Properties

Label 550.2.h.k.201.1
Level $550$
Weight $2$
Character 550.201
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(201,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,4,-2,0,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(0.453245 - 1.39494i\) of defining polynomial
Character \(\chi\) \(=\) 550.201
Dual form 550.2.h.k.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-1.04238 - 3.20812i) q^{3} +(0.309017 - 0.951057i) q^{4} +(2.72899 + 1.98273i) q^{6} +(-0.0577923 + 0.177866i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-6.77845 + 4.92483i) q^{9} +(-0.359735 + 3.29706i) q^{11} -3.37322 q^{12} +(-2.46673 + 1.79219i) q^{13} +(-0.0577923 - 0.177866i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-2.38467 - 1.73256i) q^{17} +(2.58914 - 7.96855i) q^{18} +(1.66209 + 5.11538i) q^{19} +0.630859 q^{21} +(-1.64693 - 2.87882i) q^{22} +0.115585 q^{23} +(2.72899 - 1.98273i) q^{24} +(0.942208 - 2.89982i) q^{26} +(14.6782 + 10.6644i) q^{27} +(0.151302 + 0.109927i) q^{28} +(3.14256 - 9.67180i) q^{29} +(-6.22732 + 4.52442i) q^{31} +1.00000 q^{32} +(10.9524 - 2.28272i) q^{33} +2.94761 q^{34} +(2.58914 + 7.96855i) q^{36} +(-2.08477 + 6.41625i) q^{37} +(-4.35140 - 3.16148i) q^{38} +(8.32083 + 6.04544i) q^{39} +(-1.44887 - 4.45917i) q^{41} +(-0.510376 + 0.370810i) q^{42} -2.27719 q^{43} +(3.02452 + 1.36098i) q^{44} +(-0.0935099 + 0.0679389i) q^{46} +(1.96428 + 6.04544i) q^{47} +(-1.04238 + 3.20812i) q^{48} +(5.63482 + 4.09394i) q^{49} +(-3.07254 + 9.45631i) q^{51} +(0.942208 + 2.89982i) q^{52} +(-6.51578 + 4.73399i) q^{53} -18.1433 q^{54} -0.187020 q^{56} +(14.6782 - 10.6644i) q^{57} +(3.14256 + 9.67180i) q^{58} +(-0.479439 + 1.47556i) q^{59} +(-0.711544 - 0.516967i) q^{61} +(2.37863 - 7.32066i) q^{62} +(-0.484220 - 1.49028i) q^{63} +(-0.809017 + 0.587785i) q^{64} +(-7.51889 + 8.28439i) q^{66} -9.03490 q^{67} +(-2.38467 + 1.73256i) q^{68} +(-0.120483 - 0.370810i) q^{69} +(0.533268 + 0.387442i) q^{71} +(-6.77845 - 4.92483i) q^{72} +(0.720659 - 2.21796i) q^{73} +(-2.08477 - 6.41625i) q^{74} +5.37863 q^{76} +(-0.565646 - 0.254529i) q^{77} -10.2851 q^{78} +(7.45799 - 5.41855i) q^{79} +(11.1449 - 34.3003i) q^{81} +(3.79320 + 2.75592i) q^{82} +(-2.57128 - 1.86814i) q^{83} +(0.194946 - 0.599983i) q^{84} +(1.84229 - 1.33850i) q^{86} -34.3041 q^{87} +(-3.24685 + 0.676718i) q^{88} -6.69658 q^{89} +(-0.176211 - 0.542323i) q^{91} +(0.0357176 - 0.109927i) q^{92} +(21.0061 + 15.2619i) q^{93} +(-5.14256 - 3.73629i) q^{94} +(-1.04238 - 3.20812i) q^{96} +(-7.16312 + 5.20431i) q^{97} -6.96502 q^{98} +(-13.7990 - 24.1206i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 4 q^{3} - 2 q^{4} - q^{6} - 2 q^{7} - 2 q^{8} - 24 q^{9} + 5 q^{11} - 6 q^{12} - 4 q^{13} - 2 q^{14} - 2 q^{16} - 18 q^{17} + 11 q^{18} + 17 q^{19} - 40 q^{21} - 5 q^{22} + 4 q^{23} - q^{24}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −1.04238 3.20812i −0.601820 1.85221i −0.517327 0.855788i \(-0.673073\pi\)
−0.0844926 0.996424i \(-0.526927\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0 0
\(6\) 2.72899 + 1.98273i 1.11411 + 0.809446i
\(7\) −0.0577923 + 0.177866i −0.0218434 + 0.0672272i −0.961384 0.275210i \(-0.911253\pi\)
0.939541 + 0.342438i \(0.111253\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −6.77845 + 4.92483i −2.25948 + 1.64161i
\(10\) 0 0
\(11\) −0.359735 + 3.29706i −0.108464 + 0.994100i
\(12\) −3.37322 −0.973765
\(13\) −2.46673 + 1.79219i −0.684148 + 0.497063i −0.874731 0.484608i \(-0.838962\pi\)
0.190583 + 0.981671i \(0.438962\pi\)
\(14\) −0.0577923 0.177866i −0.0154456 0.0475368i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −2.38467 1.73256i −0.578367 0.420208i 0.259768 0.965671i \(-0.416354\pi\)
−0.838135 + 0.545463i \(0.816354\pi\)
\(18\) 2.58914 7.96855i 0.610266 1.87820i
\(19\) 1.66209 + 5.11538i 0.381309 + 1.17355i 0.939123 + 0.343582i \(0.111640\pi\)
−0.557814 + 0.829966i \(0.688360\pi\)
\(20\) 0 0
\(21\) 0.630859 0.137665
\(22\) −1.64693 2.87882i −0.351127 0.613767i
\(23\) 0.115585 0.0241011 0.0120505 0.999927i \(-0.496164\pi\)
0.0120505 + 0.999927i \(0.496164\pi\)
\(24\) 2.72899 1.98273i 0.557054 0.404723i
\(25\) 0 0
\(26\) 0.942208 2.89982i 0.184782 0.568701i
\(27\) 14.6782 + 10.6644i 2.82483 + 2.05236i
\(28\) 0.151302 + 0.109927i 0.0285934 + 0.0207743i
\(29\) 3.14256 9.67180i 0.583558 1.79601i −0.0214257 0.999770i \(-0.506821\pi\)
0.604984 0.796238i \(-0.293179\pi\)
\(30\) 0 0
\(31\) −6.22732 + 4.52442i −1.11846 + 0.812609i −0.983975 0.178307i \(-0.942938\pi\)
−0.134485 + 0.990916i \(0.542938\pi\)
\(32\) 1.00000 0.176777
\(33\) 10.9524 2.28272i 1.90656 0.397371i
\(34\) 2.94761 0.505511
\(35\) 0 0
\(36\) 2.58914 + 7.96855i 0.431523 + 1.32809i
\(37\) −2.08477 + 6.41625i −0.342733 + 1.05482i 0.620053 + 0.784560i \(0.287111\pi\)
−0.962786 + 0.270265i \(0.912889\pi\)
\(38\) −4.35140 3.16148i −0.705890 0.512859i
\(39\) 8.32083 + 6.04544i 1.33240 + 0.968045i
\(40\) 0 0
\(41\) −1.44887 4.45917i −0.226276 0.696406i −0.998160 0.0606419i \(-0.980685\pi\)
0.771884 0.635764i \(-0.219315\pi\)
\(42\) −0.510376 + 0.370810i −0.0787527 + 0.0572172i
\(43\) −2.27719 −0.347268 −0.173634 0.984810i \(-0.555551\pi\)
−0.173634 + 0.984810i \(0.555551\pi\)
\(44\) 3.02452 + 1.36098i 0.455964 + 0.205175i
\(45\) 0 0
\(46\) −0.0935099 + 0.0679389i −0.0137873 + 0.0100170i
\(47\) 1.96428 + 6.04544i 0.286520 + 0.881818i 0.985939 + 0.167106i \(0.0534422\pi\)
−0.699419 + 0.714712i \(0.746558\pi\)
\(48\) −1.04238 + 3.20812i −0.150455 + 0.463053i
\(49\) 5.63482 + 4.09394i 0.804975 + 0.584848i
\(50\) 0 0
\(51\) −3.07254 + 9.45631i −0.430242 + 1.32415i
\(52\) 0.942208 + 2.89982i 0.130661 + 0.402132i
\(53\) −6.51578 + 4.73399i −0.895011 + 0.650264i −0.937180 0.348847i \(-0.886573\pi\)
0.0421685 + 0.999111i \(0.486573\pi\)
\(54\) −18.1433 −2.46899
\(55\) 0 0
\(56\) −0.187020 −0.0249916
\(57\) 14.6782 10.6644i 1.94418 1.41253i
\(58\) 3.14256 + 9.67180i 0.412638 + 1.26997i
\(59\) −0.479439 + 1.47556i −0.0624177 + 0.192102i −0.977403 0.211386i \(-0.932202\pi\)
0.914985 + 0.403488i \(0.132202\pi\)
\(60\) 0 0
\(61\) −0.711544 0.516967i −0.0911039 0.0661908i 0.541301 0.840829i \(-0.317932\pi\)
−0.632405 + 0.774638i \(0.717932\pi\)
\(62\) 2.37863 7.32066i 0.302086 0.929725i
\(63\) −0.484220 1.49028i −0.0610060 0.187757i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0 0
\(66\) −7.51889 + 8.28439i −0.925511 + 1.01974i
\(67\) −9.03490 −1.10379 −0.551894 0.833914i \(-0.686095\pi\)
−0.551894 + 0.833914i \(0.686095\pi\)
\(68\) −2.38467 + 1.73256i −0.289183 + 0.210104i
\(69\) −0.120483 0.370810i −0.0145045 0.0446402i
\(70\) 0 0
\(71\) 0.533268 + 0.387442i 0.0632873 + 0.0459809i 0.618979 0.785407i \(-0.287547\pi\)
−0.555692 + 0.831388i \(0.687547\pi\)
