Properties

Label 550.2.ba.g.499.4
Level $550$
Weight $2$
Character 550.499
Analytic conductor $4.392$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(49,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.ba (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,4,0,-2,0,0,48,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 56x^{12} - 141x^{10} + 551x^{8} - 1245x^{6} + 1400x^{4} + 125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 499.4
Root \(1.39494 - 0.453245i\) of defining polynomial
Character \(\chi\) \(=\) 550.499
Dual form 550.2.ba.g.399.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.587785 - 0.809017i) q^{2} +(3.20812 + 1.04238i) q^{3} +(-0.309017 - 0.951057i) q^{4} +(2.72899 - 1.98273i) q^{6} +(0.177866 - 0.0577923i) q^{7} +(-0.951057 - 0.309017i) q^{8} +(6.77845 + 4.92483i) q^{9} +(-0.359735 - 3.29706i) q^{11} -3.37322i q^{12} +(-1.79219 + 2.46673i) q^{13} +(0.0577923 - 0.177866i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-1.73256 - 2.38467i) q^{17} +(7.96855 - 2.58914i) q^{18} +(-1.66209 + 5.11538i) q^{19} +0.630859 q^{21} +(-2.87882 - 1.64693i) q^{22} -0.115585i q^{23} +(-2.72899 - 1.98273i) q^{24} +(0.942208 + 2.89982i) q^{26} +(10.6644 + 14.6782i) q^{27} +(-0.109927 - 0.151302i) q^{28} +(-3.14256 - 9.67180i) q^{29} +(-6.22732 - 4.52442i) q^{31} +1.00000i q^{32} +(2.28272 - 10.9524i) q^{33} -2.94761 q^{34} +(2.58914 - 7.96855i) q^{36} +(6.41625 - 2.08477i) q^{37} +(3.16148 + 4.35140i) q^{38} +(-8.32083 + 6.04544i) q^{39} +(-1.44887 + 4.45917i) q^{41} +(0.370810 - 0.510376i) q^{42} +2.27719i q^{43} +(-3.02452 + 1.36098i) q^{44} +(-0.0935099 - 0.0679389i) q^{46} +(6.04544 + 1.96428i) q^{47} +(-3.20812 + 1.04238i) q^{48} +(-5.63482 + 4.09394i) q^{49} +(-3.07254 - 9.45631i) q^{51} +(2.89982 + 0.942208i) q^{52} +(-4.73399 + 6.51578i) q^{53} +18.1433 q^{54} -0.187020 q^{56} +(-10.6644 + 14.6782i) q^{57} +(-9.67180 - 3.14256i) q^{58} +(0.479439 + 1.47556i) q^{59} +(-0.711544 + 0.516967i) q^{61} +(-7.32066 + 2.37863i) q^{62} +(1.49028 + 0.484220i) q^{63} +(0.809017 + 0.587785i) q^{64} +(-7.51889 - 8.28439i) q^{66} -9.03490i q^{67} +(-1.73256 + 2.38467i) q^{68} +(0.120483 - 0.370810i) q^{69} +(0.533268 - 0.387442i) q^{71} +(-4.92483 - 6.77845i) q^{72} +(2.21796 - 0.720659i) q^{73} +(2.08477 - 6.41625i) q^{74} +5.37863 q^{76} +(-0.254529 - 0.565646i) q^{77} +10.2851i q^{78} +(-7.45799 - 5.41855i) q^{79} +(11.1449 + 34.3003i) q^{81} +(2.75592 + 3.79320i) q^{82} +(1.86814 + 2.57128i) q^{83} +(-0.194946 - 0.599983i) q^{84} +(1.84229 + 1.33850i) q^{86} -34.3041i q^{87} +(-0.676718 + 3.24685i) q^{88} +6.69658 q^{89} +(-0.176211 + 0.542323i) q^{91} +(-0.109927 + 0.0357176i) q^{92} +(-15.2619 - 21.0061i) q^{93} +(5.14256 - 3.73629i) q^{94} +(-1.04238 + 3.20812i) q^{96} +(5.20431 - 7.16312i) q^{97} +6.96502i q^{98} +(13.7990 - 24.1206i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 2 q^{6} + 48 q^{9} + 10 q^{11} + 4 q^{14} - 4 q^{16} - 34 q^{19} - 80 q^{21} + 2 q^{24} + 12 q^{26} - 4 q^{29} - 4 q^{31} - 4 q^{34} + 22 q^{36} - 48 q^{39} + 12 q^{41} - 20 q^{44} - 12 q^{46}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 0.809017i 0.415627 0.572061i
\(3\) 3.20812 + 1.04238i 1.85221 + 0.601820i 0.996424 + 0.0844926i \(0.0269269\pi\)
0.855788 + 0.517327i \(0.173073\pi\)
\(4\) −0.309017 0.951057i −0.154508 0.475528i
\(5\) 0 0
\(6\) 2.72899 1.98273i 1.11411 0.809446i
\(7\) 0.177866 0.0577923i 0.0672272 0.0218434i −0.275210 0.961384i \(-0.588747\pi\)
0.342438 + 0.939541i \(0.388747\pi\)
\(8\) −0.951057 0.309017i −0.336249 0.109254i
\(9\) 6.77845 + 4.92483i 2.25948 + 1.64161i
\(10\) 0 0
\(11\) −0.359735 3.29706i −0.108464 0.994100i
\(12\) 3.37322i 0.973765i
\(13\) −1.79219 + 2.46673i −0.497063 + 0.684148i −0.981671 0.190583i \(-0.938962\pi\)
0.484608 + 0.874731i \(0.338962\pi\)
\(14\) 0.0577923 0.177866i 0.0154456 0.0475368i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −1.73256 2.38467i −0.420208 0.578367i 0.545463 0.838135i \(-0.316354\pi\)
−0.965671 + 0.259768i \(0.916354\pi\)
\(18\) 7.96855 2.58914i 1.87820 0.610266i
\(19\) −1.66209 + 5.11538i −0.381309 + 1.17355i 0.557814 + 0.829966i \(0.311640\pi\)
−0.939123 + 0.343582i \(0.888360\pi\)
\(20\) 0 0
\(21\) 0.630859 0.137665
\(22\) −2.87882 1.64693i −0.613767 0.351127i
\(23\) 0.115585i 0.0241011i −0.999927 0.0120505i \(-0.996164\pi\)
0.999927 0.0120505i \(-0.00383589\pi\)
\(24\) −2.72899 1.98273i −0.557054 0.404723i
\(25\) 0 0
\(26\) 0.942208 + 2.89982i 0.184782 + 0.568701i
\(27\) 10.6644 + 14.6782i 2.05236 + 2.82483i
\(28\) −0.109927 0.151302i −0.0207743 0.0285934i
\(29\) −3.14256 9.67180i −0.583558 1.79601i −0.604984 0.796238i \(-0.706821\pi\)
0.0214257 0.999770i \(-0.493179\pi\)
\(30\) 0 0
\(31\) −6.22732 4.52442i −1.11846 0.812609i −0.134485 0.990916i \(-0.542938\pi\)
−0.983975 + 0.178307i \(0.942938\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.28272 10.9524i 0.397371 1.90656i
\(34\) −2.94761 −0.505511
\(35\) 0 0
\(36\) 2.58914 7.96855i 0.431523 1.32809i
\(37\) 6.41625 2.08477i 1.05482 0.342733i 0.270265 0.962786i \(-0.412889\pi\)
0.784560 + 0.620053i \(0.212889\pi\)
\(38\) 3.16148 + 4.35140i 0.512859 + 0.705890i
\(39\) −8.32083 + 6.04544i −1.33240 + 0.968045i
\(40\) 0 0
\(41\) −1.44887 + 4.45917i −0.226276 + 0.696406i 0.771884 + 0.635764i \(0.219315\pi\)
−0.998160 + 0.0606419i \(0.980685\pi\)
\(42\) 0.370810 0.510376i 0.0572172 0.0787527i
\(43\) 2.27719i 0.347268i 0.984810 + 0.173634i \(0.0555510\pi\)
−0.984810 + 0.173634i \(0.944449\pi\)
\(44\) −3.02452 + 1.36098i −0.455964 + 0.205175i
\(45\) 0 0
\(46\) −0.0935099 0.0679389i −0.0137873 0.0100170i
\(47\) 6.04544 + 1.96428i 0.881818 + 0.286520i 0.714712 0.699419i \(-0.246558\pi\)
0.167106 + 0.985939i \(0.446558\pi\)
\(48\) −3.20812 + 1.04238i −0.463053 + 0.150455i
\(49\) −5.63482 + 4.09394i −0.804975 + 0.584848i
\(50\) 0 0
\(51\) −3.07254 9.45631i −0.430242 1.32415i
\(52\) 2.89982 + 0.942208i 0.402132 + 0.130661i
\(53\) −4.73399 + 6.51578i −0.650264 + 0.895011i −0.999111 0.0421685i \(-0.986573\pi\)
0.348847 + 0.937180i \(0.386573\pi\)
\(54\) 18.1433 2.46899
\(55\) 0 0
\(56\) −0.187020 −0.0249916
\(57\) −10.6644 + 14.6782i −1.41253 + 1.94418i
\(58\) −9.67180 3.14256i −1.26997 0.412638i
\(59\) 0.479439 + 1.47556i 0.0624177 + 0.192102i 0.977403 0.211386i \(-0.0677977\pi\)
−0.914985 + 0.403488i \(0.867798\pi\)
\(60\) 0 0
\(61\) −0.711544 + 0.516967i −0.0911039 + 0.0661908i −0.632405 0.774638i \(-0.717932\pi\)
0.541301 + 0.840829i \(0.317932\pi\)
\(62\) −7.32066 + 2.37863i −0.929725 + 0.302086i
\(63\) 1.49028 + 0.484220i 0.187757 + 0.0610060i
\(64\) 0.809017 + 0.587785i 0.101127 + 0.0734732i
\(65\) 0 0
\(66\) −7.51889 8.28439i −0.925511 1.01974i
\(67\) 9.03490i 1.10379i −0.833914 0.551894i \(-0.813905\pi\)
