Properties

Label 550.2.ba.f.399.4
Level $550$
Weight $2$
Character 550.399
Analytic conductor $4.392$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(49,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.ba (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,4,0,-2,0,0,12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} + 75x^{12} - 554x^{10} + 2019x^{8} - 3874x^{6} + 9670x^{4} - 16456x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 399.4
Root \(-0.874145 - 1.20316i\) of defining polynomial
Character \(\chi\) \(=\) 550.399
Dual form 550.2.ba.f.499.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.587785 + 0.809017i) q^{2} +(2.36545 - 0.768582i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(2.01217 + 1.46193i) q^{6} +(-0.410805 - 0.133479i) q^{7} +(-0.951057 + 0.309017i) q^{8} +(2.57760 - 1.87274i) q^{9} +(1.92705 - 2.69935i) q^{11} +2.48718i q^{12} +(2.31792 + 3.19034i) q^{13} +(-0.133479 - 0.410805i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(2.01149 - 2.76858i) q^{17} +(3.03015 + 0.984555i) q^{18} +(1.89414 + 5.82957i) q^{19} -1.07433 q^{21} +(3.31651 - 0.0276194i) q^{22} -4.17025i q^{23} +(-2.01217 + 1.46193i) q^{24} +(-1.21860 + 3.75047i) q^{26} +(0.272048 - 0.374442i) q^{27} +(0.253891 - 0.349452i) q^{28} +(0.195878 - 0.602850i) q^{29} +(-8.34129 + 6.06030i) q^{31} -1.00000i q^{32} +(2.48368 - 7.86628i) q^{33} +3.42216 q^{34} +(0.984555 + 3.03015i) q^{36} +(-6.98198 - 2.26858i) q^{37} +(-3.60287 + 4.95892i) q^{38} +(7.93497 + 5.76509i) q^{39} +(0.821192 + 2.52737i) q^{41} +(-0.631475 - 0.869151i) q^{42} -11.5615i q^{43} +(1.97174 + 2.66688i) q^{44} +(3.37380 - 2.45121i) q^{46} +(-2.82379 + 0.917506i) q^{47} +(-2.36545 - 0.768582i) q^{48} +(-5.51217 - 4.00483i) q^{49} +(2.63021 - 8.09495i) q^{51} +(-3.75047 + 1.21860i) q^{52} +(-3.08268 - 4.24295i) q^{53} +0.462835 q^{54} +0.431946 q^{56} +(8.96100 + 12.3338i) q^{57} +(0.602850 - 0.195878i) q^{58} +(-3.35698 + 10.3317i) q^{59} +(-8.51153 - 6.18399i) q^{61} +(-9.80577 - 3.18609i) q^{62} +(-1.30886 + 0.425275i) q^{63} +(0.809017 - 0.587785i) q^{64} +(7.82382 - 2.61434i) q^{66} -10.9987i q^{67} +(2.01149 + 2.76858i) q^{68} +(-3.20518 - 9.86453i) q^{69} +(8.29982 + 6.03017i) q^{71} +(-1.87274 + 2.57760i) q^{72} +(10.5929 + 3.44186i) q^{73} +(-2.26858 - 6.98198i) q^{74} -6.12957 q^{76} +(-1.15195 + 0.851685i) q^{77} +9.80816i q^{78} +(-6.02435 + 4.37695i) q^{79} +(-2.59794 + 7.99563i) q^{81} +(-1.56200 + 2.14991i) q^{82} +(-4.63468 + 6.37909i) q^{83} +(0.331986 - 1.02175i) q^{84} +(9.35346 - 6.79569i) q^{86} -1.57656i q^{87} +(-0.998590 + 3.16272i) q^{88} -1.34257 q^{89} +(-0.526370 - 1.62000i) q^{91} +(3.96614 + 1.28868i) q^{92} +(-15.0731 + 20.7463i) q^{93} +(-2.40206 - 1.74520i) q^{94} +(-0.768582 - 2.36545i) q^{96} +(1.03059 + 1.41849i) q^{97} -6.81342i q^{98} +(-0.0879978 - 10.5667i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{4} - 2 q^{6} + 12 q^{9} + 4 q^{11} - 2 q^{14} - 4 q^{16} + 14 q^{19} + 64 q^{21} + 2 q^{24} - 12 q^{26} + 44 q^{29} - 52 q^{31} - 4 q^{34} - 2 q^{36} + 96 q^{39} - 30 q^{41} - 14 q^{44} - 12 q^{46}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.587785 + 0.809017i 0.415627 + 0.572061i
\(3\) 2.36545 0.768582i 1.36570 0.443741i 0.467755 0.883858i \(-0.345063\pi\)
0.897940 + 0.440117i \(0.145063\pi\)
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 0 0
\(6\) 2.01217 + 1.46193i 0.821467 + 0.596831i
\(7\) −0.410805 0.133479i −0.155270 0.0504502i 0.230351 0.973108i \(-0.426013\pi\)
−0.385621 + 0.922657i \(0.626013\pi\)
\(8\) −0.951057 + 0.309017i −0.336249 + 0.109254i
\(9\) 2.57760 1.87274i 0.859200 0.624245i
\(10\) 0 0
\(11\) 1.92705 2.69935i 0.581028 0.813884i
\(12\) 2.48718i 0.717988i
\(13\) 2.31792 + 3.19034i 0.642875 + 0.884842i 0.998765 0.0496862i \(-0.0158221\pi\)
−0.355890 + 0.934528i \(0.615822\pi\)
\(14\) −0.133479 0.410805i −0.0356737 0.109792i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.01149 2.76858i 0.487859 0.671480i −0.492133 0.870520i \(-0.663782\pi\)
0.979991 + 0.199040i \(0.0637825\pi\)
\(18\) 3.03015 + 0.984555i 0.714213 + 0.232062i
\(19\) 1.89414 + 5.82957i 0.434546 + 1.33739i 0.893551 + 0.448961i \(0.148206\pi\)
−0.459006 + 0.888433i \(0.651794\pi\)
\(20\) 0 0
\(21\) −1.07433 −0.234438
\(22\) 3.31651 0.0276194i 0.707082 0.00588847i
\(23\) 4.17025i 0.869557i −0.900537 0.434778i \(-0.856827\pi\)
0.900537 0.434778i \(-0.143173\pi\)
\(24\) −2.01217 + 1.46193i −0.410733 + 0.298415i
\(25\) 0 0
\(26\) −1.21860 + 3.75047i −0.238988 + 0.735528i
\(27\) 0.272048 0.374442i 0.0523556 0.0720613i
\(28\) 0.253891 0.349452i 0.0479810 0.0660402i
\(29\) 0.195878 0.602850i 0.0363736 0.111947i −0.931221 0.364455i \(-0.881255\pi\)
0.967595 + 0.252508i \(0.0812554\pi\)
\(30\) 0 0
\(31\) −8.34129 + 6.06030i −1.49814 + 1.08846i −0.527024 + 0.849850i \(0.676692\pi\)
−0.971115 + 0.238612i \(0.923308\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.48368 7.86628i 0.432353 1.36934i
\(34\) 3.42216 0.586895
\(35\) 0 0
\(36\) 0.984555 + 3.03015i 0.164093 + 0.505025i
\(37\) −6.98198 2.26858i −1.14783 0.372953i −0.327505 0.944850i \(-0.606208\pi\)
−0.820326 + 0.571897i \(0.806208\pi\)
\(38\) −3.60287 + 4.95892i −0.584463 + 0.804444i
\(39\) 7.93497 + 5.76509i 1.27061 + 0.923154i
\(40\) 0 0
\(41\) 0.821192 + 2.52737i 0.128249 + 0.394709i 0.994479 0.104936i \(-0.0334639\pi\)
−0.866230 + 0.499645i \(0.833464\pi\)
\(42\) −0.631475 0.869151i −0.0974387 0.134113i
\(43\) 11.5615i 1.76311i −0.472077 0.881557i \(-0.656496\pi\)
0.472077 0.881557i \(-0.343504\pi\)
\(44\) 1.97174 + 2.66688i 0.297251 + 0.402047i
\(45\) 0 0
\(46\) 3.37380 2.45121i 0.497440 0.361411i
\(47\) −2.82379 + 0.917506i −0.411892 + 0.133832i −0.507631 0.861575i \(-0.669479\pi\)
0.0957387 + 0.995407i \(0.469479\pi\)
\(48\) −2.36545 0.768582i −0.341424 0.110935i
\(49\) −5.51217 4.00483i −0.787454 0.572118i
\(50\) 0 0
\(51\) 2.63021 8.09495i 0.368303 1.13352i
\(52\) −3.75047 + 1.21860i −0.520097 + 0.168990i
\(53\) −3.08268 4.24295i −0.423439 0.582814i 0.542992 0.839738i \(-0.317291\pi\)
−0.966432 + 0.256923i \(0.917291\pi\)
\(54\) 0.462835 0.0629839
\(55\) 0 0
\(56\) 0.431946 0.0577212
\(57\) 8.96100 + 12.3338i 1.18691 + 1.63365i
\(58\) 0.602850 0.195878i 0.0791581 0.0257200i
\(59\) −3.35698 + 10.3317i −0.437041 + 1.34507i 0.453939 + 0.891033i \(0.350018\pi\)
−0.890981 + 0.454042i \(0.849982\pi\)
\(60\) 0 0
\(61\) −8.51153 6.18399i −1.08979 0.791779i −0.110426 0.993884i \(-0.535222\pi\)
−0.979364 + 0.202105i \(0.935222\pi\)
\(62\) −9.80577 3.18609i −1.24533 0.404634i
\(63\) −1.30886 + 0.425275i −0.164901 + 0.0535796i
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) 0 0
\(66\) 7.82382 2.61434i 0.963046 0.321803i
\(67\) 10.9987i 1.34371i −0.740684 0.671854i \(-0.765498\pi\)
0.740684 0.671854i \(-0.234502\pi\)