\(72\) −6.77845 4.92483i −0.798848 0.580397i
\(73\) 0.720659 2.21796i 0.0843467 0.259592i −0.899985 0.435922i \(-0.856422\pi\)
0.984331 + 0.176329i \(0.0564224\pi\)
\(74\) −2.08477 6.41625i −0.242349 0.745874i
\(75\) 0 0
\(76\) 5.37863 0.616971
\(77\) −0.565646 0.254529i −0.0644613 0.0290063i
\(78\) −10.2851 −1.16456
\(79\) 7.45799 5.41855i 0.839089 0.609634i −0.0830269 0.996547i \(-0.526459\pi\)
0.922116 + 0.386913i \(0.126459\pi\)
\(80\) 0 0
\(81\) 11.1449 34.3003i 1.23832 3.81115i
\(82\) 3.79320 + 2.75592i 0.418889 + 0.304340i
\(83\) −2.57128 1.86814i −0.282235 0.205055i 0.437657 0.899142i \(-0.355808\pi\)
−0.719891 + 0.694087i \(0.755808\pi\)
\(84\) 0.194946 0.599983i 0.0212704 0.0654635i
\(85\) 0 0
\(86\) 1.84229 1.33850i 0.198659 0.144334i
\(87\) −34.3041 −3.67778
\(88\) −3.24685 + 0.676718i −0.346116 + 0.0721384i
\(89\) −6.69658 −0.709836 −0.354918 0.934897i \(-0.615491\pi\)
−0.354918 + 0.934897i \(0.615491\pi\)
\(90\) 0 0
\(91\) −0.176211 0.542323i −0.0184720 0.0568509i
\(92\) 0.0357176 0.109927i 0.00372382 0.0114607i
\(93\) 21.0061 + 15.2619i 2.17824 + 1.58258i
\(94\) −5.14256 3.73629i −0.530414 0.385369i
\(95\) 0 0
\(96\) −1.04238 3.20812i −0.106388 0.327428i
\(97\) −7.16312 + 5.20431i −0.727305 + 0.528418i −0.888710 0.458471i \(-0.848397\pi\)
0.161405 + 0.986888i \(0.448397\pi\)
\(98\) −6.96502 −0.703574
\(99\) −13.7990 24.1206i −1.38685 2.42421i
\(100\) 0 0
\(101\) −10.9738 + 7.97291i −1.09193 + 0.793334i −0.979724 0.200351i \(-0.935792\pi\)
−0.112206 + 0.993685i \(0.535792\pi\)
\(102\) −3.07254 9.45631i −0.304227 0.936314i
\(103\) −2.20035 + 6.77198i −0.216807 + 0.667263i 0.782213 + 0.623011i \(0.214091\pi\)
−0.999020 + 0.0442526i \(0.985909\pi\)
\(104\) −2.46673 1.79219i −0.241883 0.175738i
\(105\) 0 0
\(106\) 2.48881 7.65976i 0.241734 0.743982i
\(107\) 0.886182 + 2.72739i 0.0856704 + 0.263666i 0.984710 0.174200i \(-0.0557341\pi\)
−0.899040 + 0.437867i \(0.855734\pi\)
\(108\) 14.6782 10.6644i 1.41241 1.02618i
\(109\) 11.0316 1.05663 0.528316 0.849048i \(-0.322824\pi\)
0.528316 + 0.849048i \(0.322824\pi\)
\(110\) 0 0
\(111\) 22.7573 2.16002
\(112\) 0.151302 0.109927i 0.0142967 0.0103872i
\(113\) −2.43205 7.48507i −0.228788 0.704136i −0.997885 0.0650044i \(-0.979294\pi\)
0.769097 0.639132i \(-0.220706\pi\)
\(114\) −5.60659 + 17.2553i −0.525105 + 1.61611i
\(115\) 0 0
\(116\) −8.22732 5.97750i −0.763888 0.554997i
\(117\) 7.89441 24.2965i 0.729838 2.24621i
\(118\) −0.479439 1.47556i −0.0441359 0.135836i
\(119\) 0.445980 0.324024i 0.0408829 0.0297032i
\(120\) 0 0
\(121\) −10.7412 2.37214i −0.976471 0.215649i
\(122\) 0.879517 0.0796277
\(123\) −12.7953 + 9.29633i −1.15371 + 0.838222i
\(124\) 2.37863 + 7.32066i 0.213607 + 0.657415i
\(125\) 0 0
\(126\) 1.26770 + 0.921041i 0.112936 + 0.0820529i
\(127\) 7.33498 + 5.32918i 0.650874 + 0.472888i 0.863569 0.504231i \(-0.168224\pi\)
−0.212695 + 0.977119i \(0.568224\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 2.37370 + 7.30551i 0.208993 + 0.643214i
\(130\) 0 0
\(131\) −5.92554 −0.517717 −0.258858 0.965915i \(-0.583346\pi\)
−0.258858 + 0.965915i \(0.583346\pi\)
\(132\) 1.21347 11.1217i 0.105619 0.968020i
\(133\) −1.00591 −0.0872234
\(134\) 7.30939 5.31058i 0.631435 0.458764i
\(135\) 0 0
\(136\) 0.910862 2.80335i 0.0781058 0.240385i
\(137\) 8.18931 + 5.94988i 0.699660 + 0.508333i 0.879822 0.475304i \(-0.157662\pi\)
−0.180161 + 0.983637i \(0.557662\pi\)
\(138\) 0.315430 + 0.229173i 0.0268512 + 0.0195085i
\(139\) −5.29537 + 16.2975i −0.449148 + 1.38233i 0.428723 + 0.903436i \(0.358964\pi\)
−0.877870 + 0.478898i \(0.841036\pi\)
\(140\) 0 0
\(141\) 17.3470 12.6033i 1.46088 1.06139i
\(142\) −0.659156 −0.0553151
\(143\) −5.02157 8.77767i −0.419925 0.734026i
\(144\) 8.37863 0.698219
\(145\) 0 0
\(146\) 0.720659 + 2.21796i 0.0596421 + 0.183560i
\(147\) 7.26022 22.3447i 0.598813 1.84296i
\(148\) 5.45799 + 3.96546i 0.448644 + 0.325959i
\(149\) −18.9571 13.7731i −1.55303 1.12834i −0.941450 0.337154i \(-0.890536\pi\)
−0.611576 0.791185i \(-0.709464\pi\)
\(150\) 0 0
\(151\) 3.72821 + 11.4743i 0.303398 + 0.933762i 0.980270 + 0.197662i \(0.0633349\pi\)
−0.676872 + 0.736100i \(0.736665\pi\)
\(152\) −4.35140 + 3.16148i −0.352945 + 0.256430i
\(153\) 24.6969 1.99663
\(154\) 0.607226 0.126560i 0.0489316 0.0101985i
\(155\) 0 0
\(156\) 8.32083 6.04544i 0.666200 0.484023i
\(157\) 0.933464 + 2.87291i 0.0744985 + 0.229283i 0.981371 0.192122i \(-0.0615370\pi\)
−0.906872 + 0.421405i \(0.861537\pi\)
\(158\) −2.84870 + 8.76739i −0.226630 + 0.697496i
\(159\) 21.9792 + 15.9688i 1.74306 + 1.26641i
\(160\) 0 0
\(161\) −0.00667990 + 0.0205586i −0.000526450 + 0.00162025i
\(162\) 11.1449 + 34.3003i 0.875622 + 2.69489i
\(163\) −1.74619 + 1.26868i −0.136772 + 0.0993709i −0.654068 0.756436i \(-0.726939\pi\)
0.517295 + 0.855807i \(0.326939\pi\)
\(164\) −4.68865 −0.366122
\(165\) 0 0
\(166\) 3.17828 0.246682
\(167\) 4.55150 3.30686i 0.352205 0.255892i −0.397588 0.917564i \(-0.630153\pi\)
0.749794 + 0.661672i \(0.230153\pi\)
\(168\) 0.194946 + 0.599983i 0.0150404 + 0.0462897i
\(169\) −1.14438 + 3.52205i −0.0880296 + 0.270927i
\(170\) 0 0
\(171\) −36.4588 26.4888i −2.78807 2.02565i
\(172\) −0.703690 + 2.16574i −0.0536559 + 0.165136i
\(173\) −4.80758 14.7962i −0.365513 1.12493i −0.949659 0.313285i \(-0.898570\pi\)
0.584146 0.811649i \(-0.301430\pi\)
\(174\) 27.7526 20.1634i 2.10392 1.52859i
\(175\) 0 0
\(176\) 2.22899 2.45593i 0.168017 0.185123i
\(177\) 5.23355 0.393377
\(178\) 5.41765 3.93615i 0.406070 0.295027i
\(179\) −5.36885 16.5236i −0.401287 1.23503i −0.923956 0.382498i \(-0.875064\pi\)
0.522670 0.852535i \(-0.324936\pi\)
\(180\) 0 0
\(181\) −11.1957 8.13414i −0.832169 0.604606i 0.0880032 0.996120i \(-0.471951\pi\)
−0.920172 + 0.391514i \(0.871951\pi\)
\(182\) 0.461328 + 0.335174i 0.0341959 + 0.0248448i
\(183\) −0.916793 + 2.82160i −0.0677713 + 0.208579i
\(184\) 0.0357176 + 0.109927i 0.00263314 + 0.00810396i
\(185\) 0 0
\(186\) −25.9650 −1.90385
\(187\) 6.57021 7.23912i 0.480461 0.529377i
\(188\) 6.35655 0.463599
\(189\) −2.74512 + 1.99445i −0.199678 + 0.145075i
\(190\) 0 0
\(191\) −1.22732 + 3.77731i −0.0888060 + 0.273317i −0.985590 0.169152i \(-0.945897\pi\)
0.896784 + 0.442469i \(0.145897\pi\)
\(192\) 2.72899 + 1.98273i 0.196948 + 0.143091i
\(193\) −6.42705 4.66953i −0.462629 0.336120i 0.331933 0.943303i \(-0.392299\pi\)
−0.794562 + 0.607183i \(0.792299\pi\)
\(194\) 2.73607 8.42075i 0.196438 0.604575i
\(195\) 0 0
\(196\) 5.63482 4.09394i 0.402487 0.292424i
\(197\) 5.54948 0.395384 0.197692 0.980264i \(-0.436655\pi\)
0.197692 + 0.980264i \(0.436655\pi\)
\(198\) 25.3414 + 11.4031i 1.80093 + 0.810383i
\(199\) 4.31846 0.306127 0.153064 0.988216i \(-0.451086\pi\)
0.153064 + 0.988216i \(0.451086\pi\)