0.833914 0.551894i \(-0.186095\pi\)
\(68\) −1.73256 + 2.38467i −0.210104 + 0.289183i
\(69\) 0.120483 0.370810i 0.0145045 0.0446402i
\(70\) 0 0
\(71\) 0.533268 0.387442i 0.0632873 0.0459809i −0.555692 0.831388i \(-0.687547\pi\)
0.618979 + 0.785407i \(0.287547\pi\)
\(72\) −4.92483 6.77845i −0.580397 0.798848i
\(73\) 2.21796 0.720659i 0.259592 0.0843467i −0.176329 0.984331i \(-0.556422\pi\)
0.435922 + 0.899985i \(0.356422\pi\)
\(74\) 2.08477 6.41625i 0.242349 0.745874i
\(75\) 0 0
\(76\) 5.37863 0.616971
\(77\) −0.254529 0.565646i −0.0290063 0.0644613i
\(78\) 10.2851i 1.16456i
\(79\) −7.45799 5.41855i −0.839089 0.609634i 0.0830269 0.996547i \(-0.473541\pi\)
−0.922116 + 0.386913i \(0.873541\pi\)
\(80\) 0 0
\(81\) 11.1449 + 34.3003i 1.23832 + 3.81115i
\(82\) 2.75592 + 3.79320i 0.304340 + 0.418889i
\(83\) 1.86814 + 2.57128i 0.205055 + 0.282235i 0.899142 0.437657i \(-0.144192\pi\)
−0.694087 + 0.719891i \(0.744192\pi\)
\(84\) −0.194946 0.599983i −0.0212704 0.0654635i
\(85\) 0 0
\(86\) 1.84229 + 1.33850i 0.198659 + 0.144334i
\(87\) 34.3041i 3.67778i
\(88\) −0.676718 + 3.24685i −0.0721384 + 0.346116i
\(89\) 6.69658 0.709836 0.354918 0.934897i \(-0.384509\pi\)
0.354918 + 0.934897i \(0.384509\pi\)
\(90\) 0 0
\(91\) −0.176211 + 0.542323i −0.0184720 + 0.0568509i
\(92\) −0.109927 + 0.0357176i −0.0114607 + 0.00372382i
\(93\) −15.2619 21.0061i −1.58258 2.17824i
\(94\) 5.14256 3.73629i 0.530414 0.385369i
\(95\) 0 0
\(96\) −1.04238 + 3.20812i −0.106388 + 0.327428i
\(97\) 5.20431 7.16312i 0.528418 0.727305i −0.458471 0.888710i \(-0.651603\pi\)
0.986888 + 0.161405i \(0.0516026\pi\)
\(98\) 6.96502i 0.703574i
\(99\) 13.7990 24.1206i 1.38685 2.42421i
\(100\) 0 0
\(101\) −10.9738 7.97291i −1.09193 0.793334i −0.112206 0.993685i \(-0.535792\pi\)
−0.979724 + 0.200351i \(0.935792\pi\)
\(102\) −9.45631 3.07254i −0.936314 0.304227i
\(103\) −6.77198 + 2.20035i −0.667263 + 0.216807i −0.623011 0.782213i \(-0.714091\pi\)
−0.0442526 + 0.999020i \(0.514091\pi\)
\(104\) 2.46673 1.79219i 0.241883 0.175738i
\(105\) 0 0
\(106\) 2.48881 + 7.65976i 0.241734 + 0.743982i
\(107\) 2.72739 + 0.886182i 0.263666 + 0.0856704i 0.437867 0.899040i \(-0.355734\pi\)
−0.174200 + 0.984710i \(0.555734\pi\)
\(108\) 10.6644 14.6782i 1.02618 1.41241i
\(109\) −11.0316 −1.05663 −0.528316 0.849048i \(-0.677176\pi\)
−0.528316 + 0.849048i \(0.677176\pi\)
\(110\) 0 0
\(111\) 22.7573 2.16002
\(112\) −0.109927 + 0.151302i −0.0103872 + 0.0142967i
\(113\) 7.48507 + 2.43205i 0.704136 + 0.228788i 0.639132 0.769097i \(-0.279294\pi\)
0.0650044 + 0.997885i \(0.479294\pi\)
\(114\) 5.60659 + 17.2553i 0.525105 + 1.61611i
\(115\) 0 0
\(116\) −8.22732 + 5.97750i −0.763888 + 0.554997i
\(117\) −24.2965 + 7.89441i −2.24621 + 0.729838i
\(118\) 1.47556 + 0.479439i 0.135836 + 0.0441359i
\(119\) −0.445980 0.324024i −0.0408829 0.0297032i
\(120\) 0 0
\(121\) −10.7412 + 2.37214i −0.976471 + 0.215649i
\(122\) 0.879517i 0.0796277i
\(123\) −9.29633 + 12.7953i −0.838222 + 1.15371i
\(124\) −2.37863 + 7.32066i −0.213607 + 0.657415i
\(125\) 0 0
\(126\) 1.26770 0.921041i 0.112936 0.0820529i
\(127\) 5.32918 + 7.33498i 0.472888 + 0.650874i 0.977119 0.212695i \(-0.0682239\pi\)
−0.504231 + 0.863569i \(0.668224\pi\)
\(128\) 0.951057 0.309017i 0.0840623 0.0273135i
\(129\) −2.37370 + 7.30551i −0.208993 + 0.643214i
\(130\) 0 0
\(131\) −5.92554 −0.517717 −0.258858 0.965915i \(-0.583346\pi\)
−0.258858 + 0.965915i \(0.583346\pi\)
\(132\) −11.1217 + 1.21347i −0.968020 + 0.105619i
\(133\) 1.00591i 0.0872234i
\(134\) −7.30939 5.31058i −0.631435 0.458764i
\(135\) 0 0
\(136\) 0.910862 + 2.80335i 0.0781058 + 0.240385i
\(137\) 5.94988 + 8.18931i 0.508333 + 0.699660i 0.983637 0.180161i \(-0.0576620\pi\)
−0.475304 + 0.879822i \(0.657662\pi\)
\(138\) −0.229173 0.315430i −0.0195085 0.0268512i
\(139\) 5.29537 + 16.2975i 0.449148 + 1.38233i 0.877870 + 0.478898i \(0.158964\pi\)
−0.428723 + 0.903436i \(0.641036\pi\)
\(140\) 0 0
\(141\) 17.3470 + 12.6033i 1.46088 + 1.06139i
\(142\) 0.659156i 0.0553151i
\(143\) 8.77767 + 5.02157i 0.734026 + 0.419925i
\(144\) −8.37863 −0.698219
\(145\) 0 0
\(146\) 0.720659 2.21796i 0.0596421 0.183560i
\(147\) −22.3447 + 7.26022i −1.84296 + 0.598813i
\(148\) −3.96546 5.45799i −0.325959 0.448644i
\(149\) 18.9571 13.7731i 1.55303 1.12834i 0.611576 0.791185i \(-0.290536\pi\)
0.941450 0.337154i \(-0.109464\pi\)
\(150\) 0 0
\(151\) 3.72821 11.4743i 0.303398 0.933762i −0.676872 0.736100i \(-0.736665\pi\)
0.980270 0.197662i \(-0.0633349\pi\)
\(152\) 3.16148 4.35140i 0.256430 0.352945i
\(153\) 24.6969i 1.99663i
\(154\) −0.607226 0.126560i −0.0489316 0.0101985i
\(155\) 0 0
\(156\) 8.32083 + 6.04544i 0.666200 + 0.484023i
\(157\) 2.87291 + 0.933464i 0.229283 + 0.0744985i 0.421405 0.906872i \(-0.361537\pi\)
−0.192122 + 0.981371i \(0.561537\pi\)
\(158\) −8.76739 + 2.84870i −0.697496 + 0.226630i
\(159\) −21.9792 + 15.9688i −1.74306 + 1.26641i
\(160\) 0 0
\(161\) −0.00667990 0.0205586i −0.000526450 0.00162025i
\(162\) 34.3003 + 11.1449i 2.69489 + 0.875622i
\(163\) −1.26868 + 1.74619i −0.0993709 + 0.136772i −0.855807 0.517295i \(-0.826939\pi\)
0.756436 + 0.654068i \(0.226939\pi\)
\(164\) 4.68865 0.366122
\(165\) 0 0
\(166\) 3.17828 0.246682
\(167\) −3.30686 + 4.55150i −0.255892 + 0.352205i −0.917564 0.397588i \(-0.869847\pi\)
0.661672 + 0.749794i \(0.269847\pi\)
\(168\) −0.599983 0.194946i −0.0462897 0.0150404i
\(169\) 1.14438 + 3.52205i 0.0880296 + 0.270927i
\(170\) 0 0
\(171\) −36.4588 + 26.4888i −2.78807 + 2.02565i
\(172\) 2.16574 0.703690i 0.165136 0.0536559i
\(173\) 14.7962 + 4.80758i 1.12493 + 0.365513i 0.811649 0.584146i \(-0.198570\pi\)
0.313285 + 0.949659i \(0.398570\pi\)
\(174\) −27.7526 20.1634i −2.10392 1.52859i
\(175\) 0 0
\(176\) 2.22899 + 2.45593i 0.168017 + 0.185123i
\(177\) 5.23355i 0.393377i
\(178\) 3.93615 5.41765i 0.295027 0.406070i
\(179\) 5.36885 16.5236i 0.401287 1.23503i −0.522670 0.852535i \(-0.675064\pi\)
0.923956 0.382498i \(-0.124936\pi\)
\(180\) 0 0
\(181\) −11.1957 + 8.13414i −0.832169 + 0.604606i −0.920172 0.391514i \(-0.871951\pi\)
0.0880032 + 0.996120i \(0.471951\pi\)
\(182\) 0.335174 + 0.461328i 0.0248448 + 0.0341959i
\(183\) −2.82160 + 0.916793i −0.208579 + 0.0677713i
\(184\) −0.0357176 + 0.109927i −0.00263314 + 0.00810396i
\(185\) 0 0
\(186\) −25.9650 −1.90385
\(187\) −7.23912 + 6.57021i −0.529377 + 0.480461i
\(188\) 6.35655i 0.463599i
\(189\) 2.74512 + 1.99445i 0.199678 + 0.145075i
\(190\) 0 0
\(191\) −1.22732 3.77731i −0.0888060 0.273317i 0.896784 0.442469i \(-0.145897\pi\)
−0.985590 + 0.169152i \(0.945897\pi\)
\(192\) 1.98273 + 2.72899i 0.143091 + 0.196948i
\(193\) 4.66953 + 6.42705i 0.336120 + 0.462629i 0.943303 0.331933i \(-0.107701\pi\)
−0.607183 + 0.794562i \(0.707701\pi\)
\(194\) −2.73607 8.42075i −0.196438 0.604575i
\(195\) 0 0