\(68\) 2.01149 + 2.76858i 0.243929 + 0.335740i
\(69\) −3.20518 9.86453i −0.385858 1.18755i
\(70\) 0 0
\(71\) 8.29982 + 6.03017i 0.985007 + 0.715649i 0.958822 0.284008i \(-0.0916641\pi\)
0.0261849 + 0.999657i \(0.491664\pi\)
\(72\) −1.87274 + 2.57760i −0.220704 + 0.303773i
\(73\) 10.5929 + 3.44186i 1.23981 + 0.402839i 0.854259 0.519848i \(-0.174011\pi\)
0.385551 + 0.922686i \(0.374011\pi\)
\(74\) −2.26858 6.98198i −0.263717 0.811639i
\(75\) 0 0
\(76\) −6.12957 −0.703110
\(77\) −1.15195 + 0.851685i −0.131277 + 0.0970585i
\(78\) 9.80816i 1.11056i
\(79\) −6.02435 + 4.37695i −0.677792 + 0.492445i −0.872625 0.488392i \(-0.837584\pi\)
0.194832 + 0.980837i \(0.437584\pi\)
\(80\) 0 0
\(81\) −2.59794 + 7.99563i −0.288660 + 0.888404i
\(82\) −1.56200 + 2.14991i −0.172494 + 0.237418i
\(83\) −4.63468 + 6.37909i −0.508722 + 0.700196i −0.983703 0.179800i \(-0.942455\pi\)
0.474981 + 0.879996i \(0.342455\pi\)
\(84\) 0.331986 1.02175i 0.0362226 0.111482i
\(85\) 0 0
\(86\) 9.35346 6.79569i 1.00861 0.732798i
\(87\) 1.57656i 0.169025i
\(88\) −0.998590 + 3.16272i −0.106450 + 0.337147i
\(89\) −1.34257 −0.142312 −0.0711559 0.997465i \(-0.522669\pi\)
−0.0711559 + 0.997465i \(0.522669\pi\)
\(90\) 0 0
\(91\) −0.526370 1.62000i −0.0551786 0.169822i
\(92\) 3.96614 + 1.28868i 0.413499 + 0.134354i
\(93\) −15.0731 + 20.7463i −1.56301 + 2.15129i
\(94\) −2.40206 1.74520i −0.247754 0.180004i
\(95\) 0 0
\(96\) −0.768582 2.36545i −0.0784431 0.241423i
\(97\) 1.03059 + 1.41849i 0.104641 + 0.144026i 0.858126 0.513439i \(-0.171629\pi\)
−0.753485 + 0.657465i \(0.771629\pi\)
\(98\) 6.81342i 0.688260i
\(99\) −0.0879978 10.5667i −0.00884411 1.06199i
\(100\) 0 0
\(101\) 1.00000 0.726543i 0.0995037 0.0722937i −0.536921 0.843633i \(-0.680413\pi\)
0.636425 + 0.771339i \(0.280413\pi\)
\(102\) 8.09495 2.63021i 0.801519 0.260429i
\(103\) 2.55872 + 0.831378i 0.252118 + 0.0819181i 0.432349 0.901706i \(-0.357685\pi\)
−0.180232 + 0.983624i \(0.557685\pi\)
\(104\) −3.19034 2.31792i −0.312839 0.227291i
\(105\) 0 0
\(106\) 1.62066 4.98789i 0.157413 0.484467i
\(107\) 0.309518 0.100568i 0.0299222 0.00972232i −0.294018 0.955800i \(-0.594992\pi\)
0.323940 + 0.946078i \(0.394992\pi\)
\(108\) 0.272048 + 0.374442i 0.0261778 + 0.0360307i
\(109\) 10.0487 0.962491 0.481245 0.876586i \(-0.340185\pi\)
0.481245 + 0.876586i \(0.340185\pi\)
\(110\) 0 0
\(111\) −18.2591 −1.73308
\(112\) 0.253891 + 0.349452i 0.0239905 + 0.0330201i
\(113\) −8.08064 + 2.62556i −0.760162 + 0.246992i −0.663348 0.748311i \(-0.730865\pi\)
−0.0968141 + 0.995302i \(0.530865\pi\)
\(114\) −4.71108 + 14.4992i −0.441233 + 1.35798i
\(115\) 0 0
\(116\) 0.512815 + 0.372582i 0.0476137 + 0.0345934i
\(117\) 11.9493 + 3.88257i 1.10472 + 0.358944i
\(118\) −10.3317 + 3.35698i −0.951111 + 0.309035i
\(119\) −1.19588 + 0.868856i −0.109626 + 0.0796479i
\(120\) 0 0
\(121\) −3.57295 10.4036i −0.324814 0.945778i
\(122\) 10.5208i 0.952512i
\(123\) 3.88498 + 5.34722i 0.350297 + 0.482142i
\(124\) −3.18609 9.80577i −0.286119 0.880584i
\(125\) 0 0
\(126\) −1.11338 0.808921i −0.0991881 0.0720644i
\(127\) −5.07796 + 6.98921i −0.450596 + 0.620192i −0.972525 0.232797i \(-0.925212\pi\)
0.521930 + 0.852988i \(0.325212\pi\)
\(128\) 0.951057 + 0.309017i 0.0840623 + 0.0273135i
\(129\) −8.88598 27.3482i −0.782367 2.40788i
\(130\) 0 0
\(131\) 16.3347 1.42717 0.713587 0.700567i \(-0.247069\pi\)
0.713587 + 0.700567i \(0.247069\pi\)
\(132\) 6.71377 + 4.79293i 0.584359 + 0.417171i
\(133\) 2.64764i 0.229580i
\(134\) 8.89815 6.46488i 0.768683 0.558481i
\(135\) 0 0
\(136\) −1.05750 + 3.25466i −0.0906803 + 0.279085i
\(137\) 10.0272 13.8012i 0.856681 1.17912i −0.125670 0.992072i \(-0.540108\pi\)
0.982351 0.187048i \(-0.0598920\pi\)
\(138\) 6.09661 8.39127i 0.518978 0.714312i
\(139\) −1.73646 + 5.34429i −0.147285 + 0.453296i −0.997298 0.0734656i \(-0.976594\pi\)
0.850013 + 0.526762i \(0.176594\pi\)
\(140\) 0 0
\(141\) −5.97437 + 4.34063i −0.503133 + 0.365547i
\(142\) 10.2591i 0.860928i
\(143\) 13.0786 0.108917i 1.09369 0.00910806i
\(144\) −3.18609 −0.265507
\(145\) 0 0
\(146\) 3.44186 + 10.5929i 0.284850 + 0.876678i
\(147\) −16.1168 5.23668i −1.32929 0.431914i
\(148\) 4.31510 5.93923i 0.354699 0.488201i
\(149\) 8.00930 + 5.81910i 0.656147 + 0.476719i 0.865360 0.501151i \(-0.167090\pi\)
−0.209212 + 0.977870i \(0.567090\pi\)
\(150\) 0 0
\(151\) −3.54695 10.9164i −0.288647 0.888364i −0.985282 0.170938i \(-0.945320\pi\)
0.696635 0.717426i \(-0.254680\pi\)
\(152\) −3.60287 4.95892i −0.292231 0.402222i
\(153\) 10.9033i 0.881479i
\(154\) −1.36613 0.431337i −0.110086 0.0347581i
\(155\) 0 0
\(156\) −7.93497 + 5.76509i −0.635306 + 0.461577i
\(157\) 7.18764 2.33541i 0.573636 0.186386i −0.00781135 0.999969i \(-0.502486\pi\)
0.581448 + 0.813584i \(0.302486\pi\)
\(158\) −7.08205 2.30110i −0.563417 0.183065i
\(159\) −10.5530 7.66721i −0.836908 0.608049i
\(160\) 0 0
\(161\) −0.556639 + 1.71316i −0.0438693 + 0.135016i
\(162\) −7.99563 + 2.59794i −0.628196 + 0.204113i
\(163\) −1.85149 2.54835i −0.145020 0.199603i 0.730328 0.683097i \(-0.239367\pi\)
−0.875347 + 0.483494i \(0.839367\pi\)
\(164\) −2.65743 −0.207511
\(165\) 0 0
\(166\) −7.88499 −0.611994
\(167\) 3.20447 + 4.41057i 0.247969 + 0.341300i 0.914799 0.403910i \(-0.132349\pi\)
−0.666830 + 0.745210i \(0.732349\pi\)
\(168\) 1.02175 0.331986i 0.0788296 0.0256133i
\(169\) −0.788314 + 2.42618i −0.0606395 + 0.186629i
\(170\) 0 0
\(171\) 15.7996 + 11.4791i 1.20822 + 0.877826i
\(172\) 10.9957 + 3.57270i 0.838411 + 0.272416i
\(173\) −14.2309 + 4.62391i −1.08196 + 0.351550i −0.795134 0.606434i \(-0.792600\pi\)
−0.286824 + 0.957983i \(0.592600\pi\)
\(174\) 1.27547 0.926680i 0.0966928 0.0702515i
\(175\) 0 0
\(176\) −3.14565 + 1.05113i −0.237113 + 0.0792316i
\(177\) 27.0193i 2.03089i
\(178\) −0.789142 1.08616i −0.0591487 0.0814111i
\(179\) −3.75329 11.5514i −0.280534 0.863395i −0.987702 0.156349i \(-0.950027\pi\)
0.707168 0.707046i \(-0.249973\pi\)
\(180\) 0 0
\(181\) 11.5274 + 8.37513i 0.856823 + 0.622518i 0.927019 0.375015i \(-0.122362\pi\)
−0.0701958 + 0.997533i \(0.522362\pi\)
\(182\) 1.00122 1.37806i 0.0742151 0.102148i
\(183\) −24.8865 8.08613i −1.83967 0.597744i
\(184\) 1.28868 + 3.96614i 0.0950026 + 0.292388i
\(185\) 0 0
\(186\) −25.6439 −1.88030
\(187\) −3.59712 10.7649i −0.263047 0.787209i
\(188\) 2.96911i 0.216545i
\(189\) −0.161739 + 0.117510i −0.0117647 + 0.00854759i
\(190\) 0 0
\(191\) −0.341287 + 1.05037i −0.0246946 + 0.0760023i −0.962644 0.270769i \(-0.912722\pi\)
0.937950 + 0.346771i \(0.112722\pi\)
\(192\) 1.46193 2.01217i 0.105506 0.145216i
\(193\) 6.43288 8.85410i 0.463049 0.637332i −0.512089 0.858933i \(-0.671128\pi\)
0.975138 + 0.221600i \(0.0711281\pi\)
\(194\) −0.541815 + 1.66754i −0.0389001 + 0.119722i
\(195\) 0 0
\(196\) 5.51217 4.00483i 0.393727 0.286059i
\(197\) 16.0572i 1.14403i −0.820244 0.572014i \(-0.806162\pi\)