\(200\) 0 0
\(201\) 9.41783 + 28.9851i 0.664282 + 2.04445i
\(202\) 4.19161 12.9004i 0.294920 0.907672i
\(203\) 1.53867 + 1.11791i 0.107994 + 0.0784620i
\(204\) 8.04401 + 5.84432i 0.563194 + 0.409184i
\(205\) 0 0
\(206\) −2.20035 6.77198i −0.153306 0.471826i
\(207\) −0.783484 + 0.569235i −0.0544559 + 0.0395646i
\(208\) 3.04905 0.211413
\(209\) −17.4636 + 3.63982i −1.20798 + 0.251771i
\(210\) 0 0
\(211\) −5.90086 + 4.28722i −0.406232 + 0.295145i −0.772074 0.635532i \(-0.780781\pi\)
0.365843 + 0.930677i \(0.380781\pi\)
\(212\) 2.48881 + 7.65976i 0.170932 + 0.526074i
\(213\) 0.687093 2.11465i 0.0470788 0.144894i
\(214\) −2.32005 1.68562i −0.158596 0.115226i
\(215\) 0 0
\(216\) −5.60659 + 17.2553i −0.381480 + 1.17407i
\(217\) −0.444850 1.36911i −0.0301984 0.0929411i
\(218\) −8.92472 + 6.48419i −0.604458 + 0.439165i
\(219\) −7.86669 −0.531582
\(220\) 0 0
\(221\) 8.98741 0.604559
\(222\) −18.4110 + 13.3764i −1.23567 + 0.897764i
\(223\) 5.09603 + 15.6840i 0.341256 + 1.05028i 0.963558 + 0.267500i \(0.0861974\pi\)
−0.622302 + 0.782777i \(0.713803\pi\)
\(224\) −0.0577923 + 0.177866i −0.00386141 + 0.0118842i
\(225\) 0 0
\(226\) 6.36718 + 4.62603i 0.423539 + 0.307719i
\(227\) −3.59992 + 11.0794i −0.238935 + 0.735367i 0.757640 + 0.652673i \(0.226352\pi\)
−0.996575 + 0.0826941i \(0.973648\pi\)
\(228\) −5.60659 17.2553i −0.371305 1.14276i
\(229\) −16.0236 + 11.6419i −1.05887 + 0.769315i −0.973879 0.227066i \(-0.927087\pi\)
−0.0849922 + 0.996382i \(0.527087\pi\)
\(230\) 0 0
\(231\) −0.226942 + 2.07998i −0.0149317 + 0.136853i
\(232\) 10.1695 0.667662
\(233\) −4.35807 + 3.16632i −0.285506 + 0.207433i −0.721316 0.692607i \(-0.756462\pi\)
0.435809 + 0.900039i \(0.356462\pi\)
\(234\) 7.89441 + 24.2965i 0.516073 + 1.58831i
\(235\) 0 0
\(236\) 1.25519 + 0.911947i 0.0817058 + 0.0593627i
\(237\) −25.1574 18.2780i −1.63415 1.18728i
\(238\) −0.170349 + 0.524281i −0.0110421 + 0.0339841i
\(239\) 2.76883 + 8.52159i 0.179101 + 0.551216i 0.999797 0.0201493i \(-0.00641415\pi\)
−0.820696 + 0.571365i \(0.806414\pi\)
\(240\) 0 0
\(241\) 10.6881 0.688484 0.344242 0.938881i \(-0.388136\pi\)
0.344242 + 0.938881i \(0.388136\pi\)
\(242\) 10.0841 4.39441i 0.648231 0.282483i
\(243\) −67.2270 −4.31262
\(244\) −0.711544 + 0.516967i −0.0455519 + 0.0330954i
\(245\) 0 0
\(246\) 4.88737 15.0418i 0.311607 0.959029i
\(247\) −13.2676 9.63950i −0.844199 0.613346i
\(248\) −6.22732 4.52442i −0.395435 0.287301i
\(249\) −3.31298 + 10.1963i −0.209952 + 0.646165i
\(250\) 0 0
\(251\) −6.02219 + 4.37538i −0.380117 + 0.276171i −0.761394 0.648290i \(-0.775485\pi\)
0.381276 + 0.924461i \(0.375485\pi\)
\(252\) −1.56697 −0.0987098
\(253\) −0.0415798 + 0.381089i −0.00261410 + 0.0239589i
\(254\) −9.06654 −0.568885
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −2.95643 + 9.09895i −0.184417 + 0.567577i −0.999938 0.0111506i \(-0.996451\pi\)
0.815521 + 0.578728i \(0.196451\pi\)
\(258\) −6.21444 4.51505i −0.386894 0.281095i
\(259\) −1.02075 0.741620i −0.0634264 0.0460820i
\(260\) 0 0
\(261\) 26.3303 + 81.0364i 1.62981 + 5.01603i
\(262\) 4.79386 3.48294i 0.296166 0.215177i
\(263\) 20.8985 1.28866 0.644328 0.764749i \(-0.277137\pi\)
0.644328 + 0.764749i \(0.277137\pi\)
\(264\) 5.55546 + 9.71091i 0.341915 + 0.597665i
\(265\) 0 0
\(266\) 0.813798 0.591259i 0.0498971 0.0362524i
\(267\) 6.98040 + 21.4835i 0.427193 + 1.31477i
\(268\) −2.79194 + 8.59270i −0.170545 + 0.524883i
\(269\) −16.6766 12.1162i −1.01679 0.738740i −0.0511662 0.998690i \(-0.516294\pi\)
−0.965622 + 0.259950i \(0.916294\pi\)
\(270\) 0 0
\(271\) 2.53533 7.80295i 0.154010 0.473996i −0.844049 0.536266i \(-0.819834\pi\)
0.998059 + 0.0622709i \(0.0198343\pi\)
\(272\) 0.910862 + 2.80335i 0.0552291 + 0.169978i
\(273\) −1.55616 + 1.13062i −0.0941831 + 0.0684280i
\(274\) −10.1225 −0.611525
\(275\) 0 0
\(276\) −0.389892 −0.0234688
\(277\) −10.3328 + 7.50725i −0.620840 + 0.451067i −0.853215 0.521559i \(-0.825350\pi\)
0.232375 + 0.972626i \(0.425350\pi\)
\(278\) −5.29537 16.2975i −0.317595 0.977458i
\(279\) 19.9296 61.3371i 1.19316 3.67215i
\(280\) 0 0
\(281\) 18.0380 + 13.1054i 1.07606 + 0.781800i 0.976991 0.213281i \(-0.0684150\pi\)
0.0990644 + 0.995081i \(0.468415\pi\)
\(282\) −6.62596 + 20.3926i −0.394570 + 1.21436i
\(283\) −3.47159 10.6844i −0.206364 0.635124i −0.999655 0.0262805i \(-0.991634\pi\)
0.793290 0.608844i \(-0.208366\pi\)
\(284\) 0.533268 0.387442i 0.0316436 0.0229905i
\(285\) 0 0
\(286\) 9.22192 + 4.14968i 0.545304 + 0.245376i
\(287\) 0.876871 0.0517600
\(288\) −6.77845 + 4.92483i −0.399424 + 0.290199i
\(289\) −2.56842 7.90479i −0.151084 0.464987i
\(290\) 0 0
\(291\) 24.1628 + 17.5553i 1.41645 + 1.02911i
\(292\) −1.88671 1.37077i −0.110411 0.0802185i
\(293\) 7.91189 24.3503i 0.462218 1.42256i −0.400230 0.916415i \(-0.631070\pi\)
0.862448 0.506146i \(-0.168930\pi\)
\(294\) 7.26022 + 22.3447i 0.423425 + 1.30317i
\(295\) 0 0
\(296\) −6.74644 −0.392129
\(297\) −40.4413 + 44.5587i −2.34664 + 2.58556i
\(298\) 23.4323 1.35739
\(299\) −0.285116 + 0.207149i −0.0164887 + 0.0119797i
\(300\) 0 0
\(301\) 0.131604 0.405036i 0.00758553 0.0233459i
\(302\) −9.76059 7.09149i −0.561659 0.408069i
\(303\) 37.0170 + 26.8944i 2.12657 + 1.54504i
\(304\) 1.66209 5.11538i 0.0953272 0.293387i
\(305\) 0 0
\(306\) −19.9802 + 14.5165i −1.14219 + 0.829853i
\(307\) −19.3732 −1.10569 −0.552844 0.833285i \(-0.686457\pi\)
−0.552844 + 0.833285i \(0.686457\pi\)
\(308\) −0.416866 + 0.459307i −0.0237531 + 0.0261715i
\(309\) 24.0190 1.36639
\(310\) 0 0
\(311\) −5.39323 16.5987i −0.305822 0.941224i −0.979369 0.202079i \(-0.935230\pi\)
0.673547 0.739144i \(-0.264770\pi\)
\(312\) −3.17828 + 9.78173i −0.179934 + 0.553781i
\(313\) −17.4443 12.6740i −0.986009 0.716377i −0.0269652 0.999636i \(-0.508584\pi\)
−0.959043 + 0.283259i \(0.908584\pi\)
\(314\) −2.44384 1.77555i −0.137914 0.100200i
\(315\) 0 0
\(316\) −2.84870 8.76739i −0.160252 0.493204i
\(317\) 16.5864 12.0507i 0.931585 0.676836i −0.0147955 0.999891i \(-0.504710\pi\)
0.946380 + 0.323054i \(0.104710\pi\)
\(318\) −27.1678 −1.52349
\(319\) 30.7580 + 13.8405i 1.72212 + 0.774918i
\(320\) 0 0
\(321\) 7.82606 5.68596i 0.436808 0.317360i
\(322\) −0.00667990 0.0205586i −0.000372256 0.00114569i
\(323\) 4.89919 15.0781i 0.272598 0.838971i
\(324\) −29.1776 21.1988i −1.62098 1.17771i
\(325\) 0 0
\(326\) 0.666986 2.05277i 0.0369409 0.113692i
\(327\) −11.4991 35.3906i −0.635902 1.95711i
\(328\) 3.79320 2.75592i 0.209444 0.152170i
\(329\) −1.18880 −0.0655407
\(330\) 0 0
\(331\) 8.86611 0.487325 0.243663 0.969860i \(-0.421651\pi\)
0.243663 + 0.969860i \(0.421651\pi\)
\(332\) −2.57128 + 1.86814i −0.141117 + 0.102528i
\(333\) −17.4675 53.7594i −0.957212 2.94599i
\(334\) −1.73852 + 5.35061i −0.0951274 + 0.292772i