\(196\) 5.63482 + 4.09394i 0.402487 + 0.292424i
\(197\) 5.54948i 0.395384i 0.980264 + 0.197692i \(0.0633446\pi\)
−0.980264 + 0.197692i \(0.936655\pi\)
\(198\) −11.4031 25.3414i −0.810383 1.80093i
\(199\) −4.31846 −0.306127 −0.153064 0.988216i \(-0.548914\pi\)
−0.153064 + 0.988216i \(0.548914\pi\)
\(200\) 0 0
\(201\) 9.41783 28.9851i 0.664282 2.04445i
\(202\) −12.9004 + 4.19161i −0.907672 + 0.294920i
\(203\) −1.11791 1.53867i −0.0784620 0.107994i
\(204\) −8.04401 + 5.84432i −0.563194 + 0.409184i
\(205\) 0 0
\(206\) −2.20035 + 6.77198i −0.153306 + 0.471826i
\(207\) 0.569235 0.783484i 0.0395646 0.0544559i
\(208\) 3.04905i 0.211413i
\(209\) 17.4636 + 3.63982i 1.20798 + 0.251771i
\(210\) 0 0
\(211\) −5.90086 4.28722i −0.406232 0.295145i 0.365843 0.930677i \(-0.380781\pi\)
−0.772074 + 0.635532i \(0.780781\pi\)
\(212\) 7.65976 + 2.48881i 0.526074 + 0.170932i
\(213\) 2.11465 0.687093i 0.144894 0.0470788i
\(214\) 2.32005 1.68562i 0.158596 0.115226i
\(215\) 0 0
\(216\) −5.60659 17.2553i −0.381480 1.17407i
\(217\) −1.36911 0.444850i −0.0929411 0.0301984i
\(218\) −6.48419 + 8.92472i −0.439165 + 0.604458i
\(219\) 7.86669 0.531582
\(220\) 0 0
\(221\) 8.98741 0.604559
\(222\) 13.3764 18.4110i 0.897764 1.23567i
\(223\) −15.6840 5.09603i −1.05028 0.341256i −0.267500 0.963558i \(-0.586197\pi\)
−0.782777 + 0.622302i \(0.786197\pi\)
\(224\) 0.0577923 + 0.177866i 0.00386141 + 0.0118842i
\(225\) 0 0
\(226\) 6.36718 4.62603i 0.423539 0.307719i
\(227\) 11.0794 3.59992i 0.735367 0.238935i 0.0826941 0.996575i \(-0.473648\pi\)
0.652673 + 0.757640i \(0.273648\pi\)
\(228\) 17.2553 + 5.60659i 1.14276 + 0.371305i
\(229\) 16.0236 + 11.6419i 1.05887 + 0.769315i 0.973879 0.227066i \(-0.0729135\pi\)
0.0849922 + 0.996382i \(0.472913\pi\)
\(230\) 0 0
\(231\) −0.226942 2.07998i −0.0149317 0.136853i
\(232\) 10.1695i 0.667662i
\(233\) −3.16632 + 4.35807i −0.207433 + 0.285506i −0.900039 0.435809i \(-0.856462\pi\)
0.692607 + 0.721316i \(0.256462\pi\)
\(234\) −7.89441 + 24.2965i −0.516073 + 1.58831i
\(235\) 0 0
\(236\) 1.25519 0.911947i 0.0817058 0.0593627i
\(237\) −18.2780 25.1574i −1.18728 1.63415i
\(238\) −0.524281 + 0.170349i −0.0339841 + 0.0110421i
\(239\) −2.76883 + 8.52159i −0.179101 + 0.551216i −0.999797 0.0201493i \(-0.993586\pi\)
0.820696 + 0.571365i \(0.193586\pi\)
\(240\) 0 0
\(241\) 10.6881 0.688484 0.344242 0.938881i \(-0.388136\pi\)
0.344242 + 0.938881i \(0.388136\pi\)
\(242\) −4.39441 + 10.0841i −0.282483 + 0.648231i
\(243\) 67.2270i 4.31262i
\(244\) 0.711544 + 0.516967i 0.0455519 + 0.0330954i
\(245\) 0 0
\(246\) 4.88737 + 15.0418i 0.311607 + 0.959029i
\(247\) −9.63950 13.2676i −0.613346 0.844199i
\(248\) 4.52442 + 6.22732i 0.287301 + 0.395435i
\(249\) 3.31298 + 10.1963i 0.209952 + 0.646165i
\(250\) 0 0
\(251\) −6.02219 4.37538i −0.380117 0.276171i 0.381276 0.924461i \(-0.375485\pi\)
−0.761394 + 0.648290i \(0.775485\pi\)
\(252\) 1.56697i 0.0987098i
\(253\) −0.381089 + 0.0415798i −0.0239589 + 0.00261410i
\(254\) 9.06654 0.568885
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 9.09895 2.95643i 0.567577 0.184417i −0.0111506 0.999938i \(-0.503549\pi\)
0.578728 + 0.815521i \(0.303549\pi\)
\(258\) 4.51505 + 6.21444i 0.281095 + 0.386894i
\(259\) 1.02075 0.741620i 0.0634264 0.0460820i
\(260\) 0 0
\(261\) 26.3303 81.0364i 1.62981 5.01603i
\(262\) −3.48294 + 4.79386i −0.215177 + 0.296166i
\(263\) 20.8985i 1.28866i −0.764749 0.644328i \(-0.777137\pi\)
0.764749 0.644328i \(-0.222863\pi\)
\(264\) −5.55546 + 9.71091i −0.341915 + 0.597665i
\(265\) 0 0
\(266\) 0.813798 + 0.591259i 0.0498971 + 0.0362524i
\(267\) 21.4835 + 6.98040i 1.31477 + 0.427193i
\(268\) −8.59270 + 2.79194i −0.524883 + 0.170545i
\(269\) 16.6766 12.1162i 1.01679 0.738740i 0.0511662 0.998690i \(-0.483706\pi\)
0.965622 + 0.259950i \(0.0837062\pi\)
\(270\) 0 0
\(271\) 2.53533 + 7.80295i 0.154010 + 0.473996i 0.998059 0.0622709i \(-0.0198343\pi\)
−0.844049 + 0.536266i \(0.819834\pi\)
\(272\) 2.80335 + 0.910862i 0.169978 + 0.0552291i
\(273\) −1.13062 + 1.55616i −0.0684280 + 0.0941831i
\(274\) 10.1225 0.611525
\(275\) 0 0
\(276\) −0.389892 −0.0234688
\(277\) 7.50725 10.3328i 0.451067 0.620840i −0.521559 0.853215i \(-0.674650\pi\)
0.972626 + 0.232375i \(0.0746495\pi\)
\(278\) 16.2975 + 5.29537i 0.977458 + 0.317595i
\(279\) −19.9296 61.3371i −1.19316 3.67215i
\(280\) 0 0
\(281\) 18.0380 13.1054i 1.07606 0.781800i 0.0990644 0.995081i \(-0.468415\pi\)
0.976991 + 0.213281i \(0.0684150\pi\)
\(282\) 20.3926 6.62596i 1.21436 0.394570i
\(283\) 10.6844 + 3.47159i 0.635124 + 0.206364i 0.608844 0.793290i \(-0.291634\pi\)
0.0262805 + 0.999655i \(0.491634\pi\)
\(284\) −0.533268 0.387442i −0.0316436 0.0229905i
\(285\) 0 0
\(286\) 9.22192 4.14968i 0.545304 0.245376i
\(287\) 0.876871i 0.0517600i
\(288\) −4.92483 + 6.77845i −0.290199 + 0.399424i
\(289\) 2.56842 7.90479i 0.151084 0.464987i
\(290\) 0 0
\(291\) 24.1628 17.5553i 1.41645 1.02911i
\(292\) −1.37077 1.88671i −0.0802185 0.110411i
\(293\) 24.3503 7.91189i 1.42256 0.462218i 0.506146 0.862448i \(-0.331070\pi\)
0.916415 + 0.400230i \(0.131070\pi\)
\(294\) −7.26022 + 22.3447i −0.423425 + 1.30317i
\(295\) 0 0
\(296\) −6.74644 −0.392129
\(297\) 44.5587 40.4413i 2.58556 2.34664i
\(298\) 23.4323i 1.35739i
\(299\) 0.285116 + 0.207149i 0.0164887 + 0.0119797i
\(300\) 0 0
\(301\) 0.131604 + 0.405036i 0.00758553 + 0.0233459i
\(302\) −7.09149 9.76059i −0.408069 0.561659i
\(303\) −26.8944 37.0170i −1.54504 2.12657i
\(304\) −1.66209 5.11538i −0.0953272 0.293387i
\(305\) 0 0
\(306\) −19.9802 14.5165i −1.14219 0.829853i
\(307\) 19.3732i 1.10569i −0.833285 0.552844i \(-0.813543\pi\)
0.833285 0.552844i \(-0.186457\pi\)
\(308\) −0.459307 + 0.416866i −0.0261715 + 0.0237531i
\(309\) −24.0190 −1.36639
\(310\) 0 0
\(311\) −5.39323 + 16.5987i −0.305822 + 0.941224i 0.673547 + 0.739144i \(0.264770\pi\)
−0.979369 + 0.202079i \(0.935230\pi\)
\(312\) 9.78173 3.17828i 0.553781 0.179934i
\(313\) 12.6740 + 17.4443i 0.716377 + 0.986009i 0.999636 + 0.0269652i \(0.00858432\pi\)
−0.283259 + 0.959043i \(0.591416\pi\)
\(314\) 2.44384 1.77555i 0.137914 0.100200i
\(315\) 0 0
\(316\) −2.84870 + 8.76739i −0.160252 + 0.493204i
\(317\) −12.0507 + 16.5864i −0.676836 + 0.931585i −0.999891 0.0147955i \(-0.995290\pi\)
0.323054 + 0.946380i \(0.395290\pi\)
\(318\) 27.1678i 1.52349i
\(319\) −30.7580 + 13.8405i −1.72212 + 0.774918i
\(320\) 0 0
\(321\) 7.82606 + 5.68596i 0.436808 + 0.317360i
\(322\) −0.0205586 0.00667990i −0.00114569 0.000372256i
\(323\) 15.0781 4.89919i 0.838971 0.272598i
\(324\) 29.1776 21.1988i 1.62098 1.17771i
\(325\) 0 0
\(326\) 0.666986 + 2.05277i 0.0369409 + 0.113692i
\(327\) −35.3906 11.4991i −1.95711 0.635902i
\(328\) 2.75592 3.79320i 0.152170 0.209444i
\(329\) 1.18880 0.0655407
\(330\) 0 0
\(331\) 8.86611 0.487325 0.243663 0.969860i \(-0.421651\pi\)