0.820244 0.572014i \(-0.193838\pi\)
\(198\) 8.49691 6.28214i 0.603849 0.446452i
\(199\) −27.1521 −1.92476 −0.962382 0.271699i \(-0.912415\pi\)
−0.962382 + 0.271699i \(0.912415\pi\)
\(200\) 0 0
\(201\) −8.45342 26.0170i −0.596258 1.83509i
\(202\) 1.17557 + 0.381966i 0.0827129 + 0.0268750i
\(203\) −0.160935 + 0.221508i −0.0112954 + 0.0155468i
\(204\) 6.88598 + 5.00295i 0.482115 + 0.350277i
\(205\) 0 0
\(206\) 0.831378 + 2.55872i 0.0579248 + 0.178274i
\(207\) −7.80977 10.7492i −0.542817 0.747123i
\(208\) 3.94348i 0.273431i
\(209\) 19.3861 + 6.12093i 1.34097 + 0.423393i
\(210\) 0 0
\(211\) −2.14302 + 1.55700i −0.147532 + 0.107188i −0.659103 0.752053i \(-0.729064\pi\)
0.511571 + 0.859241i \(0.329064\pi\)
\(212\) 4.98789 1.62066i 0.342570 0.111308i
\(213\) 24.2675 + 7.88499i 1.66278 + 0.540271i
\(214\) 0.263292 + 0.191292i 0.0179982 + 0.0130765i
\(215\) 0 0
\(216\) −0.143024 + 0.440183i −0.00973155 + 0.0299506i
\(217\) 4.23556 1.37622i 0.287529 0.0934238i
\(218\) 5.90648 + 8.12957i 0.400037 + 0.550604i
\(219\) 27.7025 1.87196
\(220\) 0 0
\(221\) 13.4952 0.907786
\(222\) −10.7325 14.7720i −0.720315 0.991428i
\(223\) −5.97576 + 1.94164i −0.400167 + 0.130022i −0.502184 0.864761i \(-0.667470\pi\)
0.102018 + 0.994783i \(0.467470\pi\)
\(224\) −0.133479 + 0.410805i −0.00891842 + 0.0274481i
\(225\) 0 0
\(226\) −6.87380 4.99411i −0.457238 0.332203i
\(227\) −13.4430 4.36790i −0.892245 0.289908i −0.173212 0.984885i \(-0.555415\pi\)
−0.719032 + 0.694977i \(0.755415\pi\)
\(228\) −14.4992 + 4.71108i −0.960233 + 0.311999i
\(229\) −3.14462 + 2.28470i −0.207802 + 0.150977i −0.686819 0.726829i \(-0.740993\pi\)
0.479017 + 0.877806i \(0.340993\pi\)
\(230\) 0 0
\(231\) −2.07029 + 2.89999i −0.136215 + 0.190805i
\(232\) 0.633874i 0.0416159i
\(233\) 15.0356 + 20.6947i 0.985016 + 1.35576i 0.934083 + 0.357056i \(0.116219\pi\)
0.0509329 + 0.998702i \(0.483781\pi\)
\(234\) 3.88257 + 11.9493i 0.253812 + 0.781153i
\(235\) 0 0
\(236\) −8.78868 6.38535i −0.572094 0.415651i
\(237\) −10.8863 + 14.9837i −0.707139 + 0.973294i
\(238\) −1.40584 0.456785i −0.0911270 0.0296090i
\(239\) 3.73255 + 11.4876i 0.241439 + 0.743072i 0.996202 + 0.0870747i \(0.0277519\pi\)
−0.754763 + 0.655998i \(0.772248\pi\)
\(240\) 0 0
\(241\) 23.5597 1.51762 0.758808 0.651314i \(-0.225782\pi\)
0.758808 + 0.651314i \(0.225782\pi\)
\(242\) 6.31653 9.00563i 0.406042 0.578904i
\(243\) 22.2985i 1.43045i
\(244\) 8.51153 6.18399i 0.544895 0.395889i
\(245\) 0 0
\(246\) −2.04246 + 6.28603i −0.130222 + 0.400783i
\(247\) −14.2078 + 19.5554i −0.904024 + 1.24428i
\(248\) 6.06030 8.34129i 0.384829 0.529672i
\(249\) −6.06027 + 18.6516i −0.384054 + 1.18200i
\(250\) 0 0
\(251\) 2.77289 2.01462i 0.175023 0.127162i −0.496825 0.867851i \(-0.665501\pi\)
0.671848 + 0.740689i \(0.265501\pi\)
\(252\) 1.37622i 0.0866936i
\(253\) −11.2569 8.03628i −0.707718 0.505237i
\(254\) −8.63913 −0.542067
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 1.55003 + 0.503634i 0.0966879 + 0.0314158i 0.356961 0.934119i \(-0.383813\pi\)
−0.260274 + 0.965535i \(0.583813\pi\)
\(258\) 16.9021 23.2638i 1.05228 1.44834i
\(259\) 2.56542 + 1.86389i 0.159408 + 0.115816i
\(260\) 0 0
\(261\) −0.624085 1.92073i −0.0386299 0.118890i
\(262\) 9.60132 + 13.2151i 0.593172 + 0.816431i
\(263\) 1.65168i 0.101847i 0.998703 + 0.0509236i \(0.0162165\pi\)
−0.998703 + 0.0509236i \(0.983783\pi\)
\(264\) 0.0686945 + 8.24877i 0.00422786 + 0.507677i
\(265\) 0 0
\(266\) 2.14199 1.55625i 0.131334 0.0954195i
\(267\) −3.17578 + 1.03187i −0.194355 + 0.0631497i
\(268\) 10.4604 + 3.39879i 0.638971 + 0.207614i
\(269\) 17.9324 + 13.0287i 1.09336 + 0.794371i 0.979963 0.199179i \(-0.0638274\pi\)
0.113395 + 0.993550i \(0.463827\pi\)
\(270\) 0 0
\(271\) −2.27021 + 6.98698i −0.137905 + 0.424429i −0.996031 0.0890115i \(-0.971629\pi\)
0.858125 + 0.513440i \(0.171629\pi\)
\(272\) −3.25466 + 1.05750i −0.197343 + 0.0641206i
\(273\) −2.49021 3.42748i −0.150714 0.207440i
\(274\) 17.0593 1.03059
\(275\) 0 0
\(276\) 10.3722 0.624332
\(277\) 9.12054 + 12.5533i 0.548000 + 0.754258i 0.989739 0.142886i \(-0.0456382\pi\)
−0.441739 + 0.897144i \(0.645638\pi\)
\(278\) −5.34429 + 1.73646i −0.320529 + 0.104146i
\(279\) −10.1512 + 31.2420i −0.607734 + 1.87041i
\(280\) 0 0
\(281\) 18.5343 + 13.4660i 1.10566 + 0.803311i 0.981975 0.189010i \(-0.0605278\pi\)
0.123688 + 0.992321i \(0.460528\pi\)
\(282\) −7.02329 2.28201i −0.418231 0.135891i
\(283\) −2.66497 + 0.865901i −0.158416 + 0.0514724i −0.387151 0.922016i \(-0.626541\pi\)
0.228735 + 0.973489i \(0.426541\pi\)
\(284\) −8.29982 + 6.03017i −0.492503 + 0.357825i
\(285\) 0 0
\(286\) 7.77552 + 10.5168i 0.459776 + 0.621870i
\(287\) 1.14787i 0.0677565i
\(288\) −1.87274 2.57760i −0.110352 0.151886i
\(289\) 1.63434 + 5.02999i 0.0961379 + 0.295882i
\(290\) 0 0
\(291\) 3.52805 + 2.56328i 0.206818 + 0.150262i
\(292\) −6.54680 + 9.01089i −0.383122 + 0.527323i
\(293\) 20.2349 + 6.57473i 1.18214 + 0.384100i 0.833160 0.553032i \(-0.186529\pi\)
0.348977 + 0.937131i \(0.386529\pi\)
\(294\) −5.23668 16.1168i −0.305409 0.939953i
\(295\) 0 0
\(296\) 7.34129 0.426704
\(297\) −0.486498 1.45592i −0.0282295 0.0844810i
\(298\) 9.90004i 0.573494i
\(299\) 13.3045 9.66630i 0.769420 0.559016i
\(300\) 0 0
\(301\) −1.54322 + 4.74953i −0.0889494 + 0.273758i
\(302\) 6.74671 9.28605i 0.388229 0.534352i
\(303\) 1.80705 2.48718i 0.103812 0.142885i
\(304\) 1.89414 5.82957i 0.108636 0.334349i
\(305\) 0 0
\(306\) 8.82095 6.40879i 0.504260 0.366366i
\(307\) 2.92114i 0.166718i −0.996520 0.0833591i \(-0.973435\pi\)
0.996520 0.0833591i \(-0.0265649\pi\)
\(308\) −0.454029 1.35875i −0.0258707 0.0774221i
\(309\) 6.69151 0.380667
\(310\) 0 0
\(311\) −1.18284 3.64040i −0.0670726 0.206428i 0.911903 0.410406i \(-0.134613\pi\)
−0.978976 + 0.203978i \(0.934613\pi\)
\(312\) −9.32812 3.03089i −0.528101 0.171590i
\(313\) 16.0395 22.0764i 0.906604 1.24783i −0.0617096 0.998094i \(-0.519655\pi\)
0.968313 0.249739i \(-0.0803447\pi\)
\(314\) 6.11418 + 4.44221i 0.345043 + 0.250688i
\(315\) 0 0
\(316\) −2.30110 7.08205i −0.129447 0.398396i
\(317\) 16.9018 + 23.2634i 0.949302 + 1.30660i 0.951837 + 0.306605i \(0.0991932\pi\)
−0.00253464 + 0.999997i \(0.500807\pi\)
\(318\) 13.0442i 0.731484i
\(319\) −1.24984 1.69047i −0.0699774 0.0946479i
\(320\) 0 0
\(321\) 0.654855 0.475780i 0.0365504 0.0265554i
\(322\) −1.71316 + 0.556639i −0.0954706 + 0.0310203i
\(323\) 19.9497 + 6.48205i 1.11003 + 0.360671i
\(324\) −6.80149 4.94157i −0.377861 0.274532i
\(325\) 0 0
\(326\) 0.973385 2.99577i 0.0539108 0.165920i
\(327\) 23.7697 7.72325i 1.31447 0.427097i
\(328\) −1.56200 2.14991i −0.0862470 0.118709i
\(329\) 1.28250 0.0707063
\(330\) 0 0
\(331\) −15.2961 −0.840752 −0.420376 0.907350i \(-0.638102\pi\)
−0.420376 + 0.907350i \(0.638102\pi\)
\(332\) −4.63468 6.37909i −0.254361 0.350098i
\(333\) −22.2452 + 7.22790i −1.21903 + 0.396087i