\(335\) 0 0
\(336\) −0.510376 0.370810i −0.0278433 0.0202293i
\(337\) 1.17328 3.61099i 0.0639127 0.196703i −0.914001 0.405712i \(-0.867024\pi\)
0.977914 + 0.209009i \(0.0670237\pi\)
\(338\) −1.14438 3.52205i −0.0622463 0.191574i
\(339\) −21.4779 + 15.6046i −1.16652 + 0.847526i
\(340\) 0 0
\(341\) −12.6771 22.1594i −0.686502 1.20000i
\(342\) 45.0655 2.43686
\(343\) −2.11294 + 1.53514i −0.114088 + 0.0828898i
\(344\) −0.703690 2.16574i −0.0379404 0.116769i
\(345\) 0 0
\(346\) 12.5864 + 9.14455i 0.676649 + 0.491614i
\(347\) 16.5907 + 12.0539i 0.890637 + 0.647086i 0.936044 0.351883i \(-0.114458\pi\)
−0.0454069 + 0.998969i \(0.514458\pi\)
\(348\) −10.6005 + 32.6251i −0.568249 + 1.74889i
\(349\) 4.37529 + 13.4657i 0.234204 + 0.720805i 0.997226 + 0.0744327i \(0.0237146\pi\)
−0.763022 + 0.646372i \(0.776285\pi\)
\(350\) 0 0
\(351\) −55.3198 −2.95275
\(352\) −0.359735 + 3.29706i −0.0191739 + 0.175734i
\(353\) 22.1366 1.17821 0.589105 0.808056i \(-0.299480\pi\)
0.589105 + 0.808056i \(0.299480\pi\)
\(354\) −4.23403 + 3.07620i −0.225036 + 0.163498i
\(355\) 0 0
\(356\) −2.06936 + 6.36882i −0.109676 + 0.337547i
\(357\) −1.50439 1.09300i −0.0796208 0.0578479i
\(358\) 14.0558 + 10.2122i 0.742874 + 0.539729i
\(359\) −2.55974 + 7.87806i −0.135098 + 0.415788i −0.995605 0.0936498i \(-0.970147\pi\)
0.860507 + 0.509438i \(0.170147\pi\)
\(360\) 0 0
\(361\) −8.03323 + 5.83648i −0.422802 + 0.307183i
\(362\) 13.8386 0.727342
\(363\) 3.58632 + 36.9317i 0.188233 + 1.93841i
\(364\) −0.570232 −0.0298883
\(365\) 0 0
\(366\) −0.916793 2.82160i −0.0479215 0.147487i
\(367\) 7.32336 22.5390i 0.382276 1.17652i −0.556161 0.831075i \(-0.687726\pi\)
0.938437 0.345450i \(-0.112274\pi\)
\(368\) −0.0935099 0.0679389i −0.00487454 0.00354156i
\(369\) 31.7818 + 23.0908i 1.65449 + 1.20206i
\(370\) 0 0
\(371\) −0.465456 1.43253i −0.0241653 0.0743731i
\(372\) 21.0061 15.2619i 1.08912 0.791290i
\(373\) 27.6907 1.43377 0.716885 0.697191i \(-0.245567\pi\)
0.716885 + 0.697191i \(0.245567\pi\)
\(374\) −1.06036 + 9.71845i −0.0548299 + 0.502529i
\(375\) 0 0
\(376\) −5.14256 + 3.73629i −0.265207 + 0.192684i
\(377\) 9.58181 + 29.4898i 0.493488 + 1.51880i
\(378\) 1.04854 3.22708i 0.0539312 0.165983i
\(379\) −12.8168 9.31197i −0.658356 0.478324i 0.207751 0.978182i \(-0.433386\pi\)
−0.866108 + 0.499858i \(0.833386\pi\)
\(380\) 0 0
\(381\) 9.45080 29.0866i 0.484179 1.49015i
\(382\) −1.22732 3.77731i −0.0627954 0.193264i
\(383\) −1.09269 + 0.793887i −0.0558340 + 0.0405657i −0.615352 0.788252i \(-0.710986\pi\)
0.559518 + 0.828818i \(0.310986\pi\)
\(384\) −3.37322 −0.172139
\(385\) 0 0
\(386\) 7.94427 0.404353
\(387\) 15.4358 11.2148i 0.784647 0.570079i
\(388\) 2.73607 + 8.42075i 0.138903 + 0.427499i
\(389\) −1.45465 + 4.47695i −0.0737536 + 0.226990i −0.981137 0.193314i \(-0.938077\pi\)
0.907383 + 0.420304i \(0.138077\pi\)
\(390\) 0 0
\(391\) −0.275631 0.200258i −0.0139393 0.0101275i
\(392\) −2.15231 + 6.62413i −0.108708 + 0.334569i
\(393\) 6.17668 + 19.0099i 0.311572 + 0.958921i
\(394\) −4.48962 + 3.26190i −0.226184 + 0.164332i
\(395\) 0 0
\(396\) −27.2042 + 5.66997i −1.36706 + 0.284927i
\(397\) 23.2196 1.16536 0.582679 0.812702i \(-0.302005\pi\)
0.582679 + 0.812702i \(0.302005\pi\)
\(398\) −3.49371 + 2.53833i −0.175124 + 0.127235i
\(399\) 1.04854 + 3.22708i 0.0524928 + 0.161556i
\(400\) 0 0
\(401\) 4.74415 + 3.44683i 0.236912 + 0.172126i 0.699906 0.714235i \(-0.253225\pi\)
−0.462995 + 0.886361i \(0.653225\pi\)
\(402\) −24.6562 17.9138i −1.22974 0.893458i
\(403\) 7.25255 22.3210i 0.361275 1.11189i
\(404\) 4.19161 + 12.9004i 0.208540 + 0.641821i
\(405\) 0 0
\(406\) −1.90190 −0.0943899
\(407\) −20.4048 9.18174i −1.01143 0.455122i
\(408\) −9.94295 −0.492249
\(409\) 21.1843 15.3913i 1.04750 0.761051i 0.0757616 0.997126i \(-0.475861\pi\)
0.971735 + 0.236075i \(0.0758612\pi\)
\(410\) 0 0
\(411\) 10.5516 32.4744i 0.520471 1.60184i
\(412\) 5.76059 + 4.18532i 0.283804 + 0.206196i
\(413\) −0.234745 0.170552i −0.0115510 0.00839233i
\(414\) 0.299264 0.921041i 0.0147080 0.0452667i
\(415\) 0 0
\(416\) −2.46673 + 1.79219i −0.120941 + 0.0878691i
\(417\) 57.8042 2.83068
\(418\) 11.9889 13.2095i 0.586397 0.646099i
\(419\) −6.68865 −0.326762 −0.163381 0.986563i \(-0.552240\pi\)
−0.163381 + 0.986563i \(0.552240\pi\)
\(420\) 0 0
\(421\) 7.80964 + 24.0356i 0.380619 + 1.17142i 0.939609 + 0.342249i \(0.111189\pi\)
−0.558991 + 0.829174i \(0.688811\pi\)
\(422\) 2.25393 6.93687i 0.109719 0.337682i
\(423\) −43.0876 31.3050i −2.09499 1.52210i
\(424\) −6.51578 4.73399i −0.316434 0.229903i
\(425\) 0 0
\(426\) 0.687093 + 2.11465i 0.0332897 + 0.102455i
\(427\) 0.133073 0.0966830i 0.00643984 0.00467882i
\(428\) 2.86774 0.138618
\(429\) −22.9255 + 25.2595i −1.10685 + 1.21954i
\(430\) 0 0
\(431\) 25.9322 18.8408i 1.24911 0.907531i 0.250940 0.968003i \(-0.419260\pi\)
0.998170 + 0.0604715i \(0.0192604\pi\)
\(432\) −5.60659 17.2553i −0.269747 0.830196i
\(433\) −3.21743 + 9.90223i −0.154620 + 0.475871i −0.998122 0.0612546i \(-0.980490\pi\)
0.843502 + 0.537125i \(0.180490\pi\)
\(434\) 1.16463 + 0.846155i 0.0559042 + 0.0406168i
\(435\) 0 0
\(436\) 3.40894 10.4916i 0.163259 0.502458i
\(437\) 0.192112 + 0.591259i 0.00918994 + 0.0282837i
\(438\) 6.36429 4.62393i 0.304097 0.220940i
\(439\) 31.4256 1.49986 0.749931 0.661517i \(-0.230087\pi\)
0.749931 + 0.661517i \(0.230087\pi\)
\(440\) 0 0
\(441\) −58.3573 −2.77892
\(442\) −7.27097 + 5.28267i −0.345845 + 0.251271i
\(443\) 12.7062 + 39.1057i 0.603690 + 1.85797i 0.505559 + 0.862792i \(0.331286\pi\)
0.0981312 + 0.995173i \(0.468714\pi\)
\(444\) 7.03238 21.6434i 0.333742 1.02715i
\(445\) 0 0
\(446\) −13.3416 9.69323i −0.631742 0.458988i
\(447\) −24.4254 + 75.1736i −1.15528 + 3.55559i
\(448\) −0.0577923 0.177866i −0.00273043 0.00840340i
\(449\) 9.28984 6.74946i 0.438414 0.318527i −0.346590 0.938017i \(-0.612661\pi\)
0.785005 + 0.619490i \(0.212661\pi\)
\(450\) 0 0
\(451\) 15.2234 3.17290i 0.716840 0.149406i
\(452\) −7.87027 −0.370186
\(453\) 32.9246 23.9212i 1.54693 1.12391i
\(454\) −3.59992 11.0794i −0.168953 0.519983i
\(455\) 0 0
\(456\) 14.6782 + 10.6644i 0.687371 + 0.499405i
\(457\) 14.9563 + 10.8664i 0.699627 + 0.508309i 0.879811 0.475324i \(-0.157669\pi\)
−0.180184 + 0.983633i \(0.557669\pi\)
\(458\) 6.12048 18.8369i 0.285991 0.880191i
\(459\) −16.5260 50.8619i −0.771370 2.37403i
\(460\) 0 0
\(461\) −6.71978 −0.312971 −0.156486 0.987680i \(-0.550017\pi\)
−0.156486 + 0.987680i \(0.550017\pi\)
\(462\) −1.03898 1.81613i −0.0483378 0.0844941i
\(463\) 25.2817 1.17494 0.587470 0.809246i \(-0.300124\pi\)
0.587470 + 0.809246i \(0.300124\pi\)
\(464\) −8.22732 + 5.97750i −0.381944 + 0.277499i
\(465\) 0 0
\(466\) 1.66463 5.12321i 0.0771126 0.237328i