0.243663 + 0.969860i \(0.421651\pi\)
\(332\) 1.86814 2.57128i 0.102528 0.141117i
\(333\) 53.7594 + 17.4675i 2.94599 + 0.957212i
\(334\) 1.73852 + 5.35061i 0.0951274 + 0.292772i
\(335\) 0 0
\(336\) −0.510376 + 0.370810i −0.0278433 + 0.0202293i
\(337\) −3.61099 + 1.17328i −0.196703 + 0.0639127i −0.405712 0.914001i \(-0.632976\pi\)
0.209009 + 0.977914i \(0.432976\pi\)
\(338\) 3.52205 + 1.14438i 0.191574 + 0.0622463i
\(339\) 21.4779 + 15.6046i 1.16652 + 0.847526i
\(340\) 0 0
\(341\) −12.6771 + 22.1594i −0.686502 + 1.20000i
\(342\) 45.0655i 2.43686i
\(343\) −1.53514 + 2.11294i −0.0828898 + 0.114088i
\(344\) 0.703690 2.16574i 0.0379404 0.116769i
\(345\) 0 0
\(346\) 12.5864 9.14455i 0.676649 0.491614i
\(347\) 12.0539 + 16.5907i 0.647086 + 0.890637i 0.998969 0.0454069i \(-0.0144584\pi\)
−0.351883 + 0.936044i \(0.614458\pi\)
\(348\) −32.6251 + 10.6005i −1.74889 + 0.568249i
\(349\) −4.37529 + 13.4657i −0.234204 + 0.720805i 0.763022 + 0.646372i \(0.223715\pi\)
−0.997226 + 0.0744327i \(0.976285\pi\)
\(350\) 0 0
\(351\) −55.3198 −2.95275
\(352\) 3.29706 0.359735i 0.175734 0.0191739i
\(353\) 22.1366i 1.17821i −0.808056 0.589105i \(-0.799480\pi\)
0.808056 0.589105i \(-0.200520\pi\)
\(354\) 4.23403 + 3.07620i 0.225036 + 0.163498i
\(355\) 0 0
\(356\) −2.06936 6.36882i −0.109676 0.337547i
\(357\) −1.09300 1.50439i −0.0578479 0.0796208i
\(358\) −10.2122 14.0558i −0.539729 0.742874i
\(359\) 2.55974 + 7.87806i 0.135098 + 0.415788i 0.995605 0.0936498i \(-0.0298534\pi\)
−0.860507 + 0.509438i \(0.829853\pi\)
\(360\) 0 0
\(361\) −8.03323 5.83648i −0.422802 0.307183i
\(362\) 13.8386i 0.727342i
\(363\) −36.9317 3.58632i −1.93841 0.188233i
\(364\) 0.570232 0.0298883
\(365\) 0 0
\(366\) −0.916793 + 2.82160i −0.0479215 + 0.147487i
\(367\) −22.5390 + 7.32336i −1.17652 + 0.382276i −0.831075 0.556161i \(-0.812274\pi\)
−0.345450 + 0.938437i \(0.612274\pi\)
\(368\) 0.0679389 + 0.0935099i 0.00354156 + 0.00487454i
\(369\) −31.7818 + 23.0908i −1.65449 + 1.20206i
\(370\) 0 0
\(371\) −0.465456 + 1.43253i −0.0241653 + 0.0743731i
\(372\) −15.2619 + 21.0061i −0.791290 + 1.08912i
\(373\) 27.6907i 1.43377i −0.697191 0.716885i \(-0.745567\pi\)
0.697191 0.716885i \(-0.254433\pi\)
\(374\) 1.06036 + 9.71845i 0.0548299 + 0.502529i
\(375\) 0 0
\(376\) −5.14256 3.73629i −0.265207 0.192684i
\(377\) 29.4898 + 9.58181i 1.51880 + 0.493488i
\(378\) 3.22708 1.04854i 0.165983 0.0539312i
\(379\) 12.8168 9.31197i 0.658356 0.478324i −0.207751 0.978182i \(-0.566614\pi\)
0.866108 + 0.499858i \(0.166614\pi\)
\(380\) 0 0
\(381\) 9.45080 + 29.0866i 0.484179 + 1.49015i
\(382\) −3.77731 1.22732i −0.193264 0.0627954i
\(383\) −0.793887 + 1.09269i −0.0405657 + 0.0558340i −0.828818 0.559518i \(-0.810986\pi\)
0.788252 + 0.615352i \(0.210986\pi\)
\(384\) 3.37322 0.172139
\(385\) 0 0
\(386\) 7.94427 0.404353
\(387\) −11.2148 + 15.4358i −0.570079 + 0.784647i
\(388\) −8.42075 2.73607i −0.427499 0.138903i
\(389\) 1.45465 + 4.47695i 0.0737536 + 0.226990i 0.981137 0.193314i \(-0.0619235\pi\)
−0.907383 + 0.420304i \(0.861923\pi\)
\(390\) 0 0
\(391\) −0.275631 + 0.200258i −0.0139393 + 0.0101275i
\(392\) 6.62413 2.15231i 0.334569 0.108708i
\(393\) −19.0099 6.17668i −0.958921 0.311572i
\(394\) 4.48962 + 3.26190i 0.226184 + 0.164332i
\(395\) 0 0
\(396\) −27.2042 5.66997i −1.36706 0.284927i
\(397\) 23.2196i 1.16536i 0.812702 + 0.582679i \(0.197995\pi\)
−0.812702 + 0.582679i \(0.802005\pi\)
\(398\) −2.53833 + 3.49371i −0.127235 + 0.175124i
\(399\) −1.04854 + 3.22708i −0.0524928 + 0.161556i
\(400\) 0 0
\(401\) 4.74415 3.44683i 0.236912 0.172126i −0.462995 0.886361i \(-0.653225\pi\)
0.699906 + 0.714235i \(0.253225\pi\)
\(402\) −17.9138 24.6562i −0.893458 1.22974i
\(403\) 22.3210 7.25255i 1.11189 0.361275i
\(404\) −4.19161 + 12.9004i −0.208540 + 0.641821i
\(405\) 0 0
\(406\) −1.90190 −0.0943899
\(407\) −9.18174 20.4048i −0.455122 1.01143i
\(408\) 9.94295i 0.492249i
\(409\) −21.1843 15.3913i −1.04750 0.761051i −0.0757616 0.997126i \(-0.524139\pi\)
−0.971735 + 0.236075i \(0.924139\pi\)
\(410\) 0 0
\(411\) 10.5516 + 32.4744i 0.520471 + 1.60184i
\(412\) 4.18532 + 5.76059i 0.206196 + 0.283804i
\(413\) 0.170552 + 0.234745i 0.00839233 + 0.0115510i
\(414\) −0.299264 0.921041i −0.0147080 0.0452667i
\(415\) 0 0
\(416\) −2.46673 1.79219i −0.120941 0.0878691i
\(417\) 57.8042i 2.83068i
\(418\) 13.2095 11.9889i 0.646099 0.586397i
\(419\) 6.68865 0.326762 0.163381 0.986563i \(-0.447760\pi\)
0.163381 + 0.986563i \(0.447760\pi\)
\(420\) 0 0
\(421\) 7.80964 24.0356i 0.380619 1.17142i −0.558991 0.829174i \(-0.688811\pi\)
0.939609 0.342249i \(-0.111189\pi\)
\(422\) −6.93687 + 2.25393i −0.337682 + 0.109719i
\(423\) 31.3050 + 43.0876i 1.52210 + 2.09499i
\(424\) 6.51578 4.73399i 0.316434 0.229903i
\(425\) 0 0
\(426\) 0.687093 2.11465i 0.0332897 0.102455i
\(427\) −0.0966830 + 0.133073i −0.00467882 + 0.00643984i
\(428\) 2.86774i 0.138618i
\(429\) 22.9255 + 25.2595i 1.10685 + 1.21954i
\(430\) 0 0
\(431\) 25.9322 + 18.8408i 1.24911 + 0.907531i 0.998170 0.0604715i \(-0.0192604\pi\)
0.250940 + 0.968003i \(0.419260\pi\)
\(432\) −17.2553 5.60659i −0.830196 0.269747i
\(433\) −9.90223 + 3.21743i −0.475871 + 0.154620i −0.537125 0.843502i \(-0.680490\pi\)
0.0612546 + 0.998122i \(0.480490\pi\)
\(434\) −1.16463 + 0.846155i −0.0559042 + 0.0406168i
\(435\) 0 0
\(436\) 3.40894 + 10.4916i 0.163259 + 0.502458i
\(437\) 0.591259 + 0.192112i 0.0282837 + 0.00918994i
\(438\) 4.62393 6.36429i 0.220940 0.304097i
\(439\) −31.4256 −1.49986 −0.749931 0.661517i \(-0.769913\pi\)
−0.749931 + 0.661517i \(0.769913\pi\)
\(440\) 0 0
\(441\) −58.3573 −2.77892
\(442\) 5.28267 7.27097i 0.251271 0.345845i
\(443\) −39.1057 12.7062i −1.85797 0.603690i −0.995173 0.0981312i \(-0.968714\pi\)
−0.862792 0.505559i \(-0.831286\pi\)
\(444\) −7.03238 21.6434i −0.333742 1.02715i
\(445\) 0 0
\(446\) −13.3416 + 9.69323i −0.631742 + 0.458988i
\(447\) 75.1736 24.4254i 3.55559 1.15528i
\(448\) 0.177866 + 0.0577923i 0.00840340 + 0.00273043i
\(449\) −9.28984 6.74946i −0.438414 0.318527i 0.346590 0.938017i \(-0.387339\pi\)
−0.785005 + 0.619490i \(0.787339\pi\)
\(450\) 0 0
\(451\) 15.2234 + 3.17290i 0.716840 + 0.149406i
\(452\) 7.87027i 0.370186i
\(453\) 23.9212 32.9246i 1.12391 1.54693i
\(454\) 3.59992 11.0794i 0.168953 0.519983i
\(455\) 0 0
\(456\) 14.6782 10.6644i 0.687371 0.499405i
\(457\) 10.8664 + 14.9563i 0.508309 + 0.699627i 0.983633 0.180184i \(-0.0576692\pi\)
−0.475324 + 0.879811i \(0.657669\pi\)
\(458\) 18.8369 6.12048i 0.880191 0.285991i
\(459\) 16.5260 50.8619i 0.771370 2.37403i
\(460\) 0 0
\(461\) −6.71978 −0.312971 −0.156486 0.987680i \(-0.550017\pi\)
−0.156486 + 0.987680i \(0.550017\pi\)
\(462\) −1.81613 1.03898i −0.0844941 0.0483378i
\(463\) 25.2817i 1.17494i −0.809246 0.587470i \(-0.800124\pi\)
0.809246 0.587470i \(-0.199876\pi\)
