Properties

Label 550.2.h.l.201.1
Level $550$
Weight $2$
Character 550.201
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(201,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-2,4,-2,0,-1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.682515625.5
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} + 5x^{6} + 2x^{5} + 19x^{4} + 28x^{3} + 100x^{2} + 88x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(-1.20316 + 0.874145i\) of defining polynomial
Character \(\chi\) \(=\) 550.201
Dual form 550.2.h.l.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(-0.768582 - 2.36545i) q^{3} +(0.309017 - 0.951057i) q^{4} +(2.01217 + 1.46193i) q^{6} +(0.133479 - 0.410805i) q^{7} +(0.309017 + 0.951057i) q^{8} +(-2.57760 + 1.87274i) q^{9} +(1.92705 - 2.69935i) q^{11} -2.48718 q^{12} +(3.19034 - 2.31792i) q^{13} +(0.133479 + 0.410805i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(2.76858 + 2.01149i) q^{17} +(0.984555 - 3.03015i) q^{18} +(-1.89414 - 5.82957i) q^{19} -1.07433 q^{21} +(0.0276194 + 3.31651i) q^{22} -4.17025 q^{23} +(2.01217 - 1.46193i) q^{24} +(-1.21860 + 3.75047i) q^{26} +(0.374442 + 0.272048i) q^{27} +(-0.349452 - 0.253891i) q^{28} +(-0.195878 + 0.602850i) q^{29} +(-8.34129 + 6.06030i) q^{31} +1.00000 q^{32} +(-7.86628 - 2.48368i) q^{33} -3.42216 q^{34} +(0.984555 + 3.03015i) q^{36} +(2.26858 - 6.98198i) q^{37} +(4.95892 + 3.60287i) q^{38} +(-7.93497 - 5.76509i) q^{39} +(0.821192 + 2.52737i) q^{41} +(0.869151 - 0.631475i) q^{42} -11.5615 q^{43} +(-1.97174 - 2.66688i) q^{44} +(3.37380 - 2.45121i) q^{46} +(-0.917506 - 2.82379i) q^{47} +(-0.768582 + 2.36545i) q^{48} +(5.51217 + 4.00483i) q^{49} +(2.63021 - 8.09495i) q^{51} +(-1.21860 - 3.75047i) q^{52} +(-4.24295 + 3.08268i) q^{53} -0.462835 q^{54} +0.431946 q^{56} +(-12.3338 + 8.96100i) q^{57} +(-0.195878 - 0.602850i) q^{58} +(3.35698 - 10.3317i) q^{59} +(-8.51153 - 6.18399i) q^{61} +(3.18609 - 9.80577i) q^{62} +(0.425275 + 1.30886i) q^{63} +(-0.809017 + 0.587785i) q^{64} +(7.82382 - 2.61434i) q^{66} +10.9987 q^{67} +(2.76858 - 2.01149i) q^{68} +(3.20518 + 9.86453i) q^{69} +(8.29982 + 6.03017i) q^{71} +(-2.57760 - 1.87274i) q^{72} +(3.44186 - 10.5929i) q^{73} +(2.26858 + 6.98198i) q^{74} -6.12957 q^{76} +(-0.851685 - 1.15195i) q^{77} +9.80816 q^{78} +(6.02435 - 4.37695i) q^{79} +(-2.59794 + 7.99563i) q^{81} +(-2.14991 - 1.56200i) q^{82} +(6.37909 + 4.63468i) q^{83} +(-0.331986 + 1.02175i) q^{84} +(9.35346 - 6.79569i) q^{86} +1.57656 q^{87} +(3.16272 + 0.998590i) q^{88} +1.34257 q^{89} +(-0.526370 - 1.62000i) q^{91} +(-1.28868 + 3.96614i) q^{92} +(20.7463 + 15.0731i) q^{93} +(2.40206 + 1.74520i) q^{94} +(-0.768582 - 2.36545i) q^{96} +(-1.41849 + 1.03059i) q^{97} -6.81342 q^{98} +(0.0879978 + 10.5667i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 4 q^{3} - 2 q^{4} - q^{6} + q^{7} - 2 q^{8} - 6 q^{9} + 2 q^{11} - 6 q^{12} - q^{13} + q^{14} - 2 q^{16} + 12 q^{17} - q^{18} - 7 q^{19} + 32 q^{21} - 8 q^{22} - 26 q^{23} - q^{24}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i