\(467\) −16.1346 11.7224i −0.746618 0.542450i 0.148159 0.988964i \(-0.452665\pi\)
−0.894777 + 0.446514i \(0.852665\pi\)
\(468\) −20.6678 15.0161i −0.955370 0.694117i
\(469\) 0.522148 1.60700i 0.0241105 0.0742046i
\(470\) 0 0
\(471\) 8.24361 5.98934i 0.379846 0.275974i
\(472\) −1.55150 −0.0714135
\(473\) 0.819185 7.50803i 0.0376662 0.345219i
\(474\) 31.0963 1.42830
\(475\) 0 0
\(476\) −0.170349 0.524281i −0.00780794 0.0240304i
\(477\) 20.8528 64.1783i 0.954783 2.93852i
\(478\) −7.24889 5.26663i −0.331557 0.240890i
\(479\) −6.64419 4.82729i −0.303581 0.220564i 0.425556 0.904932i \(-0.360078\pi\)
−0.729137 + 0.684368i \(0.760078\pi\)
\(480\) 0 0
\(481\) −6.35655 19.5635i −0.289834 0.892017i
\(482\) −8.64689 + 6.28233i −0.393855 + 0.286153i
\(483\) 0.0729176 0.00331787
\(484\) −5.57524 + 9.48244i −0.253420 + 0.431020i
\(485\) 0 0
\(486\) 54.3878 39.5151i 2.46708 1.79244i
\(487\) −8.64835 26.6169i −0.391894 1.20613i −0.931354 0.364115i \(-0.881372\pi\)
0.539460 0.842011i \(-0.318628\pi\)
\(488\) 0.271786 0.836470i 0.0123032 0.0378652i
\(489\) 5.89029 + 4.27955i 0.266368 + 0.193528i
\(490\) 0 0
\(491\) −4.41679 + 13.5935i −0.199327 + 0.613466i 0.800572 + 0.599237i \(0.204529\pi\)
−0.999899 + 0.0142287i \(0.995471\pi\)
\(492\) 4.88737 + 15.0418i 0.220340 + 0.678136i
\(493\) −24.2510 + 17.6194i −1.09221 + 0.793536i
\(494\) 16.3997 0.737857
\(495\) 0 0
\(496\) 7.69740 0.345623
\(497\) −0.0997317 + 0.0724593i −0.00447358 + 0.00325024i
\(498\) −3.31298 10.1963i −0.148458 0.456907i
\(499\) 1.51667 4.66783i 0.0678955 0.208961i −0.911352 0.411627i \(-0.864961\pi\)
0.979248 + 0.202666i \(0.0649606\pi\)
\(500\) 0 0
\(501\) −15.3532 11.1548i −0.685931 0.498358i
\(502\) 2.30027 7.07951i 0.102666 0.315974i
\(503\) 2.03031 + 6.24866i 0.0905272 + 0.278614i 0.986062 0.166377i \(-0.0532069\pi\)
−0.895535 + 0.444991i \(0.853207\pi\)
\(504\) 1.26770 0.921041i 0.0564680 0.0410264i
\(505\) 0 0
\(506\) −0.190360 0.332748i −0.00846252 0.0147924i
\(507\) 12.4921 0.554792
\(508\) 7.33498 5.32918i 0.325437 0.236444i
\(509\) 0.849203 + 2.61358i 0.0376403 + 0.115845i 0.968111 0.250521i \(-0.0806019\pi\)
−0.930471 + 0.366366i \(0.880602\pi\)
\(510\) 0 0
\(511\) 0.352852 + 0.256362i 0.0156092 + 0.0113408i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) −30.1557 + 92.8098i −1.33141 + 4.09765i
\(514\) −2.95643 9.09895i −0.130402 0.401338i
\(515\) 0 0
\(516\) 7.68147 0.338158
\(517\) −20.6388 + 4.30160i −0.907693 + 0.189184i
\(518\) 1.26172 0.0554367
\(519\) −42.4567 + 30.8466i −1.86364 + 1.35402i
\(520\) 0 0
\(521\) −2.39458 + 7.36975i −0.104908 + 0.322875i −0.989709 0.143095i \(-0.954294\pi\)
0.884801 + 0.465970i \(0.154294\pi\)
\(522\) −68.9337 50.0832i −3.01714 2.19208i
\(523\) −21.0367 15.2841i −0.919871 0.668326i 0.0236208 0.999721i \(-0.492481\pi\)
−0.943492 + 0.331395i \(0.892481\pi\)
\(524\) −1.83109 + 5.63552i −0.0799916 + 0.246189i
\(525\) 0 0
\(526\) −16.9072 + 12.2838i −0.737190 + 0.535600i
\(527\) 22.6889 0.988346
\(528\) −10.2024 4.59087i −0.444002 0.199792i
\(529\) −22.9866 −0.999419
\(530\) 0 0
\(531\) −4.01704 12.3632i −0.174325 0.536516i
\(532\) −0.310843 + 0.956677i −0.0134768 + 0.0414772i
\(533\) 11.5656 + 8.40293i 0.500964 + 0.363971i
\(534\) −18.2749 13.2775i −0.790833 0.574574i
\(535\) 0 0
\(536\) −2.79194 8.59270i −0.120593 0.371148i
\(537\) −47.4134 + 34.4479i −2.04604 + 1.48654i
\(538\) 20.6134 0.888706
\(539\) −15.5250 + 17.1056i −0.668709 + 0.736790i
\(540\) 0 0
\(541\) 18.2979 13.2942i 0.786690 0.571564i −0.120289 0.992739i \(-0.538382\pi\)
0.906979 + 0.421175i \(0.138382\pi\)
\(542\) 2.53533 + 7.80295i 0.108902 + 0.335165i
\(543\) −14.4252 + 44.3961i −0.619043 + 1.90522i
\(544\) −2.38467 1.73256i −0.102242 0.0742830i
\(545\) 0 0
\(546\) 0.594400 1.82938i 0.0254380 0.0782901i
\(547\) −10.6609 32.8110i −0.455828 1.40290i −0.870160 0.492770i \(-0.835985\pi\)
0.414331 0.910126i \(-0.364015\pi\)
\(548\) 8.18931 5.94988i 0.349830 0.254166i
\(549\) 7.36914 0.314507
\(550\) 0 0
\(551\) 54.6981 2.33022
\(552\) 0.315430 0.229173i 0.0134256 0.00975425i
\(553\) 0.532763 + 1.63968i 0.0226554 + 0.0697261i
\(554\) 3.94679 12.1470i 0.167683 0.516076i
\(555\) 0 0
\(556\) 13.8635 + 10.0724i 0.587942 + 0.427165i
\(557\) 5.76393 17.7396i 0.244226 0.751649i −0.751537 0.659691i \(-0.770687\pi\)
0.995763 0.0919585i \(-0.0293127\pi\)
\(558\) 19.9296 + 61.3371i 0.843688 + 2.59660i
\(559\) 5.61722 4.08115i 0.237583 0.172614i
\(560\) 0 0
\(561\) −30.0727 13.5321i −1.26967 0.571326i
\(562\) −22.2962 −0.940507
\(563\) −31.3413 + 22.7708i −1.32088 + 0.959675i −0.320958 + 0.947093i \(0.604005\pi\)
−0.999921 + 0.0125815i \(0.995995\pi\)
\(564\) −6.62596 20.3926i −0.279003 0.858684i
\(565\) 0 0
\(566\) 9.08873 + 6.60335i 0.382028 + 0.277559i
\(567\) 5.45679 + 3.96459i 0.229164 + 0.166497i
\(568\) −0.203690 + 0.626894i −0.00854666 + 0.0263039i
\(569\) −8.05198 24.7814i −0.337557 1.03889i −0.965449 0.260592i \(-0.916082\pi\)
0.627892 0.778300i \(-0.283918\pi\)
\(570\) 0 0
\(571\) −39.8951 −1.66956 −0.834778 0.550586i \(-0.814404\pi\)
−0.834778 + 0.550586i \(0.814404\pi\)
\(572\) −9.89981 + 2.06335i −0.413932 + 0.0862729i
\(573\) 13.3974 0.559686
\(574\) −0.709403 + 0.515412i −0.0296099 + 0.0215129i
\(575\) 0 0
\(576\) 2.58914 7.96855i 0.107881 0.332023i
\(577\) −6.42334 4.66683i −0.267407 0.194283i 0.445999 0.895033i \(-0.352848\pi\)
−0.713406 + 0.700751i \(0.752848\pi\)
\(578\) 6.72421 + 4.88543i 0.279690 + 0.203207i
\(579\) −8.28097 + 25.4862i −0.344146 + 1.05917i
\(580\) 0 0
\(581\) 0.480880 0.349380i 0.0199503 0.0144947i
\(582\) −29.8669 −1.23802
\(583\) −13.2643 23.1859i −0.549351 0.960261i
\(584\) 2.33210 0.0965030
\(585\) 0 0
\(586\) 7.91189 + 24.3503i 0.326837 + 1.00590i
\(587\) 3.66271 11.2727i 0.151176 0.465273i −0.846577 0.532266i \(-0.821341\pi\)
0.997753 + 0.0669934i \(0.0213406\pi\)
\(588\) −19.0075 13.8098i −0.783856 0.569505i
\(589\) −33.4944 24.3351i −1.38011 1.00271i
\(590\) 0 0
\(591\) −5.78468 17.8034i −0.237950 0.732335i
\(592\) 5.45799 3.96546i 0.224322 0.162979i
\(593\) −29.4865 −1.21087 −0.605433 0.795896i \(-0.707000\pi\)
−0.605433 + 0.795896i \(0.707000\pi\)
\(594\) 6.52678 59.8195i 0.267797 2.45442i
\(595\) 0 0
\(596\) −18.9571 + 13.7731i −0.776513 + 0.564170i
\(597\) −4.50149 13.8541i −0.184234 0.567013i
\(598\) 0.108905 0.335174i 0.00445344 0.0137063i
\(599\) 22.4696 + 16.3251i 0.918084 + 0.667027i 0.943046 0.332662i \(-0.107947\pi\)
−0.0249627 + 0.999688i \(0.507947\pi\)
\(600\) 0 0
\(601\) 9.07483 27.9295i 0.370170 1.13927i −0.576510 0.817090i \(-0.695586\pi\)
0.946680 0.322176i \(-0.104414\pi\)
\(602\) 0.131604 + 0.405036i 0.00536378 + 0.0165080i
\(603\) 61.2426 44.4954i 2.49399 1.81199i
\(604\) 12.0648 0.490908
\(605\) 0 0