\(464\) 8.22732 + 5.97750i 0.381944 + 0.277499i
\(465\) 0 0
\(466\) 1.66463 + 5.12321i 0.0771126 + 0.237328i
\(467\) −11.7224 16.1346i −0.542450 0.746618i 0.446514 0.894777i \(-0.352665\pi\)
−0.988964 + 0.148159i \(0.952665\pi\)
\(468\) 15.0161 + 20.6678i 0.694117 + 0.955370i
\(469\) −0.522148 1.60700i −0.0241105 0.0742046i
\(470\) 0 0
\(471\) 8.24361 + 5.98934i 0.379846 + 0.275974i
\(472\) 1.55150i 0.0714135i
\(473\) 7.50803 0.819185i 0.345219 0.0376662i
\(474\) −31.0963 −1.42830
\(475\) 0 0
\(476\) −0.170349 + 0.524281i −0.00780794 + 0.0240304i
\(477\) −64.1783 + 20.8528i −2.93852 + 0.954783i
\(478\) 5.26663 + 7.24889i 0.240890 + 0.331557i
\(479\) 6.64419 4.82729i 0.303581 0.220564i −0.425556 0.904932i \(-0.639922\pi\)
0.729137 + 0.684368i \(0.239922\pi\)
\(480\) 0 0
\(481\) −6.35655 + 19.5635i −0.289834 + 0.892017i
\(482\) 6.28233 8.64689i 0.286153 0.393855i
\(483\) 0.0729176i 0.00331787i
\(484\) 5.57524 + 9.48244i 0.253420 + 0.431020i
\(485\) 0 0
\(486\) 54.3878 + 39.5151i 2.46708 + 1.79244i
\(487\) −26.6169 8.64835i −1.20613 0.391894i −0.364115 0.931354i \(-0.618628\pi\)
−0.842011 + 0.539460i \(0.818628\pi\)
\(488\) 0.836470 0.271786i 0.0378652 0.0123032i
\(489\) −5.89029 + 4.27955i −0.266368 + 0.193528i
\(490\) 0 0
\(491\) −4.41679 13.5935i −0.199327 0.613466i −0.999899 0.0142287i \(-0.995471\pi\)
0.800572 0.599237i \(-0.204529\pi\)
\(492\) 15.0418 + 4.88737i 0.678136 + 0.220340i
\(493\) −17.6194 + 24.2510i −0.793536 + 1.09221i
\(494\) −16.3997 −0.737857
\(495\) 0 0
\(496\) 7.69740 0.345623
\(497\) 0.0724593 0.0997317i 0.00325024 0.00447358i
\(498\) 10.1963 + 3.31298i 0.456907 + 0.148458i
\(499\) −1.51667 4.66783i −0.0678955 0.208961i 0.911352 0.411627i \(-0.135039\pi\)
−0.979248 + 0.202666i \(0.935039\pi\)
\(500\) 0 0
\(501\) −15.3532 + 11.1548i −0.685931 + 0.498358i
\(502\) −7.07951 + 2.30027i −0.315974 + 0.102666i
\(503\) −6.24866 2.03031i −0.278614 0.0905272i 0.166377 0.986062i \(-0.446793\pi\)
−0.444991 + 0.895535i \(0.646793\pi\)
\(504\) −1.26770 0.921041i −0.0564680 0.0410264i
\(505\) 0 0
\(506\) −0.190360 + 0.332748i −0.00846252 + 0.0147924i
\(507\) 12.4921i 0.554792i
\(508\) 5.32918 7.33498i 0.236444 0.325437i
\(509\) −0.849203 + 2.61358i −0.0376403 + 0.115845i −0.968111 0.250521i \(-0.919398\pi\)
0.930471 + 0.366366i \(0.119398\pi\)
\(510\) 0 0
\(511\) 0.352852 0.256362i 0.0156092 0.0113408i
\(512\) −0.587785 0.809017i −0.0259767 0.0357538i
\(513\) −92.8098 + 30.1557i −4.09765 + 1.33141i
\(514\) 2.95643 9.09895i 0.130402 0.401338i
\(515\) 0 0
\(516\) 7.68147 0.338158
\(517\) 4.30160 20.6388i 0.189184 0.907693i
\(518\) 1.26172i 0.0554367i
\(519\) 42.4567 + 30.8466i 1.86364 + 1.35402i
\(520\) 0 0
\(521\) −2.39458 7.36975i −0.104908 0.322875i 0.884801 0.465970i \(-0.154294\pi\)
−0.989709 + 0.143095i \(0.954294\pi\)
\(522\) −50.0832 68.9337i −2.19208 3.01714i
\(523\) 15.2841 + 21.0367i 0.668326 + 0.919871i 0.999721 0.0236208i \(-0.00751943\pi\)
−0.331395 + 0.943492i \(0.607519\pi\)
\(524\) 1.83109 + 5.63552i 0.0799916 + 0.246189i
\(525\) 0 0
\(526\) −16.9072 12.2838i −0.737190 0.535600i
\(527\) 22.6889i 0.988346i
\(528\) 4.59087 + 10.2024i 0.199792 + 0.444002i
\(529\) 22.9866 0.999419
\(530\) 0 0
\(531\) −4.01704 + 12.3632i −0.174325 + 0.536516i
\(532\) 0.956677 0.310843i 0.0414772 0.0134768i
\(533\) −8.40293 11.5656i −0.363971 0.500964i
\(534\) 18.2749 13.2775i 0.790833 0.574574i
\(535\) 0 0
\(536\) −2.79194 + 8.59270i −0.120593 + 0.371148i
\(537\) 34.4479 47.4134i 1.48654 2.04604i
\(538\) 20.6134i 0.888706i
\(539\) 15.5250 + 17.1056i 0.668709 + 0.736790i
\(540\) 0 0
\(541\) 18.2979 + 13.2942i 0.786690 + 0.571564i 0.906979 0.421175i \(-0.138382\pi\)
−0.120289 + 0.992739i \(0.538382\pi\)
\(542\) 7.80295 + 2.53533i 0.335165 + 0.108902i
\(543\) −44.3961 + 14.4252i −1.90522 + 0.619043i
\(544\) 2.38467 1.73256i 0.102242 0.0742830i
\(545\) 0 0
\(546\) 0.594400 + 1.82938i 0.0254380 + 0.0782901i
\(547\) −32.8110 10.6609i −1.40290 0.455828i −0.492770 0.870160i \(-0.664015\pi\)
−0.910126 + 0.414331i \(0.864015\pi\)
\(548\) 5.94988 8.18931i 0.254166 0.349830i
\(549\) −7.36914 −0.314507
\(550\) 0 0
\(551\) 54.6981 2.33022
\(552\) −0.229173 + 0.315430i −0.00975425 + 0.0134256i
\(553\) −1.63968 0.532763i −0.0697261 0.0226554i
\(554\) −3.94679 12.1470i −0.167683 0.516076i
\(555\) 0 0
\(556\) 13.8635 10.0724i 0.587942 0.427165i
\(557\) −17.7396 + 5.76393i −0.751649 + 0.244226i −0.659691 0.751537i \(-0.729313\pi\)
−0.0919585 + 0.995763i \(0.529313\pi\)
\(558\) −61.3371 19.9296i −2.59660 0.843688i
\(559\) −5.61722 4.08115i −0.237583 0.172614i
\(560\) 0 0
\(561\) −30.0727 + 13.5321i −1.26967 + 0.571326i
\(562\) 22.2962i 0.940507i
\(563\) −22.7708 + 31.3413i −0.959675 + 1.32088i −0.0125815 + 0.999921i \(0.504005\pi\)
−0.947093 + 0.320958i \(0.895995\pi\)
\(564\) 6.62596 20.3926i 0.279003 0.858684i
\(565\) 0 0
\(566\) 9.08873 6.60335i 0.382028 0.277559i
\(567\) 3.96459 + 5.45679i 0.166497 + 0.229164i
\(568\) −0.626894 + 0.203690i −0.0263039 + 0.00854666i
\(569\) 8.05198 24.7814i 0.337557 1.03889i −0.627892 0.778300i \(-0.716082\pi\)
0.965449 0.260592i \(-0.0839178\pi\)
\(570\) 0 0
\(571\) −39.8951 −1.66956 −0.834778 0.550586i \(-0.814404\pi\)
−0.834778 + 0.550586i \(0.814404\pi\)
\(572\) 2.06335 9.89981i 0.0862729 0.413932i
\(573\) 13.3974i 0.559686i
\(574\) 0.709403 + 0.515412i 0.0296099 + 0.0215129i
\(575\) 0 0
\(576\) 2.58914 + 7.96855i 0.107881 + 0.332023i
\(577\) −4.66683 6.42334i −0.194283 0.267407i 0.700751 0.713406i \(-0.252848\pi\)
−0.895033 + 0.445999i \(0.852848\pi\)
\(578\) −4.88543 6.72421i −0.203207 0.279690i
\(579\) 8.28097 + 25.4862i 0.344146 + 1.05917i
\(580\) 0 0
\(581\) 0.480880 + 0.349380i 0.0199503 + 0.0144947i
\(582\) 29.8669i 1.23802i
\(583\) 23.1859 + 13.2643i 0.960261 + 0.549351i
\(584\) −2.33210 −0.0965030
\(585\) 0 0
\(586\) 7.91189 24.3503i 0.326837 1.00590i
\(587\) −11.2727 + 3.66271i −0.465273 + 0.151176i −0.532266 0.846577i \(-0.678659\pi\)
0.0669934 + 0.997753i \(0.478659\pi\)
\(588\) 13.8098 + 19.0075i 0.569505 + 0.783856i
\(589\) 33.4944 24.3351i 1.38011 1.00271i
\(590\) 0 0
\(591\) −5.78468 + 17.8034i −0.237950 + 0.732335i
\(592\) −3.96546 + 5.45799i −0.162979 + 0.224322i
\(593\) 29.4865i 1.21087i 0.795896 + 0.605433i \(0.207000\pi\)
−0.795896 + 0.605433i \(0.793000\pi\)
\(594\) −6.52678 59.8195i −0.267797 2.45442i
\(595\) 0 0
\(596\) −18.9571 13.7731i −0.776513 0.564170i
\(597\) −13.8541 4.50149i −0.567013 0.184234i
\(598\) 0.335174 0.108905i 0.0137063 0.00445344i
\(599\) −22.4696 + 16.3251i −0.918084 + 0.667027i −0.943046 0.332662i \(-0.892053\pi\)
0.0249627 + 0.999688i \(0.492053\pi\)
\(600\) 0 0
\(601\) 9.07483 + 27.9295i 0.370170 + 1.13927i 0.946680 + 0.322176i \(0.104414\pi\)
−0.576510 + 0.817090i \(0.695586\pi\)