\(334\) −1.68469 + 5.18494i −0.0921820 + 0.283707i
\(335\) 0 0
\(336\) 0.869151 + 0.631475i 0.0474161 + 0.0344498i
\(337\) −18.4878 6.00704i −1.00709 0.327224i −0.241396 0.970427i \(-0.577605\pi\)
−0.765696 + 0.643203i \(0.777605\pi\)
\(338\) −2.42618 + 0.788314i −0.131967 + 0.0428786i
\(339\) −17.0964 + 12.4213i −0.928550 + 0.674631i
\(340\) 0 0
\(341\) 0.284767 + 34.1945i 0.0154210 + 1.85174i
\(342\) 19.5293i 1.05603i
\(343\) 3.50711 + 4.82712i 0.189366 + 0.260640i
\(344\) 3.57270 + 10.9957i 0.192627 + 0.592846i
\(345\) 0 0
\(346\) −12.1056 8.79521i −0.650799 0.472833i
\(347\) 5.42452 7.46620i 0.291203 0.400807i −0.638201 0.769870i \(-0.720321\pi\)
0.929405 + 0.369063i \(0.120321\pi\)
\(348\) 1.49940 + 0.487185i 0.0803763 + 0.0261158i
\(349\) −4.72374 14.5382i −0.252856 0.778211i −0.994244 0.107135i \(-0.965832\pi\)
0.741388 0.671076i \(-0.234168\pi\)
\(350\) 0 0
\(351\) 1.82518 0.0974210
\(352\) −2.69935 1.92705i −0.143876 0.102712i
\(353\) 6.10571i 0.324974i −0.986711 0.162487i \(-0.948048\pi\)
0.986711 0.162487i \(-0.0519516\pi\)
\(354\) −21.8591 + 15.8815i −1.16180 + 0.844094i
\(355\) 0 0
\(356\) 0.414876 1.27686i 0.0219884 0.0676733i
\(357\) −2.16101 + 2.97437i −0.114373 + 0.157420i
\(358\) 7.13918 9.82624i 0.377317 0.519333i
\(359\) 8.32545 25.6231i 0.439400 1.35233i −0.449109 0.893477i \(-0.648259\pi\)
0.888510 0.458858i \(-0.151741\pi\)
\(360\) 0 0
\(361\) −15.0247 + 10.9161i −0.790776 + 0.574532i
\(362\) 14.2486i 0.748891i
\(363\) −16.4476 21.8630i −0.863277 1.14751i
\(364\) 1.70337 0.0892809
\(365\) 0 0
\(366\) −8.08613 24.8865i −0.422669 1.30084i
\(367\) 23.7874 + 7.72900i 1.24169 + 0.403451i 0.854937 0.518732i \(-0.173596\pi\)
0.386756 + 0.922182i \(0.373596\pi\)
\(368\) −2.45121 + 3.37380i −0.127778 + 0.175872i
\(369\) 6.84980 + 4.97667i 0.356586 + 0.259075i
\(370\) 0 0
\(371\) 0.700039 + 2.15450i 0.0363442 + 0.111856i
\(372\) −15.0731 20.7463i −0.781503 1.07565i
\(373\) 27.5557i 1.42678i 0.700768 + 0.713389i \(0.252841\pi\)
−0.700768 + 0.713389i \(0.747159\pi\)
\(374\) 6.59467 9.23759i 0.341002 0.477664i
\(375\) 0 0
\(376\) 2.40206 1.74520i 0.123877 0.0900018i
\(377\) 2.37733 0.772441i 0.122439 0.0397827i
\(378\) −0.190135 0.0617786i −0.00977949 0.00317755i
\(379\) −19.0027 13.8063i −0.976105 0.709182i −0.0192700 0.999814i \(-0.506134\pi\)
−0.956835 + 0.290633i \(0.906134\pi\)
\(380\) 0 0
\(381\) −6.63989 + 20.4355i −0.340172 + 1.04694i
\(382\) −1.05037 + 0.341287i −0.0537417 + 0.0174617i
\(383\) −11.0050 15.1470i −0.562327 0.773977i 0.429293 0.903165i \(-0.358763\pi\)
−0.991620 + 0.129188i \(0.958763\pi\)
\(384\) 2.48718 0.126924
\(385\) 0 0
\(386\) 10.9443 0.557049
\(387\) −21.6517 29.8010i −1.10062 1.51487i
\(388\) −1.66754 + 0.541815i −0.0846563 + 0.0275065i
\(389\) −2.29210 + 7.05435i −0.116214 + 0.357670i −0.992198 0.124670i \(-0.960213\pi\)
0.875984 + 0.482340i \(0.160213\pi\)
\(390\) 0 0
\(391\) −11.5457 8.38842i −0.583890 0.424221i
\(392\) 6.47995 + 2.10546i 0.327287 + 0.106342i
\(393\) 38.6391 12.5546i 1.94908 0.633296i
\(394\) 12.9906 9.43819i 0.654455 0.475489i
\(395\) 0 0
\(396\) 10.0767 + 3.18160i 0.506374 + 0.159881i
\(397\) 22.6398i 1.13626i −0.822939 0.568130i \(-0.807667\pi\)
0.822939 0.568130i \(-0.192333\pi\)
\(398\) −15.9596 21.9665i −0.799984 1.10108i
\(399\) −2.03493 6.26287i −0.101874 0.313536i
\(400\) 0 0
\(401\) −21.8299 15.8603i −1.09013 0.792026i −0.110709 0.993853i \(-0.535312\pi\)
−0.979421 + 0.201826i \(0.935312\pi\)
\(402\) 16.0794 22.1313i 0.801966 1.10381i
\(403\) −38.6689 12.5643i −1.92623 0.625871i
\(404\) 0.381966 + 1.17557i 0.0190035 + 0.0584868i
\(405\) 0 0
\(406\) −0.273800 −0.0135884
\(407\) −19.5783 + 14.4751i −0.970461 + 0.717505i
\(408\) 8.51153i 0.421384i
\(409\) −7.55854 + 5.49160i −0.373746 + 0.271542i −0.758762 0.651367i \(-0.774196\pi\)
0.385017 + 0.922910i \(0.374196\pi\)
\(410\) 0 0
\(411\) 13.1115 40.3529i 0.646741 1.99046i
\(412\) −1.58137 + 2.17657i −0.0779087 + 0.107232i
\(413\) 2.75813 3.79623i 0.135718 0.186800i
\(414\) 4.10584 12.6365i 0.201791 0.621049i
\(415\) 0 0
\(416\) 3.19034 2.31792i 0.156419 0.113645i
\(417\) 13.9763i 0.684421i
\(418\) 6.44295 + 19.2815i 0.315135 + 0.943089i
\(419\) −16.5607 −0.809044 −0.404522 0.914528i \(-0.632562\pi\)
−0.404522 + 0.914528i \(0.632562\pi\)
\(420\) 0 0
\(421\) 0.581094 + 1.78842i 0.0283208 + 0.0871624i 0.964218 0.265111i \(-0.0854087\pi\)
−0.935897 + 0.352274i \(0.885409\pi\)
\(422\) −2.51928 0.818562i −0.122636 0.0398470i
\(423\) −5.56036 + 7.65318i −0.270354 + 0.372110i
\(424\) 4.24295 + 3.08268i 0.206056 + 0.149708i
\(425\) 0 0
\(426\) 7.88499 + 24.2675i 0.382029 + 1.17576i
\(427\) 2.67115 + 3.67652i 0.129266 + 0.177919i
\(428\) 0.325446i 0.0157310i
\(429\) 30.8531 10.3096i 1.48960 0.497753i
\(430\) 0 0
\(431\) −19.0974 + 13.8751i −0.919889 + 0.668339i −0.943496 0.331383i \(-0.892485\pi\)
0.0236072 + 0.999721i \(0.492485\pi\)
\(432\) −0.440183 + 0.143024i −0.0211783 + 0.00688124i
\(433\) 15.0977 + 4.90556i 0.725551 + 0.235746i 0.648428 0.761276i \(-0.275427\pi\)
0.0771230 + 0.997022i \(0.475427\pi\)
\(434\) 3.60299 + 2.61772i 0.172949 + 0.125655i
\(435\) 0 0
\(436\) −3.10522 + 9.55688i −0.148713 + 0.457692i
\(437\) 24.3107 7.89904i 1.16294 0.377862i
\(438\) 16.2831 + 22.4118i 0.778036 + 1.07088i
\(439\) 11.6082 0.554031 0.277016 0.960865i \(-0.410655\pi\)
0.277016 + 0.960865i \(0.410655\pi\)
\(440\) 0 0
\(441\) −21.7082 −1.03372
\(442\) 7.93228 + 10.9178i 0.377300 + 0.519309i
\(443\) 9.07585 2.94892i 0.431207 0.140108i −0.0853684 0.996349i \(-0.527207\pi\)
0.516575 + 0.856242i \(0.327207\pi\)
\(444\) 5.64238 17.3655i 0.267776 0.824129i
\(445\) 0 0
\(446\) −5.08329 3.69322i −0.240701 0.174879i
\(447\) 23.4181 + 7.60900i 1.10764 + 0.359893i
\(448\) −0.410805 + 0.133479i −0.0194087 + 0.00630627i
\(449\) 16.0576 11.6665i 0.757805 0.550578i −0.140431 0.990090i \(-0.544849\pi\)
0.898236 + 0.439513i \(0.144849\pi\)
\(450\) 0 0
\(451\) 8.40472 + 2.65369i 0.395763 + 0.124957i
\(452\) 8.49649i 0.399641i
\(453\) −16.7803 23.0961i −0.788408 1.08515i
\(454\) −4.36790 13.4430i −0.204996 0.630912i
\(455\) 0 0
\(456\) −12.3338 8.96100i −0.577581 0.419637i
\(457\) 2.47217 3.40265i 0.115643 0.159169i −0.747271 0.664519i \(-0.768636\pi\)
0.862915 + 0.505350i \(0.168636\pi\)
\(458\) −3.69672 1.20114i −0.172736 0.0561254i
\(459\) −0.489450 1.50637i −0.0228456 0.0703115i
\(460\) 0 0
\(461\) 9.44809 0.440041 0.220021 0.975495i \(-0.429388\pi\)
0.220021 + 0.975495i \(0.429388\pi\)
\(462\) −3.56302 + 0.0296723i −0.165767 + 0.00138048i
\(463\) 26.5879i 1.23564i 0.786318 + 0.617822i \(0.211985\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(464\) −0.512815 + 0.372582i −0.0238068 + 0.0172967i
\(465\) 0 0
\(466\) −7.90469 + 24.3281i −0.366178 + 1.12698i
\(467\) 10.7148 14.7476i 0.495820 0.682438i −0.485628 0.874165i \(-0.661409\pi\)