\(3\) −0.768582 2.36545i −0.443741 1.36570i −0.883858 0.467755i \(-0.845063\pi\)
0.440117 0.897940i \(-0.354937\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0 0
\(6\) 2.01217 + 1.46193i 0.821467 + 0.596831i
\(7\) 0.133479 0.410805i 0.0504502 0.155270i −0.922657 0.385621i \(-0.873987\pi\)
0.973108 + 0.230351i \(0.0739874\pi\)
\(8\) 0.309017 + 0.951057i 0.109254 + 0.336249i
\(9\) −2.57760 + 1.87274i −0.859200 + 0.624245i
\(10\) 0 0
\(11\) 1.92705 2.69935i 0.581028 0.813884i
\(12\) −2.48718 −0.717988
\(13\) 3.19034 2.31792i 0.884842 0.642875i −0.0496862 0.998765i \(-0.515822\pi\)
0.934528 + 0.355890i \(0.115822\pi\)
\(14\) 0.133479 + 0.410805i 0.0356737 + 0.109792i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.76858 + 2.01149i 0.671480 + 0.487859i 0.870520 0.492133i \(-0.163782\pi\)
−0.199040 + 0.979991i \(0.563782\pi\)
\(18\) 0.984555 3.03015i 0.232062 0.714213i
\(19\) −1.89414 5.82957i −0.434546 1.33739i −0.893551 0.448961i \(-0.851794\pi\)
0.459006 0.888433i \(-0.348206\pi\)
\(20\) 0 0
\(21\) −1.07433 −0.234438
\(22\) 0.0276194 + 3.31651i 0.00588847 + 0.707082i
\(23\) −4.17025 −0.869557 −0.434778 0.900537i \(-0.643173\pi\)
−0.434778 + 0.900537i \(0.643173\pi\)
\(24\) 2.01217 1.46193i 0.410733 0.298415i
\(25\) 0 0
\(26\) −1.21860 + 3.75047i −0.238988 + 0.735528i
\(27\) 0.374442 + 0.272048i 0.0720613 + 0.0523556i
\(28\) −0.349452 0.253891i −0.0660402 0.0479810i
\(29\) −0.195878 + 0.602850i −0.0363736 + 0.111947i −0.967595 0.252508i \(-0.918745\pi\)
0.931221 + 0.364455i \(0.118745\pi\)
\(30\) 0 0
\(31\) −8.34129 + 6.06030i −1.49814 + 1.08846i −0.527024 + 0.849850i \(0.676692\pi\)
−0.971115 + 0.238612i \(0.923308\pi\)
\(32\) 1.00000 0.176777
\(33\) −7.86628 2.48368i −1.36934 0.432353i
\(34\) −3.42216 −0.586895
\(35\) 0 0
\(36\) 0.984555 + 3.03015i 0.164093 + 0.505025i
\(37\) 2.26858 6.98198i 0.372953 1.14783i −0.571897 0.820326i \(-0.693792\pi\)
0.944850 0.327505i \(-0.106208\pi\)
\(38\) 4.95892 + 3.60287i 0.804444 + 0.584463i
\(39\) −7.93497 5.76509i −1.27061 0.923154i
\(40\) 0 0
\(41\) 0.821192 + 2.52737i 0.128249 + 0.394709i 0.994479 0.104936i \(-0.0334639\pi\)
−0.866230 + 0.499645i \(0.833464\pi\)
\(42\) 0.869151 0.631475i 0.134113 0.0974387i
\(43\) −11.5615 −1.76311 −0.881557 0.472077i \(-0.843504\pi\)
−0.881557 + 0.472077i \(0.843504\pi\)
\(44\) −1.97174 2.66688i −0.297251 0.402047i
\(45\) 0 0
\(46\) 3.37380 2.45121i 0.497440 0.361411i
\(47\) −0.917506 2.82379i −0.133832 0.411892i 0.861575 0.507631i \(-0.169479\pi\)
−0.995407 + 0.0957387i \(0.969479\pi\)
\(48\) −0.768582 + 2.36545i −0.110935 + 0.341424i
\(49\) 5.51217 + 4.00483i 0.787454 + 0.572118i
\(50\) 0 0
\(51\) 2.63021 8.09495i 0.368303 1.13352i
\(52\) −1.21860 3.75047i −0.168990 0.520097i
\(53\) −4.24295 + 3.08268i −0.582814 + 0.423439i −0.839738 0.542992i \(-0.817291\pi\)
0.256923 + 0.966432i \(0.417291\pi\)
\(54\) −0.462835 −0.0629839