\(602\) 0.405036 + 0.131604i 0.0165080 + 0.00536378i
\(603\) 44.4954 61.2426i 1.81199 2.49399i
\(604\) −12.0648 −0.490908
\(605\) 0 0
\(606\) −45.7555 −1.85869
\(607\) −6.33323 + 8.71695i −0.257058 + 0.353810i −0.917967 0.396656i \(-0.870171\pi\)
0.660909 + 0.750466i \(0.270171\pi\)
\(608\) −5.11538 1.66209i −0.207456 0.0674065i
\(609\) −1.98251 6.10154i −0.0803354 0.247247i
\(610\) 0 0
\(611\) −15.6799 + 11.3921i −0.634341 + 0.460876i
\(612\) −23.4882 + 7.63177i −0.949454 + 0.308496i
\(613\) 43.0821 + 13.9982i 1.74007 + 0.565383i 0.994843 0.101429i \(-0.0323414\pi\)
0.745226 + 0.666812i \(0.232341\pi\)
\(614\) −15.6733 11.3873i −0.632522 0.459554i
\(615\) 0 0
\(616\) 0.0672776 + 0.616615i 0.00271069 + 0.0248441i
\(617\) 7.32134i 0.294746i −0.989081 0.147373i \(-0.952918\pi\)
0.989081 0.147373i \(-0.0470818\pi\)
\(618\) −14.1180 + 19.4318i −0.567909 + 0.781660i
\(619\) −8.99572 + 27.6860i −0.361569 + 1.11279i 0.590533 + 0.807013i \(0.298917\pi\)
−0.952102 + 0.305781i \(0.901083\pi\)
\(620\) 0 0
\(621\) 1.69658 1.23264i 0.0680813 0.0494640i
\(622\) 10.2585 + 14.1197i 0.411330 + 0.566147i
\(623\) 1.19110 0.387011i 0.0477203 0.0155053i
\(624\) 3.17828 9.78173i 0.127233 0.391582i
\(625\) 0 0
\(626\) 21.5623 0.861803
\(627\) 52.2313 + 29.8807i 2.08592 + 1.19332i
\(628\) 3.02075i 0.120541i
\(629\) −16.0880 11.6886i −0.641472 0.466056i
\(630\) 0 0
\(631\) −13.7577 42.3419i −0.547686 1.68560i −0.714517 0.699618i \(-0.753353\pi\)
0.166831 0.985985i \(-0.446647\pi\)
\(632\) 5.41855 + 7.45799i 0.215538 + 0.296663i
\(633\) −14.4618 19.9049i −0.574803 0.791149i
\(634\) 6.33544 + 19.4985i 0.251612 + 0.774384i
\(635\) 0 0
\(636\) 21.9792 + 15.9688i 0.871531 + 0.633204i
\(637\) 21.2367i 0.841428i
\(638\) −6.88191 + 33.0190i −0.272457 + 1.30723i
\(639\) 5.52282 0.218479
\(640\) 0 0
\(641\) −9.70763 + 29.8770i −0.383428 + 1.18007i 0.554186 + 0.832393i \(0.313030\pi\)
−0.937614 + 0.347678i \(0.886970\pi\)
\(642\) 9.20008 2.98929i 0.363098 0.117978i
\(643\) −20.0465 27.5916i −0.790556 1.08811i −0.994039 0.109028i \(-0.965226\pi\)
0.203483 0.979079i \(-0.434774\pi\)
\(644\) −0.0174882 + 0.0127059i −0.000689132 + 0.000500683i
\(645\) 0 0
\(646\) 4.89919 15.0781i 0.192756 0.593242i
\(647\) 10.8268 14.9018i 0.425646 0.585851i −0.541301 0.840829i \(-0.682068\pi\)
0.966947 + 0.254978i \(0.0820681\pi\)
\(648\) 36.0655i 1.41679i
\(649\) 4.69254 2.11155i 0.184198 0.0828856i
\(650\) 0 0
\(651\) −3.92856 2.85427i −0.153973 0.111868i
\(652\) 2.05277 + 0.666986i 0.0803927 + 0.0261212i
\(653\) −16.4359 + 5.34034i −0.643185 + 0.208984i −0.612407 0.790543i \(-0.709799\pi\)
−0.0307784 + 0.999526i \(0.509799\pi\)
\(654\) −30.1051 + 21.8726i −1.17720 + 0.855287i
\(655\) 0 0
\(656\) −1.44887 4.45917i −0.0565690 0.174101i
\(657\) 18.5834 + 6.03813i 0.725009 + 0.235570i
\(658\) 0.698760 0.961760i 0.0272405 0.0374933i
\(659\) −9.78298 −0.381091 −0.190545 0.981678i \(-0.561026\pi\)
−0.190545 + 0.981678i \(0.561026\pi\)
\(660\) 0 0
\(661\) 4.62985 0.180080 0.0900401 0.995938i \(-0.471300\pi\)
0.0900401 + 0.995938i \(0.471300\pi\)
\(662\) 5.21137 7.17283i 0.202546 0.278780i
\(663\) 28.8327 + 9.36832i 1.11977 + 0.363836i
\(664\) −0.982141 3.02272i −0.0381145 0.117304i
\(665\) 0 0
\(666\) 45.7304 33.2251i 1.77202 1.28745i
\(667\) −1.11791 + 0.363231i −0.0432857 + 0.0140644i
\(668\) 5.35061 + 1.73852i 0.207021 + 0.0672653i
\(669\) −45.0041 32.6974i −1.73996 1.26416i
\(670\) 0 0
\(671\) 1.96044 + 2.16003i 0.0756818 + 0.0833870i
\(672\) 0.630859i 0.0243359i
\(673\) −21.4100 + 29.4683i −0.825293 + 1.13592i 0.163487 + 0.986545i \(0.447726\pi\)
−0.988781 + 0.149374i \(0.952274\pi\)
\(674\) −1.17328 + 3.61099i −0.0451931 + 0.139090i
\(675\) 0 0
\(676\) 2.99604 2.17675i 0.115232 0.0837211i
\(677\) 25.7149 + 35.3935i 0.988304 + 1.36028i 0.932234 + 0.361856i \(0.117857\pi\)
0.0560698 + 0.998427i \(0.482143\pi\)
\(678\) 25.2488 8.20383i 0.969674 0.315066i
\(679\) 0.511699 1.57485i 0.0196372 0.0604371i
\(680\) 0 0
\(681\) 39.2967 1.50585
\(682\) 10.4760 + 23.2810i 0.401145 + 0.891474i
\(683\) 19.5734i 0.748953i −0.927236 0.374477i \(-0.877822\pi\)
0.927236 0.374477i \(-0.122178\pi\)
\(684\) 36.4588 + 26.4888i 1.39404 + 1.01283i
\(685\) 0 0
\(686\) 0.807071 + 2.48391i 0.0308141 + 0.0948361i
\(687\) 39.2705 + 54.0513i 1.49826 + 2.06218i
\(688\) −1.33850 1.84229i −0.0510298 0.0702365i
\(689\) −7.58849 23.3550i −0.289098 0.889754i
\(690\) 0 0
\(691\) −19.7570 14.3543i −0.751592 0.546063i 0.144728 0.989471i \(-0.453769\pi\)
−0.896320 + 0.443408i \(0.853769\pi\)
\(692\) 15.5576i 0.591413i
\(693\) 1.06040 5.08772i 0.0402811 0.193266i
\(694\) 20.5073 0.778445
\(695\) 0 0
\(696\) −10.6005 + 32.6251i −0.401813 + 1.23665i
\(697\) 13.1439 4.27072i 0.497861 0.161765i
\(698\) 8.32229 + 11.4546i 0.315003 + 0.433565i
\(699\) −14.7007 + 10.6807i −0.556032 + 0.403981i
\(700\) 0 0
\(701\) −3.80171 + 11.7005i −0.143589 + 0.441921i −0.996827 0.0796009i \(-0.974635\pi\)
0.853238 + 0.521522i \(0.174635\pi\)
\(702\) −32.5162 + 44.7547i −1.22724 + 1.68916i
\(703\) 36.2866i 1.36857i
\(704\) 1.64693 2.87882i 0.0620710 0.108500i
\(705\) 0 0
\(706\) −17.9089 13.0116i −0.674009 0.489696i
\(707\) −2.41264 0.783913i −0.0907366 0.0294821i
\(708\) 4.97740 1.61725i 0.187062 0.0607801i
\(709\) 2.09099 1.51919i 0.0785287 0.0570544i −0.547828 0.836591i \(-0.684545\pi\)
0.626357 + 0.779536i \(0.284545\pi\)
\(710\) 0 0
\(711\) −23.8682 73.4587i −0.895126 2.75492i
\(712\) −6.36882 2.06936i −0.238682 0.0775524i
\(713\) −0.522953 + 0.719783i −0.0195847 + 0.0269561i
\(714\) −1.85953 −0.0695911
\(715\) 0 0
\(716\) −17.3740 −0.649295
\(717\) −17.7655 + 24.4521i −0.663465 + 0.913181i
\(718\) 7.87806 + 2.55974i 0.294007 + 0.0955285i
\(719\) 12.3660 + 38.0587i 0.461175 + 1.41935i 0.863730 + 0.503956i \(0.168122\pi\)
−0.402554 + 0.915396i \(0.631878\pi\)
\(720\) 0 0
\(721\) −1.07734 + 0.782737i −0.0401224 + 0.0291506i
\(722\) −9.44363 + 3.06842i −0.351455 + 0.114195i
\(723\) 34.2889 + 11.1411i 1.27522 + 0.414343i
\(724\) 11.1957 + 8.13414i 0.416084 + 0.302303i
\(725\) 0 0
\(726\) −24.6093 + 27.7704i −0.913337 + 1.03066i
\(727\) 47.6224i 1.76622i 0.469169 + 0.883108i \(0.344554\pi\)
−0.469169 + 0.883108i \(0.655446\pi\)
\(728\) 0.335174 0.461328i 0.0124224 0.0170979i
\(729\) −36.6417 + 112.772i −1.35710 + 4.17673i
\(730\) 0 0
\(731\) 5.43034 3.94537i 0.200848 0.145925i
\(732\) 1.74384 + 2.40020i 0.0644543 + 0.0887138i
\(733\) −41.1492 + 13.3702i −1.51988 + 0.493839i −0.945742 0.324918i \(-0.894663\pi\)
−0.574139 + 0.818758i \(0.694663\pi\)
\(734\) −7.32336 + 22.5390i −0.270310 + 0.831929i
\(735\) 0 0
\(736\) 0.115585 0.00426050
\(737\) −29.7886 + 3.25017i −1.09728 + 0.119722i
\(738\) 39.2845i 1.44608i
\(739\) −36.8236 26.7539i −1.35458 0.984160i −0.998769 0.0496014i \(-0.984205\pi\)