0.981448 + 0.191728i \(0.0614091\pi\)
\(468\) −7.38510 + 10.1647i −0.341376 + 0.469864i
\(469\) −1.46809 + 4.51833i −0.0677903 + 0.208637i
\(470\) 0 0
\(471\) 15.2071 11.0486i 0.700705 0.509092i
\(472\) 10.8634i 0.500029i
\(473\) −31.2085 22.2796i −1.43497 1.02442i
\(474\) −18.5208 −0.850690
\(475\) 0 0
\(476\) −0.456785 1.40584i −0.0209367 0.0644365i
\(477\) −15.8919 5.16358i −0.727638 0.236424i
\(478\) −7.09974 + 9.77195i −0.324734 + 0.446959i
\(479\) −10.5221 7.64476i −0.480768 0.349298i 0.320855 0.947128i \(-0.396030\pi\)
−0.801623 + 0.597830i \(0.796030\pi\)
\(480\) 0 0
\(481\) −8.94611 27.5333i −0.407907 1.25541i
\(482\) 13.8481 + 19.0602i 0.630762 + 0.868170i
\(483\) 4.48022i 0.203857i
\(484\) 10.9985 0.183200i 0.499931 0.00832727i
\(485\) 0 0
\(486\) −18.0399 + 13.1067i −0.818306 + 0.594534i
\(487\) 7.32943 2.38148i 0.332128 0.107915i −0.138206 0.990404i \(-0.544133\pi\)
0.470334 + 0.882489i \(0.344133\pi\)
\(488\) 10.0059 + 3.25112i 0.452946 + 0.147171i
\(489\) −6.33823 4.60499i −0.286625 0.208245i
\(490\) 0 0
\(491\) 4.16722 12.8254i 0.188064 0.578802i −0.811924 0.583764i \(-0.801579\pi\)
0.999988 + 0.00496193i \(0.00157944\pi\)
\(492\) −6.28603 + 2.04246i −0.283396 + 0.0920810i
\(493\) −1.27503 1.75493i −0.0574246 0.0790382i
\(494\) −24.1718 −1.08754
\(495\) 0 0
\(496\) 10.3104 0.462951
\(497\) −2.60471 3.58507i −0.116837 0.160812i
\(498\) −18.6516 + 6.06027i −0.835797 + 0.271567i
\(499\) −4.25919 + 13.1084i −0.190667 + 0.586814i −1.00000 0.000536806i \(-0.999829\pi\)
0.809332 + 0.587351i \(0.199829\pi\)
\(500\) 0 0
\(501\) 10.9699 + 7.97010i 0.490099 + 0.356078i
\(502\) 3.25973 + 1.05915i 0.145489 + 0.0472721i
\(503\) 6.00504 1.95116i 0.267752 0.0869977i −0.172064 0.985086i \(-0.555044\pi\)
0.439816 + 0.898088i \(0.355044\pi\)
\(504\) 1.11338 0.808921i 0.0495940 0.0360322i
\(505\) 0 0
\(506\) −0.115180 13.8307i −0.00512036 0.614848i
\(507\) 6.34490i 0.281787i
\(508\) −5.07796 6.98921i −0.225298 0.310096i
\(509\) −13.3957 41.2278i −0.593755 1.82739i −0.560826 0.827934i \(-0.689516\pi\)
−0.0329295 0.999458i \(-0.510484\pi\)
\(510\) 0 0
\(511\) −3.89222 2.82786i −0.172182 0.125097i
\(512\) −0.587785 + 0.809017i −0.0259767 + 0.0357538i
\(513\) 2.69813 + 0.876675i 0.119125 + 0.0387062i
\(514\) 0.503634 + 1.55003i 0.0222143 + 0.0683687i
\(515\) 0 0
\(516\) 28.7556 1.26590
\(517\) −2.96493 + 9.39047i −0.130397 + 0.412993i
\(518\) 3.17104i 0.139327i
\(519\) −30.1088 + 21.8753i −1.32163 + 0.960219i
\(520\) 0 0
\(521\) 6.70203 20.6267i 0.293621 0.903673i −0.690060 0.723752i \(-0.742416\pi\)
0.983681 0.179921i \(-0.0575842\pi\)
\(522\) 1.18708 1.63387i 0.0519570 0.0715127i
\(523\) −8.98136 + 12.3618i −0.392727 + 0.540543i −0.958900 0.283744i \(-0.908423\pi\)
0.566173 + 0.824287i \(0.308423\pi\)
\(524\) −5.04771 + 15.5353i −0.220510 + 0.678661i
\(525\) 0 0
\(526\) −1.33624 + 0.970836i −0.0582629 + 0.0423304i
\(527\) 35.2838i 1.53699i
\(528\) −6.63302 + 4.90408i −0.288665 + 0.213423i
\(529\) 5.60904 0.243871
\(530\) 0 0
\(531\) 10.6956 + 32.9177i 0.464150 + 1.42851i
\(532\) 2.51806 + 0.818166i 0.109172 + 0.0354720i
\(533\) −6.15971 + 8.47812i −0.266807 + 0.367228i
\(534\) −2.70148 1.96274i −0.116905 0.0849361i
\(535\) 0 0
\(536\) 3.39879 + 10.4604i 0.146805 + 0.451821i
\(537\) −17.7565 24.4397i −0.766248 1.05465i
\(538\) 22.1657i 0.955630i
\(539\) −21.4327 + 7.16176i −0.923170 + 0.308479i
\(540\) 0 0
\(541\) 19.5314 14.1904i 0.839721 0.610093i −0.0825716 0.996585i \(-0.526313\pi\)
0.922293 + 0.386492i \(0.126313\pi\)
\(542\) −6.98698 + 2.27021i −0.300116 + 0.0975138i
\(543\) 33.7044 + 10.9512i 1.44640 + 0.469963i
\(544\) −2.76858 2.01149i −0.118702 0.0862420i
\(545\) 0 0
\(546\) 1.30918 4.02924i 0.0560277 0.172436i
\(547\) −31.8327 + 10.3431i −1.36107 + 0.442237i −0.896399 0.443248i \(-0.853826\pi\)
−0.464668 + 0.885485i \(0.653826\pi\)
\(548\) 10.0272 + 13.8012i 0.428340 + 0.589560i
\(549\) −33.5203 −1.43061
\(550\) 0 0
\(551\) 3.88538 0.165523
\(552\) 6.09661 + 8.39127i 0.259489 + 0.357156i
\(553\) 3.05906 0.993949i 0.130085 0.0422670i
\(554\) −4.79495 + 14.7573i −0.203718 + 0.626980i
\(555\) 0 0
\(556\) −4.54612 3.30295i −0.192798 0.140076i
\(557\) −3.93292 1.27788i −0.166643 0.0541456i 0.224507 0.974472i \(-0.427923\pi\)
−0.391150 + 0.920327i \(0.627923\pi\)
\(558\) −31.2420 + 10.1512i −1.32258 + 0.429733i
\(559\) 36.8852 26.7987i 1.56008 1.13346i
\(560\) 0 0
\(561\) −16.7825 22.6992i −0.708559 0.958362i
\(562\) 22.9096i 0.966385i
\(563\) 16.2283 + 22.3363i 0.683941 + 0.941364i 0.999973 0.00738424i \(-0.00235050\pi\)
−0.316031 + 0.948749i \(0.602350\pi\)
\(564\) −2.28201 7.02329i −0.0960898 0.295734i
\(565\) 0 0
\(566\) −2.26696 1.64704i −0.0952873 0.0692303i
\(567\) 2.13449 2.93788i 0.0896403 0.123379i
\(568\) −9.75702 3.17025i −0.409395 0.133021i
\(569\) 2.40142 + 7.39081i 0.100673 + 0.309839i 0.988691 0.149970i \(-0.0479178\pi\)
−0.888018 + 0.459809i \(0.847918\pi\)
\(570\) 0 0
\(571\) −1.73373 −0.0725544 −0.0362772 0.999342i \(-0.511550\pi\)
−0.0362772 + 0.999342i \(0.511550\pi\)
\(572\) −3.93792 + 12.4721i −0.164653 + 0.521486i
\(573\) 2.74691i 0.114754i
\(574\) 0.928644 0.674699i 0.0387609 0.0281614i
\(575\) 0 0
\(576\) 0.984555 3.03015i 0.0410231 0.126256i
\(577\) 3.95992 5.45036i 0.164854 0.226902i −0.718596 0.695428i \(-0.755215\pi\)
0.883450 + 0.468526i \(0.155215\pi\)
\(578\) −3.10871 + 4.27877i −0.129305 + 0.177973i
\(579\) 8.41157 25.8882i 0.349573 1.07588i
\(580\) 0 0
\(581\) 2.75542 2.00193i 0.114314 0.0830541i
\(582\) 4.36091i 0.180765i
\(583\) −17.3937 + 0.144852i −0.720373 + 0.00599916i
\(584\) −11.1381 −0.460897
\(585\) 0 0
\(586\) 6.57473 + 20.2349i 0.271599 + 0.835897i
\(587\) 33.3923 + 10.8498i 1.37825 + 0.447820i 0.902093 0.431541i \(-0.142030\pi\)
0.476156 + 0.879361i \(0.342030\pi\)
\(588\) 9.96075 13.7098i 0.410774 0.565382i
\(589\) −51.1285 37.1470i −2.10671 1.53062i
\(590\) 0 0
\(591\) −12.3413 37.9826i −0.507653 1.56239i
\(592\) 4.31510 + 5.93923i 0.177350 + 0.244101i
\(593\) 5.17098i 0.212347i 0.994348 + 0.106173i \(0.0338598\pi\)
−0.994348 + 0.106173i \(0.966140\pi\)
\(594\) 0.891907 1.24935i 0.0365954 0.0512616i
\(595\) 0 0
\(596\) −8.00930 + 5.81910i −0.328074 + 0.238360i
\(597\) −64.2271 + 20.8687i −2.62864 + 0.854097i
\(598\) 15.6404 + 5.08187i 0.639583 + 0.207813i
\(599\) 13.5879 + 9.87221i 0.555188 + 0.403368i 0.829695 0.558217i \(-0.188515\pi\)
−0.274507 + 0.961585i \(0.588515\pi\)
\(600\) 0 0
\(601\) −8.19285 + 25.2150i −0.334193 + 1.02854i 0.632925 + 0.774213i \(0.281854\pi\)
−0.967118 + 0.254328i \(0.918146\pi\)
\(602\) −4.74953 + 1.54322i −0.193576 + 0.0628968i
\(603\) −20.5977 28.3503i −0.838803 1.15451i
\(604\) 11.4782 0.467041
\(605\) 0 0
\(606\) 3.07433 0.124886
\(607\) −26.3287 36.2383i −1.06865 1.47087i −0.871437 0.490508i \(-0.836811\pi\)