\(606\) −45.7555 −1.85869
\(607\) 8.71695 6.33323i 0.353810 0.257058i −0.396656 0.917967i \(-0.629829\pi\)
0.750466 + 0.660909i \(0.229829\pi\)
\(608\) 1.66209 + 5.11538i 0.0674065 + 0.207456i
\(609\) 1.98251 6.10154i 0.0803354 0.247247i
\(610\) 0 0
\(611\) −15.6799 11.3921i −0.634341 0.460876i
\(612\) 7.63177 23.4882i 0.308496 0.949454i
\(613\) −13.9982 43.0821i −0.565383 1.74007i −0.666812 0.745226i \(-0.732341\pi\)
0.101429 0.994843i \(-0.467659\pi\)
\(614\) 15.6733 11.3873i 0.632522 0.459554i
\(615\) 0 0
\(616\) 0.0672776 0.616615i 0.00271069 0.0248441i
\(617\) −7.32134 −0.294746 −0.147373 0.989081i \(-0.547082\pi\)
−0.147373 + 0.989081i \(0.547082\pi\)
\(618\) −19.4318 + 14.1180i −0.781660 + 0.567909i
\(619\) 8.99572 + 27.6860i 0.361569 + 1.11279i 0.952102 + 0.305781i \(0.0989174\pi\)
−0.590533 + 0.807013i \(0.701083\pi\)
\(620\) 0 0
\(621\) 1.69658 + 1.23264i 0.0680813 + 0.0494640i
\(622\) 14.1197 + 10.2585i 0.566147 + 0.411330i
\(623\) 0.387011 1.19110i 0.0155053 0.0477203i
\(624\) −3.17828 9.78173i −0.127233 0.391582i
\(625\) 0 0
\(626\) 21.5623 0.861803
\(627\) 29.8807 + 52.2313i 1.19332 + 2.08592i
\(628\) 3.02075 0.120541
\(629\) 16.0880 11.6886i 0.641472 0.466056i
\(630\) 0 0
\(631\) −13.7577 + 42.3419i −0.547686 + 1.68560i 0.166831 + 0.985985i \(0.446647\pi\)
−0.714517 + 0.699618i \(0.753353\pi\)
\(632\) 7.45799 + 5.41855i 0.296663 + 0.215538i
\(633\) 19.9049 + 14.4618i 0.791149 + 0.574803i
\(634\) −6.33544 + 19.4985i −0.251612 + 0.774384i
\(635\) 0 0
\(636\) 21.9792 15.9688i 0.871531 0.633204i
\(637\) −21.2367 −0.841428
\(638\) −33.0190 + 6.88191i −1.30723 + 0.272457i
\(639\) −5.52282 −0.218479
\(640\) 0 0
\(641\) −9.70763 29.8770i −0.383428 1.18007i −0.937614 0.347678i \(-0.886970\pi\)
0.554186 0.832393i \(-0.313030\pi\)
\(642\) −2.98929 + 9.20008i −0.117978 + 0.363098i
\(643\) 27.5916 + 20.0465i 1.08811 + 0.790556i 0.979079 0.203483i \(-0.0652261\pi\)
0.109028 + 0.994039i \(0.465226\pi\)
\(644\) 0.0174882 + 0.0127059i 0.000689132 + 0.000500683i
\(645\) 0 0
\(646\) 4.89919 + 15.0781i 0.192756 + 0.593242i
\(647\) −14.9018 + 10.8268i −0.585851 + 0.425646i −0.840829 0.541301i \(-0.817932\pi\)
0.254978 + 0.966947i \(0.417932\pi\)
\(648\) 36.0655 1.41679
\(649\) −4.69254 2.11155i −0.184198 0.0828856i
\(650\) 0 0
\(651\) −3.92856 + 2.85427i −0.153973 + 0.111868i
\(652\) 0.666986 + 2.05277i 0.0261212 + 0.0803927i
\(653\) −5.34034 + 16.4359i −0.208984 + 0.643185i 0.790543 + 0.612407i \(0.209799\pi\)
−0.999526 + 0.0307784i \(0.990201\pi\)
\(654\) 30.1051 + 21.8726i 1.17720 + 0.855287i
\(655\) 0 0
\(656\) −1.44887 + 4.45917i −0.0565690 + 0.174101i
\(657\) 6.03813 + 18.5834i 0.235570 + 0.725009i
\(658\) 0.961760 0.698760i 0.0374933 0.0272405i
\(659\) 9.78298 0.381091 0.190545 0.981678i \(-0.438974\pi\)
0.190545 + 0.981678i \(0.438974\pi\)
\(660\) 0 0
\(661\) 4.62985 0.180080 0.0900401 0.995938i \(-0.471300\pi\)
0.0900401 + 0.995938i \(0.471300\pi\)
\(662\) −7.17283 + 5.21137i −0.278780 + 0.202546i
\(663\) −9.36832 28.8327i −0.363836 1.11977i
\(664\) 0.982141 3.02272i 0.0381145 0.117304i
\(665\) 0 0
\(666\) 45.7304 + 33.2251i 1.77202 + 1.28745i
\(667\) 0.363231 1.11791i 0.0140644 0.0432857i
\(668\) −1.73852 5.35061i −0.0672653 0.207021i
\(669\) 45.0041 32.6974i 1.73996 1.26416i
\(670\) 0 0
\(671\) 1.96044 2.16003i 0.0756818 0.0833870i
\(672\) 0.630859 0.0243359
\(673\) −29.4683 + 21.4100i −1.13592 + 0.825293i −0.986545 0.163487i \(-0.947726\pi\)
−0.149374 + 0.988781i \(0.547726\pi\)
\(674\) 1.17328 + 3.61099i 0.0451931 + 0.139090i
\(675\) 0 0
\(676\) 2.99604 + 2.17675i 0.115232 + 0.0837211i
\(677\) 35.3935 + 25.7149i 1.36028 + 0.988304i 0.998427 + 0.0560698i \(0.0178570\pi\)
0.361856 + 0.932234i \(0.382143\pi\)
\(678\) 8.20383 25.2488i 0.315066 0.969674i
\(679\) −0.511699 1.57485i −0.0196372 0.0604371i
\(680\) 0 0
\(681\) 39.2967 1.50585
\(682\) 23.2810 + 10.4760i 0.891474 + 0.401145i
\(683\) 19.5734 0.748953 0.374477 0.927236i \(-0.377822\pi\)
0.374477 + 0.927236i \(0.377822\pi\)
\(684\) −36.4588 + 26.4888i −1.39404 + 1.01283i
\(685\) 0 0
\(686\) 0.807071 2.48391i 0.0308141 0.0948361i
\(687\) 54.0513 + 39.2705i 2.06218 + 1.49826i
\(688\) 1.84229 + 1.33850i 0.0702365 + 0.0510298i
\(689\) 7.58849 23.3550i 0.289098 0.889754i
\(690\) 0 0
\(691\) −19.7570 + 14.3543i −0.751592 + 0.546063i −0.896320 0.443408i \(-0.853769\pi\)
0.144728 + 0.989471i \(0.453769\pi\)
\(692\) −15.5576 −0.591413
\(693\) 5.08772 1.06040i 0.193266 0.0402811i
\(694\) −20.5073 −0.778445
\(695\) 0 0
\(696\) −10.6005 32.6251i −0.401813 1.23665i
\(697\) −4.27072 + 13.1439i −0.161765 + 0.497861i
\(698\) −11.4546 8.32229i −0.433565 0.315003i
\(699\) 14.7007 + 10.6807i 0.556032 + 0.403981i
\(700\) 0 0
\(701\) −3.80171 11.7005i −0.143589 0.441921i 0.853238 0.521522i \(-0.174635\pi\)
−0.996827 + 0.0796009i \(0.974635\pi\)
\(702\) 44.7547 32.5162i 1.68916 1.22724i
\(703\) −36.2866 −1.36857
\(704\) −1.64693 2.87882i −0.0620710 0.108500i
\(705\) 0 0
\(706\) −17.9089 + 13.0116i −0.674009 + 0.489696i
\(707\) −0.783913 2.41264i −0.0294821 0.0907366i
\(708\) 1.61725 4.97740i 0.0607801 0.187062i
\(709\) −2.09099 1.51919i −0.0785287 0.0570544i 0.547828 0.836591i \(-0.315455\pi\)
−0.626357 + 0.779536i \(0.715455\pi\)
\(710\) 0 0
\(711\) −23.8682 + 73.4587i −0.895126 + 2.75492i
\(712\) −2.06936 6.36882i −0.0775524 0.238682i
\(713\) −0.719783 + 0.522953i −0.0269561 + 0.0195847i
\(714\) 1.85953 0.0695911
\(715\) 0 0
\(716\) −17.3740 −0.649295
\(717\) 24.4521 17.7655i 0.913181 0.663465i
\(718\) −2.55974 7.87806i −0.0955285 0.294007i
\(719\) −12.3660 + 38.0587i −0.461175 + 1.41935i 0.402554 + 0.915396i \(0.368122\pi\)
−0.863730 + 0.503956i \(0.831878\pi\)
\(720\) 0 0
\(721\) −1.07734 0.782737i −0.0401224 0.0291506i
\(722\) 3.06842 9.44363i 0.114195 0.351455i
\(723\) −11.1411 34.2889i −0.414343 1.27522i
\(724\) −11.1957 + 8.13414i −0.416084 + 0.302303i
\(725\) 0 0
\(726\) −24.6093 27.7704i −0.913337 1.03066i
\(727\) 47.6224 1.76622 0.883108 0.469169i \(-0.155446\pi\)
0.883108 + 0.469169i \(0.155446\pi\)
\(728\) 0.461328 0.335174i 0.0170979 0.0124224i
\(729\) 36.6417 + 112.772i 1.35710 + 4.17673i
\(730\) 0 0
\(731\) 5.43034 + 3.94537i 0.200848 + 0.145925i
\(732\) 2.40020 + 1.74384i 0.0887138 + 0.0644543i
\(733\) −13.3702 + 41.1492i −0.493839 + 1.51988i 0.324918 + 0.945742i \(0.394663\pi\)
−0.818758 + 0.574139i \(0.805337\pi\)
\(734\) 7.32336 + 22.5390i 0.270310 + 0.831929i
\(735\) 0 0
\(736\) 0.115585 0.00426050
\(737\) 3.25017 29.7886i 0.119722 1.09728i
\(738\) −39.2845 −1.44608
\(739\) 36.8236 26.7539i 1.35458 0.984160i 0.355810 0.934558i \(-0.384205\pi\)
0.998769 0.0496014i \(-0.0157951\pi\)
\(740\) 0 0
\(741\) −17.0948 + 52.6123i −0.627992 + 1.93276i