−0.355810 0.934558i \(-0.615795\pi\)
\(740\) 0 0
\(741\) −17.0948 52.6123i −0.627992 1.93276i
\(742\) 0.885350 + 1.21858i 0.0325022 + 0.0447355i
\(743\) −24.7265 34.0331i −0.907128 1.24855i −0.968138 0.250417i \(-0.919432\pi\)
0.0610105 0.998137i \(-0.480568\pi\)
\(744\) 8.02363 + 24.6942i 0.294161 + 0.905333i
\(745\) 0 0
\(746\) −22.4023 16.2762i −0.820205 0.595914i
\(747\) 26.6296i 0.974326i
\(748\) 8.48565 + 4.85451i 0.310266 + 0.177498i
\(749\) 0.536325 0.0195969
\(750\) 0 0
\(751\) −1.26991 + 3.90839i −0.0463398 + 0.142619i −0.971549 0.236837i \(-0.923889\pi\)
0.925209 + 0.379457i \(0.123889\pi\)
\(752\) −6.04544 + 1.96428i −0.220454 + 0.0716300i
\(753\) −14.7591 20.3142i −0.537852 0.740290i
\(754\) 25.0855 18.2257i 0.913560 0.663740i
\(755\) 0 0
\(756\) 1.04854 3.22708i 0.0381351 0.117368i
\(757\) 2.88717 3.97384i 0.104936 0.144432i −0.753319 0.657655i \(-0.771549\pi\)
0.858255 + 0.513223i \(0.171549\pi\)
\(758\) 15.8425i 0.575425i
\(759\) −1.26592 0.263847i −0.0459501 0.00957705i
\(760\) 0 0
\(761\) −23.3518 16.9661i −0.846503 0.615021i 0.0776764 0.996979i \(-0.475250\pi\)
−0.924180 + 0.381958i \(0.875250\pi\)
\(762\) 29.0866 + 9.45080i 1.05370 + 0.342366i
\(763\) −1.96214 + 0.637539i −0.0710344 + 0.0230805i
\(764\) −3.21318 + 2.33451i −0.116249 + 0.0844596i
\(765\) 0 0
\(766\) 0.417371 + 1.28454i 0.0150802 + 0.0464122i
\(767\) −4.49906 1.46183i −0.162452 0.0527837i
\(768\) 1.98273 2.72899i 0.0715456 0.0984741i
\(769\) 35.9976 1.29811 0.649053 0.760743i \(-0.275165\pi\)
0.649053 + 0.760743i \(0.275165\pi\)
\(770\) 0 0
\(771\) 32.2723 1.16226
\(772\) 4.66953 6.42705i 0.168060 0.231315i
\(773\) −8.47960 2.75519i −0.304990 0.0990972i 0.152524 0.988300i \(-0.451260\pi\)
−0.457514 + 0.889203i \(0.651260\pi\)
\(774\) 5.89596 + 18.1459i 0.211926 + 0.652241i
\(775\) 0 0
\(776\) −7.16312 + 5.20431i −0.257141 + 0.186824i
\(777\) 4.04775 1.31519i 0.145212 0.0471823i
\(778\) 4.47695 + 1.45465i 0.160506 + 0.0521516i
\(779\) −20.4022 14.8231i −0.730985 0.531091i
\(780\) 0 0
\(781\) −1.46925 1.61884i −0.0525740 0.0579266i
\(782\) 0.340698i 0.0121834i
\(783\) 108.452 149.271i 3.87574 5.33450i
\(784\) 2.15231 6.62413i 0.0768682 0.236576i
\(785\) 0 0
\(786\) −16.1708 + 11.7487i −0.576792 + 0.419064i
\(787\) −10.0575 13.8429i −0.358510 0.493446i 0.591223 0.806508i \(-0.298645\pi\)
−0.949733 + 0.313062i \(0.898645\pi\)
\(788\) 5.27787 1.71488i 0.188016 0.0610902i
\(789\) 21.7842 67.0450i 0.775539 2.38686i
\(790\) 0 0
\(791\) 1.47190 0.0523346
\(792\) −20.5773 + 18.6759i −0.731183 + 0.663619i
\(793\) 2.68169i 0.0952296i
\(794\) 18.7850 + 13.6481i 0.666656 + 0.484354i
\(795\) 0 0
\(796\) 1.33448 + 4.10710i 0.0472993 + 0.145572i
\(797\) −19.3705 26.6612i −0.686139 0.944389i 0.313848 0.949473i \(-0.398382\pi\)
−0.999987 + 0.00508424i \(0.998382\pi\)
\(798\) 1.99445 + 2.74512i 0.0706027 + 0.0971762i
\(799\) −5.78994 17.8196i −0.204833 0.630412i
\(800\) 0 0
\(801\) 45.3924 + 32.9795i 1.60386 + 1.16527i
\(802\) 5.86409i 0.207068i
\(803\) −3.17393 7.05349i −0.112006 0.248912i
\(804\) −30.4767 −1.07483
\(805\) 0 0
\(806\) 7.25255 22.3210i 0.255460 0.786225i
\(807\) 66.1303 21.4870i 2.32790 0.756379i
\(808\) 7.97291 + 10.9738i 0.280486 + 0.386056i
\(809\) −33.1781 + 24.1053i −1.16648 + 0.847498i −0.990583 0.136911i \(-0.956283\pi\)
−0.175897 + 0.984409i \(0.556283\pi\)
\(810\) 0 0
\(811\) −3.29631 + 10.1450i −0.115749 + 0.356239i −0.992103 0.125430i \(-0.959969\pi\)
0.876353 + 0.481669i \(0.159969\pi\)
\(812\) −1.11791 + 1.53867i −0.0392310 + 0.0539968i
\(813\) 27.6756i 0.970627i
\(814\) −21.9047 4.56544i −0.767760 0.160019i
\(815\) 0 0
\(816\) 8.04401 + 5.84432i 0.281597 + 0.204592i
\(817\) −11.6487 3.78489i −0.407536 0.132416i
\(818\) −24.9036 + 8.09168i −0.870735 + 0.282919i
\(819\) −3.86529 + 2.80830i −0.135064 + 0.0981299i
\(820\) 0 0
\(821\) 2.06521 + 6.35607i 0.0720764 + 0.221828i 0.980605 0.195994i \(-0.0627934\pi\)
−0.908529 + 0.417823i \(0.862793\pi\)
\(822\) 32.4744 + 10.5516i 1.13267 + 0.368028i
\(823\) −22.2772 + 30.6620i −0.776535 + 1.06881i 0.219121 + 0.975698i \(0.429681\pi\)
−0.995656 + 0.0931110i \(0.970319\pi\)
\(824\) 7.12048 0.248054
\(825\) 0 0
\(826\) 0.290161 0.0100960
\(827\) 19.3271 26.6015i 0.672071 0.925026i −0.327734 0.944770i \(-0.606285\pi\)
0.999805 + 0.0197438i \(0.00628505\pi\)
\(828\) −0.921041 0.299264i −0.0320084 0.0104002i
\(829\) −4.15827 12.7978i −0.144423 0.444487i 0.852514 0.522705i \(-0.175077\pi\)
−0.996936 + 0.0782180i \(0.975077\pi\)
\(830\) 0 0
\(831\) 34.8550 25.3236i 1.20911 0.878466i
\(832\) −2.89982 + 0.942208i −0.100533 + 0.0326652i
\(833\) 19.5254 + 6.34418i 0.676514 + 0.219813i
\(834\) 46.7646 + 33.9764i 1.61932 + 1.17651i
\(835\) 0 0
\(836\) −1.93488 17.7336i −0.0669193 0.613331i
\(837\) 139.656i 4.82722i
\(838\) 3.93149 5.41123i 0.135811 0.186928i
\(839\) 13.3324 41.0329i 0.460285 1.41661i −0.404532 0.914524i \(-0.632565\pi\)
0.864817 0.502088i \(-0.167435\pi\)
\(840\) 0 0
\(841\) −60.2065 + 43.7426i −2.07609 + 1.50837i
\(842\) −14.8548 20.4459i −0.511931 0.704612i
\(843\) 71.5289 23.2411i 2.46358 0.800467i
\(844\) −2.25393 + 6.93687i −0.0775834 + 0.238777i
\(845\) 0 0
\(846\) 53.2592 1.83109
\(847\) −1.77340 + 1.04268i −0.0609349 + 0.0358269i
\(848\) 8.05395i 0.276574i
\(849\) 30.6583 + 22.2746i 1.05219 + 0.764461i
\(850\) 0 0
\(851\) −0.240967 0.741620i −0.00826024 0.0254224i
\(852\) −1.30693 1.79883i −0.0447746 0.0616270i
\(853\) 28.0908 + 38.6637i 0.961811 + 1.32382i 0.946077 + 0.323942i \(0.105008\pi\)
0.0157338 + 0.999876i \(0.494992\pi\)
\(854\) 0.0508293 + 0.156436i 0.00173934 + 0.00535314i
\(855\) 0 0
\(856\) −2.32005 1.68562i −0.0792978 0.0576132i
\(857\) 3.49798i 0.119489i −0.998214 0.0597444i \(-0.980971\pi\)
0.998214 0.0597444i \(-0.0190285\pi\)
\(858\) 33.9106 3.69992i 1.15769 0.126313i
\(859\) −26.4442 −0.902263 −0.451131 0.892458i \(-0.648979\pi\)
−0.451131 + 0.892458i \(0.648979\pi\)
\(860\) 0 0
\(861\) −0.914035 + 2.81311i −0.0311502 + 0.0958705i
\(862\) 30.4851 9.90521i 1.03833 0.337373i
\(863\) 29.4811 + 40.5772i 1.00355 + 1.38126i 0.923124 + 0.384503i \(0.125627\pi\)
0.0804231 + 0.996761i \(0.474373\pi\)
\(864\) −14.6782 + 10.6644i −0.499364 + 0.362809i
\(865\) 0 0
\(866\) −3.21743 + 9.90223i −0.109333 + 0.336491i
\(867\) 16.4796 22.6823i 0.559678 0.770330i
\(868\) 1.43957i 0.0488620i
\(869\) −15.1824 + 26.5387i −0.515026 + 0.900262i
\(870\) 0 0
\(871\) 22.2867 + 16.1922i 0.755155 + 0.548652i
\(872\) 10.4916 + 3.40894i 0.355292 + 0.115441i
\(873\) 70.5543 22.9245i 2.38790 0.775876i
\(874\) 0.502955 0.365418i 0.0170127 0.0123604i
\(875\) 0 0
\(876\) −2.43094 7.48167i −0.0821339 0.252782i
\(877\) 21.4583 + 6.97221i 0.724594 + 0.235435i 0.648014 0.761629i \(-0.275600\pi\)
0.0765800 + 0.997063i \(0.475600\pi\)