−0.197212 0.980361i \(-0.563189\pi\)
\(608\) 5.82957 1.89414i 0.236420 0.0768176i
\(609\) −0.210437 + 0.647660i −0.00852736 + 0.0262445i
\(610\) 0 0
\(611\) −9.47248 6.88216i −0.383216 0.278422i
\(612\) 10.3696 + 3.36930i 0.419168 + 0.136196i
\(613\) 1.09063 0.354366i 0.0440500 0.0143127i −0.286909 0.957958i \(-0.592628\pi\)
0.330959 + 0.943645i \(0.392628\pi\)
\(614\) 2.36325 1.71700i 0.0953731 0.0692926i
\(615\) 0 0
\(616\) 0.832382 1.16597i 0.0335376 0.0469784i
\(617\) 23.3790i 0.941202i −0.882346 0.470601i \(-0.844037\pi\)
0.882346 0.470601i \(-0.155963\pi\)
\(618\) 3.93317 + 5.41354i 0.158215 + 0.217765i
\(619\) 7.30246 + 22.4747i 0.293511 + 0.903334i 0.983718 + 0.179721i \(0.0575196\pi\)
−0.690207 + 0.723612i \(0.742480\pi\)
\(620\) 0 0
\(621\) −1.56151 1.13451i −0.0626614 0.0455262i
\(622\) 2.24989 3.09671i 0.0902124 0.124167i
\(623\) 0.551534 + 0.179204i 0.0220967 + 0.00717966i
\(624\) −3.03089 9.32812i −0.121333 0.373424i
\(625\) 0 0
\(626\) 27.2880 1.09065
\(627\) 50.5614 0.421068i 2.01923 0.0168158i
\(628\) 7.55754i 0.301579i
\(629\) −20.3250 + 14.7669i −0.810409 + 0.588797i
\(630\) 0 0
\(631\) −4.16946 + 12.8323i −0.165983 + 0.510844i −0.999107 0.0422418i \(-0.986550\pi\)
0.833124 + 0.553086i \(0.186550\pi\)
\(632\) 4.37695 6.02435i 0.174106 0.239636i
\(633\) −3.87254 + 5.33010i −0.153920 + 0.211852i
\(634\) −8.88582 + 27.3478i −0.352901 + 1.08612i
\(635\) 0 0
\(636\) 10.5530 7.66721i 0.418454 0.304025i
\(637\) 26.8686i 1.06457i
\(638\) 0.632981 2.00477i 0.0250600 0.0793696i
\(639\) 32.6865 1.29306
\(640\) 0 0
\(641\) −0.719738 2.21513i −0.0284279 0.0874922i 0.935836 0.352436i \(-0.114647\pi\)
−0.964264 + 0.264944i \(0.914647\pi\)
\(642\) 0.769828 + 0.250132i 0.0303827 + 0.00987193i
\(643\) −16.7065 + 22.9946i −0.658841 + 0.906817i −0.999442 0.0333908i \(-0.989369\pi\)
0.340601 + 0.940208i \(0.389369\pi\)
\(644\) −1.45730 1.05879i −0.0574257 0.0417222i
\(645\) 0 0
\(646\) 6.48205 + 19.9497i 0.255033 + 0.784910i
\(647\) −14.6619 20.1803i −0.576418 0.793371i 0.416879 0.908962i \(-0.363124\pi\)
−0.993297 + 0.115591i \(0.963124\pi\)
\(648\) 8.40711i 0.330262i
\(649\) 21.4198 + 28.9714i 0.840801 + 1.13723i
\(650\) 0 0
\(651\) 8.96129 6.51076i 0.351221 0.255177i
\(652\) 2.99577 0.973385i 0.117323 0.0381207i
\(653\) −37.8624 12.3022i −1.48167 0.481424i −0.547058 0.837095i \(-0.684252\pi\)
−0.934611 + 0.355671i \(0.884252\pi\)
\(654\) 20.2197 + 14.6905i 0.790654 + 0.574444i
\(655\) 0 0
\(656\) 0.821192 2.52737i 0.0320622 0.0986772i
\(657\) 33.7500 10.9661i 1.31671 0.427826i
\(658\) 0.753832 + 1.03756i 0.0293874 + 0.0404483i
\(659\) 28.4602 1.10865 0.554327 0.832299i \(-0.312976\pi\)
0.554327 + 0.832299i \(0.312976\pi\)
\(660\) 0 0
\(661\) 22.1958 0.863316 0.431658 0.902037i \(-0.357929\pi\)
0.431658 + 0.902037i \(0.357929\pi\)
\(662\) −8.99085 12.3748i −0.349439 0.480962i
\(663\) 31.9223 10.3722i 1.23976 0.402822i
\(664\) 2.43660 7.49907i 0.0945583 0.291020i
\(665\) 0 0
\(666\) −18.9229 13.7483i −0.733247 0.532735i
\(667\) −2.51404 0.816860i −0.0973439 0.0316289i
\(668\) −5.18494 + 1.68469i −0.200611 + 0.0651825i
\(669\) −12.6431 + 9.18573i −0.488809 + 0.355141i
\(670\) 0 0
\(671\) −33.0949 + 11.0587i −1.27761 + 0.426917i
\(672\) 1.07433i 0.0414432i
\(673\) −10.6541 14.6642i −0.410687 0.565262i 0.552699 0.833381i \(-0.313598\pi\)
−0.963386 + 0.268119i \(0.913598\pi\)
\(674\) −6.00704 18.4878i −0.231382 0.712122i
\(675\) 0 0
\(676\) −2.06383 1.49946i −0.0793781 0.0576716i
\(677\) −10.3474 + 14.2420i −0.397684 + 0.547365i −0.960161 0.279448i \(-0.909849\pi\)
0.562477 + 0.826813i \(0.309849\pi\)
\(678\) −20.0980 6.53025i −0.771861 0.250793i
\(679\) −0.234035 0.720285i −0.00898143 0.0276420i
\(680\) 0 0
\(681\) −35.1559 −1.34718
\(682\) −27.4966 + 20.3294i −1.05290 + 0.778454i
\(683\) 37.4782i 1.43406i −0.697041 0.717031i \(-0.745500\pi\)
0.697041 0.717031i \(-0.254500\pi\)
\(684\) −15.7996 + 11.4791i −0.604112 + 0.438913i
\(685\) 0 0
\(686\) −1.84380 + 5.67462i −0.0703965 + 0.216658i
\(687\) −5.68247 + 7.82124i −0.216800 + 0.298399i
\(688\) −6.79569 + 9.35346i −0.259083 + 0.356597i
\(689\) 6.39105 19.6696i 0.243480 0.749354i
\(690\) 0 0
\(691\) −9.75191 + 7.08518i −0.370980 + 0.269533i −0.757617 0.652699i \(-0.773637\pi\)
0.386637 + 0.922232i \(0.373637\pi\)
\(692\) 14.9633i 0.568819i
\(693\) −1.37428 + 4.35260i −0.0522045 + 0.165341i
\(694\) 9.22874 0.350318
\(695\) 0 0
\(696\) 0.487185 + 1.49940i 0.0184667 + 0.0568346i
\(697\) 8.64905 + 2.81025i 0.327606 + 0.106446i
\(698\) 8.98509 12.3669i 0.340091 0.468095i
\(699\) 51.4717 + 37.3964i 1.94684 + 1.41446i
\(700\) 0 0
\(701\) −8.60170 26.4733i −0.324882 0.999884i −0.971494 0.237065i \(-0.923815\pi\)
0.646612 0.762819i \(-0.276185\pi\)
\(702\) 1.07281 + 1.47660i 0.0404908 + 0.0557308i
\(703\) 44.9989i 1.69717i
\(704\) −0.0276194 3.31651i −0.00104095 0.124996i
\(705\) 0 0
\(706\) 4.93962 3.58885i 0.185905 0.135068i
\(707\) −0.507783 + 0.164989i −0.0190971 + 0.00620504i
\(708\) −25.6969 8.34942i −0.965748 0.313790i
\(709\) 22.1770 + 16.1125i 0.832874 + 0.605119i 0.920371 0.391046i \(-0.127887\pi\)
−0.0874968 + 0.996165i \(0.527887\pi\)
\(710\) 0 0
\(711\) −7.33150 + 22.5640i −0.274953 + 0.846217i
\(712\) 1.27686 0.414876i 0.0478523 0.0155481i
\(713\) 25.2729 + 34.7852i 0.946479 + 1.30272i
\(714\) −3.67652 −0.137590
\(715\) 0 0
\(716\) 12.1459 0.453914
\(717\) 17.6584 + 24.3046i 0.659464 + 0.907674i
\(718\) 25.6231 8.32545i 0.956245 0.310703i
\(719\) 12.0166 36.9832i 0.448142 1.37924i −0.430858 0.902420i \(-0.641789\pi\)
0.879001 0.476821i \(-0.158211\pi\)
\(720\) 0 0
\(721\) −0.940163 0.683068i −0.0350135 0.0254388i
\(722\) −17.6626 5.73894i −0.657336 0.213581i
\(723\) 55.7295 18.1076i 2.07260 0.673429i
\(724\) −11.5274 + 8.37513i −0.428412 + 0.311259i
\(725\) 0 0
\(726\) 8.01988 26.1572i 0.297646 0.970784i
\(727\) 32.3326i 1.19915i −0.800319 0.599575i \(-0.795336\pi\)
0.800319 0.599575i \(-0.204664\pi\)
\(728\) 1.00122 + 1.37806i 0.0371075 + 0.0510741i
\(729\) 9.34444 + 28.7592i 0.346090 + 1.06516i
\(730\) 0 0
\(731\) −32.0090 23.2559i −1.18390 0.860151i
\(732\) 15.3807 21.1698i 0.568488 0.782457i
\(733\) 10.4549 + 3.39701i 0.386162 + 0.125472i 0.495663 0.868515i \(-0.334925\pi\)
−0.109501 + 0.993987i \(0.534925\pi\)
\(734\) 7.72900 + 23.7874i 0.285283 + 0.878010i
\(735\) 0 0
\(736\) −4.17025 −0.153717
\(737\) −29.6894 21.1951i −1.09362 0.780731i
\(738\) 8.46681i 0.311668i
\(739\) 15.0306 10.9204i 0.552910 0.401713i −0.275947 0.961173i \(-0.588991\pi\)
0.828857 + 0.559460i \(0.188991\pi\)
\(740\) 0 0
\(741\) −18.5780 + 57.1773i −0.682481 + 2.10046i
\(742\) −1.33155 + 1.83273i −0.0488829 + 0.0672815i
\(743\) 11.9833 16.4936i 0.439624 0.605091i −0.530504 0.847682i \(-0.677997\pi\)
0.970129 + 0.242591i \(0.0779974\pi\)
\(744\) 7.92439 24.3888i 0.290522 0.894135i