\(55\) 0 0
\(56\) 0.431946 0.0577212
\(57\) −12.3338 + 8.96100i −1.63365 + 1.18691i
\(58\) −0.195878 0.602850i −0.0257200 0.0791581i
\(59\) 3.35698 10.3317i 0.437041 1.34507i −0.453939 0.891033i \(-0.649982\pi\)
0.890981 0.454042i \(-0.150018\pi\)
\(60\) 0 0
\(61\) −8.51153 6.18399i −1.08979 0.791779i −0.110426 0.993884i \(-0.535222\pi\)
−0.979364 + 0.202105i \(0.935222\pi\)
\(62\) 3.18609 9.80577i 0.404634 1.24533i
\(63\) 0.425275 + 1.30886i 0.0535796 + 0.164901i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0 0
\(66\) 7.82382 2.61434i 0.963046 0.321803i
\(67\) 10.9987 1.34371 0.671854 0.740684i \(-0.265498\pi\)
0.671854 + 0.740684i \(0.265498\pi\)
\(68\) 2.76858 2.01149i 0.335740 0.243929i
\(69\) 3.20518 + 9.86453i 0.385858 + 1.18755i
\(70\) 0 0
\(71\) 8.29982 + 6.03017i 0.985007 + 0.715649i 0.958822 0.284008i \(-0.0916641\pi\)
0.0261849 + 0.999657i \(0.491664\pi\)
\(72\) −2.57760 1.87274i −0.303773 0.220704i
\(73\) 3.44186 10.5929i 0.402839 1.23981i −0.519848 0.854259i \(-0.674011\pi\)
0.922686 0.385551i \(-0.125989\pi\)
\(74\) 2.26858 + 6.98198i 0.263717 + 0.811639i
\(75\) 0 0
\(76\) −6.12957 −0.703110
\(77\) −0.851685 1.15195i −0.0970585 0.131277i
\(78\) 9.80816 1.11056
\(79\) 6.02435 4.37695i 0.677792 0.492445i −0.194832 0.980837i \(-0.562416\pi\)
0.872625 + 0.488392i \(0.162416\pi\)
\(80\) 0 0
\(81\) −2.59794 + 7.99563i −0.288660 + 0.888404i
\(82\) −2.14991 1.56200i −0.237418 0.172494i
\(83\) 6.37909 + 4.63468i 0.700196 + 0.508722i 0.879996 0.474981i \(-0.157545\pi\)
−0.179800 + 0.983703i \(0.557545\pi\)
\(84\) −0.331986 + 1.02175i −0.0362226 + 0.111482i
\(85\) 0 0
\(86\) 9.35346 6.79569i 1.00861 0.732798i
\(87\) 1.57656 0.169025
\(88\) 3.16272 + 0.998590i 0.337147 + 0.106450i
\(89\) 1.34257 0.142312 0.0711559 0.997465i \(-0.477331\pi\)
0.0711559 + 0.997465i \(0.477331\pi\)
\(90\) 0 0
\(91\) −0.526370 1.62000i −0.0551786 0.169822i
\(92\) −1.28868 + 3.96614i −0.134354 + 0.413499i
\(93\) 20.7463 + 15.0731i 2.15129 + 1.56301i
\(94\) 2.40206 + 1.74520i 0.247754 + 0.180004i
\(95\) 0 0
\(96\) −0.768582 2.36545i −0.0784431 0.241423i
\(97\) −1.41849 + 1.03059i −0.144026 + 0.104641i −0.657465 0.753485i \(-0.728371\pi\)
0.513439 + 0.858126i \(0.328371\pi\)
\(98\) −6.81342 −0.688260
\(99\) 0.0879978 + 10.5667i 0.00884411 + 1.06199i
\(100\) 0 0
\(101\) 1.00000 0.726543i 0.0995037 0.0722937i −0.536921 0.843633i \(-0.680413\pi\)
0.636425 + 0.771339i \(0.280413\pi\)
\(102\) 2.63021 + 8.09495i 0.260429 + 0.801519i
\(103\) 0.831378 2.55872i 0.0819181 0.252118i −0.901706 0.432349i \(-0.857685\pi\)
0.983624 + 0.180232i \(0.0576847\pi\)
\(104\) 3.19034 + 2.31792i 0.312839 + 0.227291i
\(105\) 0 0
\(106\) 1.62066 4.98789i 0.157413 0.484467i
\(107\) 0.100568 + 0.309518i 0.00972232 + 0.0299222i 0.955800 0.294018i \(-0.0949924\pi\)
−0.946078 + 0.323940i \(0.894992\pi\)
\(108\) 0.374442 0.272048i 0.0360307 0.0261778i
\(109\) −10.0487 −0.962491 −0.481245 0.876586i \(-0.659815\pi\)