\(742\) 1.21858 + 0.885350i 0.0447355 + 0.0325022i
\(743\) 34.0331 + 24.7265i 1.24855 + 0.907128i 0.998137 0.0610105i \(-0.0194323\pi\)
0.250417 + 0.968138i \(0.419432\pi\)
\(744\) −8.02363 + 24.6942i −0.294161 + 0.905333i
\(745\) 0 0
\(746\) −22.4023 + 16.2762i −0.820205 + 0.595914i
\(747\) 26.6296 0.974326
\(748\) −4.85451 8.48565i −0.177498 0.310266i
\(749\) −0.536325 −0.0195969
\(750\) 0 0
\(751\) −1.26991 3.90839i −0.0463398 0.142619i 0.925209 0.379457i \(-0.123889\pi\)
−0.971549 + 0.236837i \(0.923889\pi\)
\(752\) 1.96428 6.04544i 0.0716300 0.220454i
\(753\) 20.3142 + 14.7591i 0.740290 + 0.537852i
\(754\) −25.0855 18.2257i −0.913560 0.663740i
\(755\) 0 0
\(756\) 1.04854 + 3.22708i 0.0381351 + 0.117368i
\(757\) −3.97384 + 2.88717i −0.144432 + 0.104936i −0.657655 0.753319i \(-0.728451\pi\)
0.513223 + 0.858255i \(0.328451\pi\)
\(758\) 15.8425 0.575425
\(759\) 1.26592 0.263847i 0.0459501 0.00957705i
\(760\) 0 0
\(761\) −23.3518 + 16.9661i −0.846503 + 0.615021i −0.924180 0.381958i \(-0.875250\pi\)
0.0776764 + 0.996979i \(0.475250\pi\)
\(762\) 9.45080 + 29.0866i 0.342366 + 1.05370i
\(763\) −0.637539 + 1.96214i −0.0230805 + 0.0710344i
\(764\) 3.21318 + 2.33451i 0.116249 + 0.0844596i
\(765\) 0 0
\(766\) 0.417371 1.28454i 0.0150802 0.0464122i
\(767\) −1.46183 4.49906i −0.0527837 0.162452i
\(768\) 2.72899 1.98273i 0.0984741 0.0715456i
\(769\) −35.9976 −1.29811 −0.649053 0.760743i \(-0.724835\pi\)
−0.649053 + 0.760743i \(0.724835\pi\)
\(770\) 0 0
\(771\) 32.2723 1.16226
\(772\) −6.42705 + 4.66953i −0.231315 + 0.168060i
\(773\) 2.75519 + 8.47960i 0.0990972 + 0.304990i 0.988300 0.152524i \(-0.0487401\pi\)
−0.889203 + 0.457514i \(0.848740\pi\)
\(774\) −5.89596 + 18.1459i −0.211926 + 0.652241i
\(775\) 0 0
\(776\) −7.16312 5.20431i −0.257141 0.186824i
\(777\) −1.31519 + 4.04775i −0.0471823 + 0.145212i
\(778\) −1.45465 4.47695i −0.0521516 0.160506i
\(779\) 20.4022 14.8231i 0.730985 0.531091i
\(780\) 0 0
\(781\) −1.46925 + 1.61884i −0.0525740 + 0.0579266i
\(782\) 0.340698 0.0121834
\(783\) 149.271 108.452i 5.33450 3.87574i
\(784\) −2.15231 6.62413i −0.0768682 0.236576i
\(785\) 0 0
\(786\) −16.1708 11.7487i −0.576792 0.419064i
\(787\) −13.8429 10.0575i −0.493446 0.358510i 0.313062 0.949733i \(-0.398645\pi\)
−0.806508 + 0.591223i \(0.798645\pi\)
\(788\) 1.71488 5.27787i 0.0610902 0.188016i
\(789\) −21.7842 67.0450i −0.775539 2.38686i
\(790\) 0 0
\(791\) 1.47190 0.0523346
\(792\) 18.6759 20.5773i 0.663619 0.731183i
\(793\) 2.68169 0.0952296
\(794\) −18.7850 + 13.6481i −0.666656 + 0.484354i
\(795\) 0 0
\(796\) 1.33448 4.10710i 0.0472993 0.145572i
\(797\) −26.6612 19.3705i −0.944389 0.686139i 0.00508424 0.999987i \(-0.498382\pi\)
−0.949473 + 0.313848i \(0.898382\pi\)
\(798\) −2.74512 1.99445i −0.0971762 0.0706027i
\(799\) 5.78994 17.8196i 0.204833 0.630412i
\(800\) 0 0
\(801\) 45.3924 32.9795i 1.60386 1.16527i
\(802\) −5.86409 −0.207068
\(803\) 7.05349 + 3.17393i 0.248912 + 0.112006i
\(804\) 30.4767 1.07483
\(805\) 0 0
\(806\) 7.25255 + 22.3210i 0.255460 + 0.786225i
\(807\) −21.4870 + 66.1303i −0.756379 + 2.32790i
\(808\) −10.9738 7.97291i −0.386056 0.280486i
\(809\) 33.1781 + 24.1053i 1.16648 + 0.847498i 0.990583 0.136911i \(-0.0437173\pi\)
0.175897 + 0.984409i \(0.443717\pi\)
\(810\) 0 0
\(811\) −3.29631 10.1450i −0.115749 0.356239i 0.876353 0.481669i \(-0.159969\pi\)
−0.992103 + 0.125430i \(0.959969\pi\)
\(812\) 1.53867 1.11791i 0.0539968 0.0392310i
\(813\) −27.6756 −0.970627
\(814\) 21.9047 4.56544i 0.767760 0.160019i
\(815\) 0 0
\(816\) 8.04401 5.84432i 0.281597 0.204592i
\(817\) −3.78489 11.6487i −0.132416 0.407536i
\(818\) −8.09168 + 24.9036i −0.282919 + 0.870735i
\(819\) 3.86529 + 2.80830i 0.135064 + 0.0981299i
\(820\) 0 0
\(821\) 2.06521 6.35607i 0.0720764 0.221828i −0.908529 0.417823i \(-0.862793\pi\)
0.980605 + 0.195994i \(0.0627934\pi\)
\(822\) 10.5516 + 32.4744i 0.368028 + 1.13267i
\(823\) −30.6620 + 22.2772i −1.06881 + 0.776535i −0.975698 0.219121i \(-0.929681\pi\)
−0.0931110 + 0.995656i \(0.529681\pi\)
\(824\) −7.12048 −0.248054
\(825\) 0 0
\(826\) 0.290161 0.0100960
\(827\) −26.6015 + 19.3271i −0.925026 + 0.672071i −0.944770 0.327734i \(-0.893715\pi\)
0.0197438 + 0.999805i \(0.493715\pi\)
\(828\) 0.299264 + 0.921041i 0.0104002 + 0.0320084i
\(829\) 4.15827 12.7978i 0.144423 0.444487i −0.852514 0.522705i \(-0.824923\pi\)
0.996936 + 0.0782180i \(0.0249230\pi\)
\(830\) 0 0
\(831\) 34.8550 + 25.3236i 1.20911 + 0.878466i
\(832\) 0.942208 2.89982i 0.0326652 0.100533i
\(833\) −6.34418 19.5254i −0.219813 0.676514i
\(834\) −46.7646 + 33.9764i −1.61932 + 1.17651i
\(835\) 0 0
\(836\) −1.93488 + 17.7336i −0.0669193 + 0.613331i
\(837\) −139.656 −4.82722
\(838\) 5.41123 3.93149i 0.186928 0.135811i
\(839\) −13.3324 41.0329i −0.460285 1.41661i −0.864817 0.502088i \(-0.832565\pi\)
0.404532 0.914524i \(-0.367435\pi\)
\(840\) 0 0
\(841\) −60.2065 43.7426i −2.07609 1.50837i
\(842\) −20.4459 14.8548i −0.704612 0.511931i
\(843\) 23.2411 71.5289i 0.800467 2.46358i
\(844\) 2.25393 + 6.93687i 0.0775834 + 0.238777i
\(845\) 0 0
\(846\) 53.2592 1.83109
\(847\) 1.04268 1.77340i 0.0358269 0.0609349i
\(848\) 8.05395 0.276574
\(849\) −30.6583 + 22.2746i −1.05219 + 0.764461i
\(850\) 0 0
\(851\) −0.240967 + 0.741620i −0.00826024 + 0.0254224i
\(852\) −1.79883 1.30693i −0.0616270 0.0447746i
\(853\) −38.6637 28.0908i −1.32382 0.961811i −0.999876 0.0157338i \(-0.994992\pi\)
−0.323942 0.946077i \(-0.605008\pi\)
\(854\) −0.0508293 + 0.156436i −0.00173934 + 0.00535314i
\(855\) 0 0
\(856\) −2.32005 + 1.68562i −0.0792978 + 0.0576132i
\(857\) −3.49798 −0.119489 −0.0597444 0.998214i \(-0.519029\pi\)
−0.0597444 + 0.998214i \(0.519029\pi\)
\(858\) 3.69992 33.9106i 0.126313 1.15769i
\(859\) 26.4442 0.902263 0.451131 0.892458i \(-0.351021\pi\)
0.451131 + 0.892458i \(0.351021\pi\)
\(860\) 0 0
\(861\) −0.914035 2.81311i −0.0311502 0.0958705i
\(862\) −9.90521 + 30.4851i −0.337373 + 1.03833i
\(863\) −40.5772 29.4811i −1.38126 1.00355i −0.996761 0.0804231i \(-0.974373\pi\)
−0.384503 0.923124i \(-0.625627\pi\)
\(864\) 14.6782 + 10.6644i 0.499364 + 0.362809i
\(865\) 0 0
\(866\) −3.21743 9.90223i −0.109333 0.336491i
\(867\) −22.6823 + 16.4796i −0.770330 + 0.559678i
\(868\) −1.43957 −0.0488620
\(869\) 15.1824 + 26.5387i 0.515026 + 0.900262i
\(870\) 0 0
\(871\) 22.2867 16.1922i 0.755155 0.548652i
\(872\) 3.40894 + 10.4916i 0.115441 + 0.355292i
\(873\) 22.9245 70.5543i 0.775876 2.38790i
\(874\) −0.502955 0.365418i −0.0170127 0.0123604i
\(875\) 0 0
\(876\) −2.43094 + 7.48167i −0.0821339 + 0.252782i
\(877\) 6.97221 + 21.4583i 0.235435 + 0.724594i 0.997063 + 0.0765800i \(0.0244001\pi\)
−0.761629 + 0.648014i \(0.775600\pi\)
\(878\) −25.4238 + 18.4715i −0.858013 + 0.623383i
\(879\) −86.3660 −2.91305