\(745\) 0 0
\(746\) −22.2930 + 16.1968i −0.816205 + 0.593007i
\(747\) 25.1223i 0.919176i
\(748\) 11.3496 0.0945179i 0.414983 0.00345592i
\(749\) −0.140575 −0.00513651
\(750\) 0 0
\(751\) 12.9995 + 40.0084i 0.474359 + 1.45993i 0.846820 + 0.531879i \(0.178514\pi\)
−0.372462 + 0.928048i \(0.621486\pi\)
\(752\) 2.82379 + 0.917506i 0.102973 + 0.0334580i
\(753\) 5.01074 6.89669i 0.182601 0.251329i
\(754\) 2.02228 + 1.46927i 0.0736470 + 0.0535077i
\(755\) 0 0
\(756\) −0.0617786 0.190135i −0.00224687 0.00691515i
\(757\) 0.925095 + 1.27328i 0.0336232 + 0.0462783i 0.825498 0.564406i \(-0.190895\pi\)
−0.791874 + 0.610684i \(0.790895\pi\)
\(758\) 23.4887i 0.853147i
\(759\) −32.8043 10.3576i −1.19072 0.375955i
\(760\) 0 0
\(761\) 11.7245 8.51838i 0.425015 0.308791i −0.354638 0.935004i \(-0.615396\pi\)
0.779652 + 0.626213i \(0.215396\pi\)
\(762\) −20.4355 + 6.63989i −0.740299 + 0.240538i
\(763\) −4.12806 1.34129i −0.149446 0.0485578i
\(764\) −0.893500 0.649166i −0.0323257 0.0234860i
\(765\) 0 0
\(766\) 5.78565 17.8064i 0.209044 0.643372i
\(767\) −40.7429 + 13.2382i −1.47114 + 0.478003i
\(768\) 1.46193 + 2.01217i 0.0527529 + 0.0726081i
\(769\) −50.5632 −1.82335 −0.911677 0.410907i \(-0.865212\pi\)
−0.911677 + 0.410907i \(0.865212\pi\)
\(770\) 0 0
\(771\) 4.05360 0.145987
\(772\) 6.43288 + 8.85410i 0.231524 + 0.318666i
\(773\) −33.5665 + 10.9064i −1.20730 + 0.392276i −0.842443 0.538786i \(-0.818883\pi\)
−0.364860 + 0.931063i \(0.618883\pi\)
\(774\) 11.3830 35.0331i 0.409152 1.25924i
\(775\) 0 0
\(776\) −1.41849 1.03059i −0.0509208 0.0369961i
\(777\) 7.50095 + 2.43720i 0.269095 + 0.0874342i
\(778\) −7.05435 + 2.29210i −0.252911 + 0.0821757i
\(779\) −13.1780 + 9.57438i −0.472151 + 0.343038i
\(780\) 0 0
\(781\) 32.2717 10.7836i 1.15477 0.385869i
\(782\) 14.2712i 0.510338i
\(783\) −0.172444 0.237349i −0.00616265 0.00848216i
\(784\) 2.10546 + 6.47995i 0.0751951 + 0.231427i
\(785\) 0 0
\(786\) 32.8684 + 23.8803i 1.17238 + 0.851781i
\(787\) 0.221208 0.304466i 0.00788520 0.0108530i −0.805056 0.593199i \(-0.797865\pi\)
0.812941 + 0.582346i \(0.197865\pi\)
\(788\) 15.2713 + 4.96195i 0.544018 + 0.176762i
\(789\) 1.26946 + 3.90698i 0.0451938 + 0.139092i
\(790\) 0 0
\(791\) 3.67002 0.130491
\(792\) 3.34898 + 10.0223i 0.119001 + 0.356128i
\(793\) 41.4887i 1.47331i
\(794\) 18.3160 13.3074i 0.650011 0.472260i
\(795\) 0 0
\(796\) 8.39047 25.8232i 0.297393 0.915280i
\(797\) −12.5086 + 17.2167i −0.443079 + 0.609845i −0.970893 0.239514i \(-0.923012\pi\)
0.527814 + 0.849360i \(0.323012\pi\)
\(798\) 3.87067 5.32752i 0.137020 0.188592i
\(799\) −3.13985 + 9.66346i −0.111080 + 0.341869i
\(800\) 0 0
\(801\) −3.46060 + 2.51427i −0.122274 + 0.0888375i
\(802\) 26.9832i 0.952809i
\(803\) 29.7039 21.9614i 1.04823 0.775001i
\(804\) 27.3558 0.964766
\(805\) 0 0
\(806\) −12.5643 38.6689i −0.442558 1.36205i
\(807\) 52.4319 + 17.0361i 1.84569 + 0.599701i
\(808\) −0.726543 + 1.00000i −0.0255597 + 0.0351799i
\(809\) −10.5822 7.68843i −0.372051 0.270311i 0.386010 0.922495i \(-0.373853\pi\)
−0.758061 + 0.652184i \(0.773853\pi\)
\(810\) 0 0
\(811\) 12.6338 + 38.8829i 0.443634 + 1.36536i 0.883975 + 0.467533i \(0.154857\pi\)
−0.440342 + 0.897830i \(0.645143\pi\)
\(812\) −0.160935 0.221508i −0.00564772 0.00777342i
\(813\) 18.2722i 0.640835i
\(814\) −23.2185 7.33094i −0.813807 0.256949i
\(815\) 0 0
\(816\) −6.88598 + 5.00295i −0.241057 + 0.175138i
\(817\) 67.3986 21.8991i 2.35798 0.766154i
\(818\) −8.88560 2.88711i −0.310678 0.100945i
\(819\) −4.39061 3.18996i −0.153420 0.111466i
\(820\) 0 0
\(821\) 8.77898 27.0189i 0.306389 0.942967i −0.672767 0.739855i \(-0.734894\pi\)
0.979155 0.203112i \(-0.0651057\pi\)
\(822\) 40.3529 13.1115i 1.40747 0.457315i
\(823\) −6.98007 9.60724i −0.243310 0.334887i 0.669844 0.742502i \(-0.266361\pi\)
−0.913154 + 0.407614i \(0.866361\pi\)
\(824\) −2.69039 −0.0937243
\(825\) 0 0
\(826\) 4.69240 0.163270
\(827\) 33.0728 + 45.5209i 1.15006 + 1.58292i 0.742668 + 0.669659i \(0.233560\pi\)
0.407387 + 0.913256i \(0.366440\pi\)
\(828\) 12.6365 4.10584i 0.439148 0.142688i
\(829\) −4.24409 + 13.0620i −0.147403 + 0.453661i −0.997312 0.0732690i \(-0.976657\pi\)
0.849909 + 0.526930i \(0.176657\pi\)
\(830\) 0 0
\(831\) 31.2225 + 22.6845i 1.08310 + 0.786916i
\(832\) 3.75047 + 1.21860i 0.130024 + 0.0422474i
\(833\) −22.1754 + 7.20522i −0.768332 + 0.249646i
\(834\) −11.3070 + 8.21505i −0.391531 + 0.284464i
\(835\) 0 0
\(836\) −11.8120 + 16.5458i −0.408526 + 0.572250i
\(837\) 4.77202i 0.164945i
\(838\) −9.73415 13.3979i −0.336261 0.462823i
\(839\) 9.95199 + 30.6291i 0.343581 + 1.05743i 0.962339 + 0.271852i \(0.0876360\pi\)
−0.618758 + 0.785581i \(0.712364\pi\)
\(840\) 0 0
\(841\) 23.1364 + 16.8096i 0.797808 + 0.579641i
\(842\) −1.10531 + 1.52132i −0.0380914 + 0.0524283i
\(843\) 54.1917 + 17.6079i 1.86646 + 0.606450i
\(844\) −0.818562 2.51928i −0.0281761 0.0867170i
\(845\) 0 0
\(846\) −9.45985 −0.325236
\(847\) 0.0791325 + 4.75075i 0.00271902 + 0.163238i
\(848\) 5.24458i 0.180100i
\(849\) −5.63834 + 4.09649i −0.193507 + 0.140591i
\(850\) 0 0
\(851\) −9.46055 + 29.1166i −0.324303 + 0.998103i
\(852\) −14.9981 + 20.6432i −0.513828 + 0.707224i
\(853\) −18.6435 + 25.6606i −0.638343 + 0.878604i −0.998526 0.0542781i \(-0.982714\pi\)
0.360183 + 0.932882i \(0.382714\pi\)
\(854\) −1.40431 + 4.32201i −0.0480544 + 0.147896i
\(855\) 0 0
\(856\) −0.263292 + 0.191292i −0.00899912 + 0.00653824i
\(857\) 25.5670i 0.873353i 0.899619 + 0.436677i \(0.143845\pi\)
−0.899619 + 0.436677i \(0.856155\pi\)
\(858\) 26.4756 + 18.9008i 0.903863 + 0.645264i
\(859\) −35.0484 −1.19584 −0.597919 0.801557i \(-0.704005\pi\)
−0.597919 + 0.801557i \(0.704005\pi\)
\(860\) 0 0
\(861\) −0.882230 2.71523i −0.0300663 0.0925347i
\(862\) −22.4503 7.29456i −0.764662 0.248454i
\(863\) −12.7418 + 17.5376i −0.433736 + 0.596986i −0.968806 0.247822i \(-0.920285\pi\)
0.535070 + 0.844808i \(0.320285\pi\)
\(864\) −0.374442 0.272048i −0.0127388 0.00925525i
\(865\) 0 0
\(866\) 4.90556 + 15.0977i 0.166698 + 0.513042i
\(867\) 7.73193 + 10.6421i 0.262590 + 0.361424i
\(868\) 4.45353i 0.151163i
\(869\) 0.205668 + 24.6964i 0.00697681 + 0.837768i
\(870\) 0 0
\(871\) 35.0897 25.4941i 1.18897 0.863836i
\(872\) −9.55688 + 3.10522i −0.323637 + 0.105156i
\(873\) 5.31291 + 1.72627i 0.179815 + 0.0584254i
\(874\) 20.6799 + 15.0249i 0.699510 + 0.508223i
\(875\) 0 0
\(876\) −8.56053 + 26.3466i −0.289233 + 0.890169i
\(877\) −24.6603 + 8.01263i −0.832721 + 0.270567i −0.694191 0.719791i \(-0.744238\pi\)
−0.138530 + 0.990358i \(0.544238\pi\)
\(878\) 6.82315 + 9.39127i 0.230270 + 0.316940i
\(879\) 52.9180 1.78488
\(880\) 0 0
\(881\) −47.5332 −1.60143 −0.800717 0.599042i \(-0.795548\pi\)
−0.800717 + 0.599042i \(0.795548\pi\)
\(882\) −12.7597 17.5623i −0.429643 0.591353i
\(883\) 20.7999 6.75830i 0.699973 0.227435i 0.0626542 0.998035i \(-0.480043\pi\)
