$17$ \( T - 86 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T - 148 \) Copy content Toggle raw display
$29$ \( T + 134 \) Copy content Toggle raw display
$31$ \( T + 280 \) Copy content Toggle raw display
$37$ \( T - 430 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 136 \) Copy content Toggle raw display
$47$ \( T + 28 \) Copy content Toggle raw display
$53$ \( T + 658 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 90 \) Copy content Toggle raw display
$67$ \( T - 96 \) Copy content Toggle raw display
$71$ \( T - 816 \) Copy content Toggle raw display
$73$ \( T - 430 \) Copy content Toggle raw display
$79$ \( T + 1296 \) Copy content Toggle raw display
$83$ \( T - 608 \) Copy content Toggle raw display
$89$ \( T - 810 \) Copy content Toggle raw display
$97$ \( T - 706 \) Copy content Toggle raw display
show more
show less