\(880\) 0 0
\(881\) 7.71364 0.259879 0.129940 0.991522i \(-0.458522\pi\)
0.129940 + 0.991522i \(0.458522\pi\)
\(882\) 47.2121 34.3016i 1.58971 1.15499i
\(883\) 10.2098 + 31.4225i 0.343586 + 1.05745i 0.962336 + 0.271862i \(0.0876394\pi\)
−0.618750 + 0.785588i \(0.712361\pi\)
\(884\) 2.77726 8.54754i 0.0934095 0.287485i
\(885\) 0 0
\(886\) −33.2653 24.1686i −1.11757 0.811961i
\(887\) 5.71644 17.5934i 0.191939 0.590729i −0.808059 0.589101i \(-0.799482\pi\)
0.999999 0.00162748i \(-0.000518043\pi\)
\(888\) 7.03238 + 21.6434i 0.235991 + 0.726306i
\(889\) −1.37179 + 0.996661i −0.0460083 + 0.0334270i
\(890\) 0 0
\(891\) 109.081 + 49.0843i 3.65435 + 1.64438i
\(892\) 16.4911 0.552163
\(893\) −27.6599 + 20.0961i −0.925603 + 0.672490i
\(894\) −24.4254 75.1736i −0.816907 2.51418i
\(895\) 0 0
\(896\) 0.151302 + 0.109927i 0.00505465 + 0.00367242i
\(897\) 0.961760 + 0.698760i 0.0321122 + 0.0233309i
\(898\) −3.54840 + 10.9209i −0.118412 + 0.364434i
\(899\) 24.1895 + 74.4477i 0.806765 + 2.48297i
\(900\) 0 0
\(901\) 23.7399 0.790891
\(902\) −10.4510 + 11.5150i −0.347979 + 0.383407i
\(903\) −1.43659 −0.0478066
\(904\) 6.36718 4.62603i 0.211769 0.153859i
\(905\) 0 0
\(906\) −12.5761 + 38.7052i −0.417813 + 1.28590i
\(907\) 41.3623 + 30.0515i 1.37341 + 0.997843i 0.997462 + 0.0712035i \(0.0226840\pi\)
0.375951 + 0.926639i \(0.377316\pi\)
\(908\) 9.42472 + 6.84746i 0.312770 + 0.227241i
\(909\) 35.1199 108.088i 1.16485 3.58505i
\(910\) 0 0
\(911\) 18.8345 13.6840i 0.624014 0.453373i −0.230307 0.973118i \(-0.573973\pi\)
0.854321 + 0.519745i \(0.173973\pi\)
\(912\) −18.1433 −0.600785
\(913\) 7.08436 7.80562i 0.234458 0.258328i
\(914\) −18.4870 −0.611496
\(915\) 0 0
\(916\) 6.12048 + 18.8369i 0.202226 + 0.622389i
\(917\) 0.342450 1.05395i 0.0113087 0.0348046i
\(918\) 43.2657 + 31.4344i 1.42798 + 1.03749i
\(919\) −13.1742 9.57161i −0.434577 0.315738i 0.348900 0.937160i \(-0.386555\pi\)
−0.783476 + 0.621422i \(0.786555\pi\)
\(920\) 0 0
\(921\) 20.1943 + 62.1517i 0.665425 + 2.04797i
\(922\) 5.43642 3.94979i 0.179039 0.130079i
\(923\) −2.00980 −0.0661533
\(924\) 1.90805 + 0.858584i 0.0627702 + 0.0282453i
\(925\) 0 0
\(926\) −20.4533 + 14.8602i −0.672138 + 0.488337i
\(927\) −18.4359 56.7399i −0.605515 1.86358i
\(928\) 3.14256 9.67180i 0.103160 0.317492i
\(929\) 10.7933 + 7.84178i 0.354116 + 0.257280i 0.750594 0.660764i \(-0.229768\pi\)
−0.396478 + 0.918044i \(0.629768\pi\)
\(930\) 0 0
\(931\) −11.5765 + 35.6287i −0.379404 + 1.16768i
\(932\) 1.66463 + 5.12321i 0.0545269 + 0.167816i
\(933\) −47.6288 + 34.6043i −1.55930 + 1.13289i
\(934\) 19.9434 0.652568
\(935\) 0 0
\(936\) 25.5468 0.835024
\(937\) −12.8780 + 9.35641i −0.420706 + 0.305660i −0.777922 0.628361i \(-0.783726\pi\)
0.357216 + 0.934022i \(0.383726\pi\)
\(938\) 0.522148 + 1.60700i 0.0170487 + 0.0524706i
\(939\) −22.4762 + 69.1746i −0.733482 + 2.25743i
\(940\) 0 0
\(941\) 17.6786 + 12.8442i 0.576305 + 0.418710i 0.837390 0.546605i \(-0.184080\pi\)
−0.261085 + 0.965316i \(0.584080\pi\)
\(942\) −3.14878 + 9.69095i −0.102593 + 0.315748i
\(943\) −0.167467 0.515412i −0.00545349 0.0167841i
\(944\) 1.25519 0.911947i 0.0408529 0.0296814i
\(945\) 0 0
\(946\) 3.75037 + 6.55563i 0.121935 + 0.213142i
\(947\) −24.6072 −0.799627 −0.399814 0.916596i \(-0.630925\pi\)
−0.399814 + 0.916596i \(0.630925\pi\)
\(948\) −25.1574 + 18.2780i −0.817076 + 0.593640i
\(949\) 2.19732 + 6.76266i 0.0713281 + 0.219525i
\(950\) 0 0
\(951\) −55.9496 40.6498i −1.81429 1.31816i
\(952\) 0.445980 + 0.324024i 0.0144543 + 0.0105017i
\(953\) 3.37076 10.3741i 0.109190 0.336051i −0.881501 0.472182i \(-0.843467\pi\)
0.990691 + 0.136131i \(0.0434667\pi\)
\(954\) 20.8528 + 64.1783i 0.675134 + 2.07785i
\(955\) 0 0
\(956\) 8.96012 0.289791
\(957\) 12.3404 113.103i 0.398908 3.65609i
\(958\) 8.21267 0.265339
\(959\) −1.53156 + 1.11275i −0.0494568 + 0.0359324i
\(960\) 0 0
\(961\) 8.72970 26.8673i 0.281603 0.866686i
\(962\) 16.6417 + 12.0909i 0.536549 + 0.389826i
\(963\) −19.4389 14.1232i −0.626409 0.455113i
\(964\) 3.30282 10.1650i 0.106377 0.327394i
\(965\) 0 0
\(966\) −0.0589916 + 0.0428599i −0.00189802 + 0.00137899i
\(967\) −21.5493 −0.692980 −0.346490 0.938054i \(-0.612626\pi\)
−0.346490 + 0.938054i \(0.612626\pi\)
\(968\) −1.06317 10.9485i −0.0341717 0.351898i
\(969\) −53.4794 −1.71801
\(970\) 0 0
\(971\) 14.3347 + 44.1177i 0.460023 + 1.41580i 0.865136 + 0.501538i \(0.167232\pi\)
−0.405113 + 0.914267i \(0.632768\pi\)
\(972\) −20.7743 + 63.9367i −0.666336 + 2.05077i
\(973\) −2.59274 1.88374i −0.0831195 0.0603899i
\(974\) 22.6417 + 16.4501i 0.725486 + 0.527096i
\(975\) 0 0
\(976\) 0.271786 + 0.836470i 0.00869964 + 0.0267748i
\(977\) 25.9943 18.8859i 0.831630 0.604215i −0.0883901 0.996086i \(-0.528172\pi\)
0.920020 + 0.391871i \(0.128172\pi\)
\(978\) −7.28080 −0.232814
\(979\) 2.40899 22.0790i 0.0769918 0.705648i
\(980\) 0 0
\(981\) −74.7769 + 54.3286i −2.38744 + 1.73458i
\(982\) −4.41679 13.5935i −0.140946 0.433786i
\(983\) −8.83474 + 27.1905i −0.281785 + 0.867244i 0.705560 + 0.708651i \(0.250696\pi\)
−0.987344 + 0.158593i \(0.949304\pi\)
\(984\) −12.7953 9.29633i −0.407899 0.296356i
\(985\) 0 0
\(986\) 9.26304 28.5087i 0.294995 0.907902i
\(987\) 1.23919 + 3.81382i 0.0394437 + 0.121395i
\(988\) −13.2676 + 9.63950i −0.422099 + 0.306673i
\(989\) −0.263208 −0.00836953
\(990\) 0 0
\(991\) 9.55188 0.303425 0.151713 0.988425i \(-0.451521\pi\)
0.151713 + 0.988425i \(0.451521\pi\)
\(992\) −6.22732 + 4.52442i −0.197718 + 0.143650i
\(993\) −9.24188 28.4436i −0.293282 0.902630i
\(994\) 0.0380941 0.117242i 0.00120827 0.00371868i
\(995\) 0 0
\(996\) 8.67349 + 6.30166i 0.274830 + 0.199676i
\(997\) −10.7321 + 33.0302i −0.339891 + 1.04608i 0.624372 + 0.781127i \(0.285355\pi\)
−0.964263 + 0.264949i \(0.914645\pi\)
\(998\) 1.51667 + 4.66783i 0.0480094 + 0.147758i
\(999\) −99.0259 + 71.9465i −3.13304 + 2.27629i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.k.201.1 8
5.2 odd 4 550.2.ba.g.399.1 16
5.3 odd 4 550.2.ba.g.399.4 16
5.4 even 2 550.2.h.m.201.2 yes 8
11.2 odd 10 6050.2.a.cz.1.1 4
11.4 even 5 inner 550.2.h.k.301.1 yes 8
11.9 even 5 6050.2.a.dg.1.1 4
55.4 even 10 550.2.h.m.301.2 yes 8
55.9 even 10 6050.2.a.df.1.4 4
55.24 odd 10 6050.2.a.dn.1.4 4
55.37 odd 20 550.2.ba.g.499.4 16
55.48 odd 20 550.2.ba.g.499.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.k.201.1 8 1.1 even 1 trivial
550.2.h.k.301.1 yes 8 11.4 even 5 inner
550.2.h.m.201.2 yes 8 5.4 even 2
550.2.h.m.301.2 yes 8 55.4 even 10
550.2.ba.g.399.1 16 5.2 odd 4
550.2.ba.g.399.4 16 5.3 odd 4
550.2.ba.g.499.1 16 55.48 odd 20
550.2.ba.g.499.4 16 55.37 odd 20
6050.2.a.cz.1.1 4 11.2 odd 10
6050.2.a.df.1.4 4 55.9 even 10
6050.2.a.dg.1.1 4 11.9 even 5
6050.2.a.dn.1.4 4 55.24 odd 10