0.637319 + 0.770600i \(0.280043\pi\)
\(884\) −4.17025 + 12.8347i −0.140261 + 0.431678i
\(885\) 0 0
\(886\) 7.72038 + 5.60918i 0.259371 + 0.188444i
\(887\) 6.59480 + 2.14278i 0.221432 + 0.0719475i 0.417632 0.908616i \(-0.362860\pi\)
−0.196200 + 0.980564i \(0.562860\pi\)
\(888\) 17.3655 5.64238i 0.582747 0.189346i
\(889\) 3.01896 2.19340i 0.101253 0.0735644i
\(890\) 0 0
\(891\) 16.5766 + 22.4207i 0.555338 + 0.751123i
\(892\) 6.28329i 0.210380i
\(893\) −10.6973 14.7236i −0.357972 0.492706i
\(894\) 7.60900 + 23.4181i 0.254483 + 0.783218i
\(895\) 0 0
\(896\) −0.349452 0.253891i −0.0116744 0.00848192i
\(897\) 24.0419 33.0908i 0.802735 1.10487i
\(898\) 18.8768 + 6.13346i 0.629928 + 0.204676i
\(899\) 2.01958 + 6.21563i 0.0673568 + 0.207303i
\(900\) 0 0
\(901\) −17.9478 −0.597927
\(902\) 2.79329 + 8.35936i 0.0930065 + 0.278336i
\(903\) 12.4209i 0.413341i
\(904\) 6.87380 4.99411i 0.228619 0.166102i
\(905\) 0 0
\(906\) 8.82193 27.1511i 0.293089 0.902035i
\(907\) −24.8813 + 34.2462i −0.826170 + 1.13713i 0.162454 + 0.986716i \(0.448059\pi\)
−0.988624 + 0.150409i \(0.951941\pi\)
\(908\) 8.30824 11.4353i 0.275719 0.379494i
\(909\) 1.21698 3.74547i 0.0403646 0.124229i
\(910\) 0 0
\(911\) 7.64031 5.55101i 0.253135 0.183913i −0.453980 0.891012i \(-0.649996\pi\)
0.707115 + 0.707099i \(0.249996\pi\)
\(912\) 15.2454i 0.504825i
\(913\) 8.28812 + 24.8034i 0.274297 + 0.820874i
\(914\) 4.20591 0.139119
\(915\) 0 0
\(916\) −1.20114 3.69672i −0.0396867 0.122143i
\(917\) −6.71040 2.18034i −0.221597 0.0720012i
\(918\) 0.930990 1.28140i 0.0307272 0.0422924i
\(919\) −14.1560 10.2849i −0.466963 0.339269i 0.329294 0.944228i \(-0.393189\pi\)
−0.796257 + 0.604959i \(0.793189\pi\)
\(920\) 0 0
\(921\) −2.24514 6.90982i −0.0739798 0.227686i
\(922\) 5.55345 + 7.64366i 0.182893 + 0.251731i
\(923\) 40.4567i 1.33165i
\(924\) −2.11830 2.86511i −0.0696869 0.0942551i
\(925\) 0 0
\(926\) −21.5100 + 15.6280i −0.706864 + 0.513567i
\(927\) 8.15230 2.64884i 0.267757 0.0869994i
\(928\) −0.602850 0.195878i −0.0197895 0.00643001i
\(929\) 15.9892 + 11.6168i 0.524587 + 0.381135i 0.818329 0.574750i \(-0.194901\pi\)
−0.293742 + 0.955885i \(0.594901\pi\)
\(930\) 0 0
\(931\) 12.9056 39.7193i 0.422963 1.30175i
\(932\) −24.3281 + 7.90469i −0.796895 + 0.258927i
\(933\) −5.59590 7.70209i −0.183201 0.252155i
\(934\) 18.2290 0.596472
\(935\) 0 0
\(936\) −12.5643 −0.410676
\(937\) −16.7584 23.0660i −0.547474 0.753533i 0.442193 0.896920i \(-0.354201\pi\)
−0.989667 + 0.143387i \(0.954201\pi\)
\(938\) −4.51833 + 1.46809i −0.147529 + 0.0479350i
\(939\) 20.9730 64.5484i 0.684429 2.10646i
\(940\) 0 0
\(941\) 24.5781 + 17.8571i 0.801225 + 0.582124i 0.911273 0.411802i \(-0.135101\pi\)
−0.110048 + 0.993926i \(0.535101\pi\)
\(942\) 17.8770 + 5.80859i 0.582464 + 0.189254i
\(943\) 10.5398 3.42457i 0.343222 0.111519i
\(944\) 8.78868 6.38535i 0.286047 0.207825i
\(945\) 0 0
\(946\) −0.319322 38.3439i −0.0103821 1.24667i
\(947\) 2.37805i 0.0772763i 0.999253 + 0.0386382i \(0.0123020\pi\)
−0.999253 + 0.0386382i \(0.987698\pi\)
\(948\) −10.8863 14.9837i −0.353570 0.486647i
\(949\) 13.5729 + 41.7731i 0.440595 + 1.35601i
\(950\) 0 0
\(951\) 57.8604 + 42.0380i 1.87625 + 1.36318i
\(952\) 0.868856 1.19588i 0.0281598 0.0387586i
\(953\) 42.2300 + 13.7214i 1.36796 + 0.444479i 0.898694 0.438576i \(-0.144517\pi\)
0.469270 + 0.883055i \(0.344517\pi\)
\(954\) −5.16358 15.8919i −0.167177 0.514518i
\(955\) 0 0
\(956\) −12.0788 −0.390656
\(957\) −4.25569 3.03812i −0.137567 0.0982084i
\(958\) 13.0061i 0.420206i
\(959\) −5.96139 + 4.33121i −0.192503 + 0.139862i
\(960\) 0 0
\(961\) 23.2703 71.6186i 0.750655 2.31028i
\(962\) 17.0165 23.4212i 0.548634 0.755130i
\(963\) 0.609475 0.838870i 0.0196400 0.0270322i
\(964\) −7.28036 + 22.4066i −0.234485 + 0.721670i
\(965\) 0 0
\(966\) −3.62457 + 2.63341i −0.116619 + 0.0847285i
\(967\) 11.4834i 0.369283i 0.982806 + 0.184641i \(0.0591124\pi\)
−0.982806 + 0.184641i \(0.940888\pi\)
\(968\) 6.61295 + 8.79027i 0.212548 + 0.282530i
\(969\) 52.1720 1.67601
\(970\) 0 0
\(971\) −1.38789 4.27147i −0.0445394 0.137078i 0.926314 0.376753i \(-0.122959\pi\)
−0.970853 + 0.239674i \(0.922959\pi\)
\(972\) −21.2072 6.89063i −0.680220 0.221017i
\(973\) 1.42670 1.96368i 0.0457378 0.0629527i
\(974\) 6.23479 + 4.52984i 0.199775 + 0.145145i
\(975\) 0 0
\(976\) 3.25112 + 10.0059i 0.104066 + 0.320281i
\(977\) −4.17201 5.74228i −0.133474 0.183712i 0.737048 0.675840i \(-0.236219\pi\)
−0.870523 + 0.492128i \(0.836219\pi\)
\(978\) 7.83448i 0.250519i
\(979\) −2.58720 + 3.62406i −0.0826872 + 0.115825i
\(980\) 0 0
\(981\) 25.9015 18.8186i 0.826972 0.600830i
\(982\) 12.8254 4.16722i 0.409275 0.132981i
\(983\) −52.7437 17.1375i −1.68226 0.546600i −0.696914 0.717155i \(-0.745444\pi\)
−0.985348 + 0.170555i \(0.945444\pi\)
\(984\) −5.34722 3.88498i −0.170463 0.123849i
\(985\) 0 0
\(986\) 0.670325 2.06305i 0.0213475 0.0657008i
\(987\) 3.03368 0.985703i 0.0965632 0.0313753i
\(988\) −14.2078 19.5554i −0.452012 0.622141i
\(989\) −48.2144 −1.53313
\(990\) 0 0
\(991\) 1.24021 0.0393967 0.0196983 0.999806i \(-0.493729\pi\)
0.0196983 + 0.999806i \(0.493729\pi\)
\(992\) 6.06030 + 8.34129i 0.192415 + 0.264836i
\(993\) −36.1823 + 11.7563i −1.14821 + 0.373076i
\(994\) 1.36938 4.21450i 0.0434340 0.133676i
\(995\) 0 0
\(996\) −15.8660 11.5273i −0.502733 0.365257i
\(997\) −31.6781 10.2928i −1.00325 0.325977i −0.239089 0.970998i \(-0.576849\pi\)
−0.764165 + 0.645021i \(0.776849\pi\)
\(998\) −13.1084 + 4.25919i −0.414940 + 0.134822i
\(999\) −2.74888 + 1.99718i −0.0869708 + 0.0631880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.ba.f.399.4 16
5.2 odd 4 550.2.h.l.201.1 8
5.3 odd 4 110.2.g.c.91.2 yes 8
5.4 even 2 inner 550.2.ba.f.399.1 16
11.4 even 5 inner 550.2.ba.f.499.1 16
15.8 even 4 990.2.n.j.91.2 8
20.3 even 4 880.2.bo.g.641.1 8
55.2 even 20 6050.2.a.cy.1.2 4
55.4 even 10 inner 550.2.ba.f.499.4 16
55.13 even 20 1210.2.a.v.1.3 4
55.37 odd 20 550.2.h.l.301.1 8
55.42 odd 20 6050.2.a.dh.1.2 4
55.48 odd 20 110.2.g.c.81.2 8
55.53 odd 20 1210.2.a.u.1.3 4
165.158 even 20 990.2.n.j.631.2 8
220.103 even 20 880.2.bo.g.81.1 8
220.123 odd 20 9680.2.a.ci.1.2 4
220.163 even 20 9680.2.a.cj.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.c.81.2 8 55.48 odd 20
110.2.g.c.91.2 yes 8 5.3 odd 4
550.2.h.l.201.1 8 5.2 odd 4
550.2.h.l.301.1 8 55.37 odd 20
550.2.ba.f.399.1 16 5.4 even 2 inner
550.2.ba.f.399.4 16 1.1 even 1 trivial
550.2.ba.f.499.1 16 11.4 even 5 inner
550.2.ba.f.499.4 16 55.4 even 10 inner
880.2.bo.g.81.1 8 220.103 even 20
880.2.bo.g.641.1 8 20.3 even 4
990.2.n.j.91.2 8 15.8 even 4
990.2.n.j.631.2 8 165.158 even 20
1210.2.a.u.1.3 4 55.53 odd 20
1210.2.a.v.1.3 4 55.13 even 20
6050.2.a.cy.1.2 4 55.2 even 20
6050.2.a.dh.1.2 4 55.42 odd 20
9680.2.a.ci.1.2 4 220.123 odd 20
9680.2.a.cj.1.2 4 220.163 even 20