\(878\) −18.4715 + 25.4238i −0.623383 + 0.858013i
\(879\) 86.3660 2.91305
\(880\) 0 0
\(881\) 7.71364 0.259879 0.129940 0.991522i \(-0.458522\pi\)
0.129940 + 0.991522i \(0.458522\pi\)
\(882\) −34.3016 + 47.2121i −1.15499 + 1.58971i
\(883\) −31.4225 10.2098i −1.05745 0.343586i −0.271862 0.962336i \(-0.587639\pi\)
−0.785588 + 0.618750i \(0.787639\pi\)
\(884\) −2.77726 8.54754i −0.0934095 0.287485i
\(885\) 0 0
\(886\) −33.2653 + 24.1686i −1.11757 + 0.811961i
\(887\) −17.5934 + 5.71644i −0.590729 + 0.191939i −0.589101 0.808059i \(-0.700518\pi\)
−0.00162748 + 0.999999i \(0.500518\pi\)
\(888\) −21.6434 7.03238i −0.726306 0.235991i
\(889\) 1.37179 + 0.996661i 0.0460083 + 0.0334270i
\(890\) 0 0
\(891\) 109.081 49.0843i 3.65435 1.64438i
\(892\) 16.4911i 0.552163i
\(893\) −20.0961 + 27.6599i −0.672490 + 0.925603i
\(894\) 24.4254 75.1736i 0.816907 2.51418i
\(895\) 0 0
\(896\) 0.151302 0.109927i 0.00505465 0.00367242i
\(897\) 0.698760 + 0.961760i 0.0233309 + 0.0321122i
\(898\) −10.9209 + 3.54840i −0.364434 + 0.118412i
\(899\) −24.1895 + 74.4477i −0.806765 + 2.48297i
\(900\) 0 0
\(901\) 23.7399 0.790891
\(902\) 11.5150 10.4510i 0.383407 0.347979i
\(903\) 1.43659i 0.0478066i
\(904\) −6.36718 4.62603i −0.211769 0.153859i
\(905\) 0 0
\(906\) −12.5761 38.7052i −0.417813 1.28590i
\(907\) 30.0515 + 41.3623i 0.997843 + 1.37341i 0.926639 + 0.375951i \(0.122684\pi\)
0.0712035 + 0.997462i \(0.477316\pi\)
\(908\) −6.84746 9.42472i −0.227241 0.312770i
\(909\) −35.1199 108.088i −1.16485 3.58505i
\(910\) 0 0
\(911\) 18.8345 + 13.6840i 0.624014 + 0.453373i 0.854321 0.519745i \(-0.173973\pi\)
−0.230307 + 0.973118i \(0.573973\pi\)
\(912\) 18.1433i 0.600785i
\(913\) 7.80562 7.08436i 0.258328 0.234458i
\(914\) 18.4870 0.611496
\(915\) 0 0
\(916\) 6.12048 18.8369i 0.202226 0.622389i
\(917\) −1.05395 + 0.342450i −0.0348046 + 0.0113087i
\(918\) −31.4344 43.2657i −1.03749 1.42798i
\(919\) 13.1742 9.57161i 0.434577 0.315738i −0.348900 0.937160i \(-0.613445\pi\)
0.783476 + 0.621422i \(0.213445\pi\)
\(920\) 0 0
\(921\) 20.1943 62.1517i 0.665425 2.04797i
\(922\) −3.94979 + 5.43642i −0.130079 + 0.179039i
\(923\) 2.00980i 0.0661533i
\(924\) −1.90805 + 0.858584i −0.0627702 + 0.0282453i
\(925\) 0 0
\(926\) −20.4533 14.8602i −0.672138 0.488337i
\(927\) −56.7399 18.4359i −1.86358 0.605515i
\(928\) 9.67180 3.14256i 0.317492 0.103160i
\(929\) −10.7933 + 7.84178i −0.354116 + 0.257280i −0.750594 0.660764i \(-0.770232\pi\)
0.396478 + 0.918044i \(0.370232\pi\)
\(930\) 0 0
\(931\) −11.5765 35.6287i −0.379404 1.16768i
\(932\) 5.12321 + 1.66463i 0.167816 + 0.0545269i
\(933\) −34.6043 + 47.6288i −1.13289 + 1.55930i
\(934\) −19.9434 −0.652568
\(935\) 0 0
\(936\) 25.5468 0.835024
\(937\) 9.35641 12.8780i 0.305660 0.420706i −0.628361 0.777922i \(-0.716274\pi\)
0.934022 + 0.357216i \(0.116274\pi\)
\(938\) −1.60700 0.522148i −0.0524706 0.0170487i
\(939\) 22.4762 + 69.1746i 0.733482 + 2.25743i
\(940\) 0 0
\(941\) 17.6786 12.8442i 0.576305 0.418710i −0.261085 0.965316i \(-0.584080\pi\)
0.837390 + 0.546605i \(0.184080\pi\)
\(942\) 9.69095 3.14878i 0.315748 0.102593i
\(943\) 0.515412 + 0.167467i 0.0167841 + 0.00545349i
\(944\) −1.25519 0.911947i −0.0408529 0.0296814i
\(945\) 0 0
\(946\) 3.75037 6.55563i 0.121935 0.213142i
\(947\) 24.6072i 0.799627i −0.916596 0.399814i \(-0.869075\pi\)
0.916596 0.399814i \(-0.130925\pi\)
\(948\) −18.2780 + 25.1574i −0.593640 + 0.817076i
\(949\) −2.19732 + 6.76266i −0.0713281 + 0.219525i
\(950\) 0 0
\(951\) −55.9496 + 40.6498i −1.81429 + 1.31816i
\(952\) 0.324024 + 0.445980i 0.0105017 + 0.0144543i
\(953\) 10.3741 3.37076i 0.336051 0.109190i −0.136131 0.990691i \(-0.543467\pi\)
0.472182 + 0.881501i \(0.343467\pi\)
\(954\) −20.8528 + 64.1783i −0.675134 + 2.07785i
\(955\) 0 0
\(956\) 8.96012 0.289791
\(957\) −113.103 + 12.3404i −3.65609 + 0.398908i
\(958\) 8.21267i 0.265339i
\(959\) 1.53156 + 1.11275i 0.0494568 + 0.0359324i
\(960\) 0 0
\(961\) 8.72970 + 26.8673i 0.281603 + 0.866686i
\(962\) 12.0909 + 16.6417i 0.389826 + 0.536549i
\(963\) 14.1232 + 19.4389i 0.455113 + 0.626409i
\(964\) −3.30282 10.1650i −0.106377 0.327394i
\(965\) 0 0
\(966\) −0.0589916 0.0428599i −0.00189802 0.00137899i
\(967\) 21.5493i 0.692980i −0.938054 0.346490i \(-0.887374\pi\)
0.938054 0.346490i \(-0.112626\pi\)
\(968\) 10.9485 + 1.06317i 0.351898 + 0.0341717i
\(969\) 53.4794 1.71801
\(970\) 0 0
\(971\) 14.3347 44.1177i 0.460023 1.41580i −0.405113 0.914267i \(-0.632768\pi\)
0.865136 0.501538i \(-0.167232\pi\)
\(972\) 63.9367 20.7743i 2.05077 0.666336i
\(973\) 1.88374 + 2.59274i 0.0603899 + 0.0831195i
\(974\) −22.6417 + 16.4501i −0.725486 + 0.527096i
\(975\) 0 0
\(976\) 0.271786 0.836470i 0.00869964 0.0267748i
\(977\) −18.8859 + 25.9943i −0.604215 + 0.831630i −0.996086 0.0883901i \(-0.971828\pi\)
0.391871 + 0.920020i \(0.371828\pi\)
\(978\) 7.28080i 0.232814i
\(979\) −2.40899 22.0790i −0.0769918 0.705648i
\(980\) 0 0
\(981\) −74.7769 54.3286i −2.38744 1.73458i
\(982\) −13.5935 4.41679i −0.433786 0.140946i
\(983\) −27.1905 + 8.83474i −0.867244 + 0.281785i −0.708651 0.705560i \(-0.750696\pi\)
−0.158593 + 0.987344i \(0.550696\pi\)
\(984\) 12.7953 9.29633i 0.407899 0.296356i
\(985\) 0 0
\(986\) 9.26304 + 28.5087i 0.294995 + 0.907902i
\(987\) 3.81382 + 1.23919i 0.121395 + 0.0394437i
\(988\) −9.63950 + 13.2676i −0.306673 + 0.422099i
\(989\) 0.263208 0.00836953
\(990\) 0 0
\(991\) 9.55188 0.303425 0.151713 0.988425i \(-0.451521\pi\)
0.151713 + 0.988425i \(0.451521\pi\)
\(992\) 4.52442 6.22732i 0.143650 0.197718i
\(993\) 28.4436 + 9.24188i 0.902630 + 0.293282i
\(994\) −0.0380941 0.117242i −0.00120827 0.00371868i
\(995\) 0 0
\(996\) 8.67349 6.30166i 0.274830 0.199676i
\(997\) 33.0302 10.7321i 1.04608 0.339891i 0.264949 0.964263i \(-0.414645\pi\)
0.781127 + 0.624372i \(0.214645\pi\)
\(998\) −4.66783 1.51667i −0.147758 0.0480094i
\(999\) 99.0259 + 71.9465i 3.13304 + 2.27629i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.ba.g.499.4 16
5.2 odd 4 550.2.h.m.301.2 yes 8
5.3 odd 4 550.2.h.k.301.1 yes 8
5.4 even 2 inner 550.2.ba.g.499.1 16
11.3 even 5 inner 550.2.ba.g.399.1 16
55.3 odd 20 550.2.h.k.201.1 8
55.14 even 10 inner 550.2.ba.g.399.4 16
55.17 even 20 6050.2.a.dn.1.4 4
55.27 odd 20 6050.2.a.df.1.4 4
55.28 even 20 6050.2.a.cz.1.1 4
55.38 odd 20 6050.2.a.dg.1.1 4
55.47 odd 20 550.2.h.m.201.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.k.201.1 8 55.3 odd 20
550.2.h.k.301.1 yes 8 5.3 odd 4
550.2.h.m.201.2 yes 8 55.47 odd 20
550.2.h.m.301.2 yes 8 5.2 odd 4
550.2.ba.g.399.1 16 11.3 even 5 inner
550.2.ba.g.399.4 16 55.14 even 10 inner
550.2.ba.g.499.1 16 5.4 even 2 inner
550.2.ba.g.499.4 16 1.1 even 1 trivial
6050.2.a.cz.1.1 4 55.28 even 20
6050.2.a.df.1.4 4 55.27 odd 20
6050.2.a.dg.1.1 4 55.38 odd 20
6050.2.a.dn.1.4 4 55.17 even 20