−0.481245 + 0.876586i \(0.659815\pi\)
\(110\) 0 0
\(111\) −18.2591 −1.73308
\(112\) −0.349452 + 0.253891i −0.0330201 + 0.0239905i
\(113\) 2.62556 + 8.08064i 0.246992 + 0.760162i 0.995302 + 0.0968141i \(0.0308652\pi\)
−0.748311 + 0.663348i \(0.769135\pi\)
\(114\) 4.71108 14.4992i 0.441233 1.35798i
\(115\) 0 0
\(116\) 0.512815 + 0.372582i 0.0476137 + 0.0345934i
\(117\) −3.88257 + 11.9493i −0.358944 + 1.10472i
\(118\) 3.35698 + 10.3317i 0.309035 + 0.951111i
\(119\) 1.19588 0.868856i 0.109626 0.0796479i
\(120\) 0 0
\(121\) −3.57295 10.4036i −0.324814 0.945778i
\(122\) 10.5208 0.952512
\(123\) 5.34722 3.88498i 0.482142 0.350297i
\(124\) 3.18609 + 9.80577i 0.286119 + 0.880584i
\(125\) 0 0
\(126\) −1.11338 0.808921i −0.0991881 0.0720644i
\(127\) −6.98921 5.07796i −0.620192 0.450596i 0.232797 0.972525i \(-0.425212\pi\)
−0.852988 + 0.521930i \(0.825212\pi\)
\(128\) 0.309017 0.951057i 0.0273135 0.0840623i
\(129\) 8.88598 + 27.3482i 0.782367 + 2.40788i
\(130\) 0 0
\(131\) 16.3347 1.42717 0.713587 0.700567i \(-0.247069\pi\)
0.713587 + 0.700567i \(0.247069\pi\)
\(132\) −4.79293 + 6.71377i −0.417171 + 0.584359i
\(133\) −2.64764 −0.229580
\(134\) −8.89815 + 6.46488i −0.768683 + 0.558481i
\(135\) 0 0
\(136\) −1.05750 + 3.25466i −0.0906803 + 0.279085i
\(137\) 13.8012 + 10.0272i 1.17912 + 0.856681i 0.992072 0.125670i \(-0.0401080\pi\)
0.187048 + 0.982351i \(0.440108\pi\)
\(138\) −8.39127 6.09661i −0.714312 0.518978i
\(139\) 1.73646 5.34429i 0.147285 0.453296i −0.850013 0.526762i \(-0.823406\pi\)
0.997298 + 0.0734656i \(0.0234059\pi\)
\(140\) 0 0
\(141\) −5.97437 + 4.34063i −0.503133 + 0.365547i
\(142\) −10.2591 −0.860928
\(143\) −0.108917 13.0786i −0.00910806 1.09369i
\(144\) 3.18609 0.265507
\(145\) 0 0
\(146\) 3.44186 + 10.5929i 0.284850 + 0.876678i
\(147\) 5.23668 16.1168i 0.431914 1.32929i
\(148\) −5.93923 4.31510i −0.488201 0.354699i
\(149\) −8.00930 5.81910i −0.656147 0.476719i 0.209212 0.977870i \(-0.432910\pi\)
−0.865360 + 0.501151i \(0.832910\pi\)
\(150\) 0 0
\(151\) −3.54695 10.9164i −0.288647 0.888364i −0.985282 0.170938i \(-0.945320\pi\)
0.696635 0.717426i \(-0.254680\pi\)
\(152\) 4.95892 3.60287i 0.402222 0.292231i
\(153\) −10.9033 −0.881479
\(154\) 1.36613 + 0.431337i 0.110086 + 0.0347581i
\(155\) 0 0
\(156\) −7.93497 + 5.76509i −0.635306 + 0.461577i
\(157\) 2.33541 + 7.18764i 0.186386 + 0.573636i 0.999969 0.00781135i \(-0.00248645\pi\)
−0.813584 + 0.581448i \(0.802486\pi\)
\(158\) −2.30110 + 7.08205i −0.183065 + 0.563417i
\(159\) 10.5530 + 7.66721i 0.836908 + 0.608049i
\(160\) 0 0
\(161\) −0.556639 + 1.71316i −0.0438693 + 0.135016i
\(162\) −2.59794 7.99563i −0.204113 0.628196i
\(163\) −2.54835 + 1.85149i −0.199603 + 0.145020i −0.683097 0.730328i \(-0.739367\pi\)
0.483494 + 0.875347i \(0.339367\pi\)
\(164\) 2.65743 0.207511
\(165\) 0 0
\(166\) −7.88499 −0.611994
\(167\) −4.41057 + 3.20447i −0.341300 + 0.247969i −0.745210 0.666830i \(-0.767651\pi\)
0.403910 + 0.914799i \(0.367651\pi\)
\(168\) −0.331986 1.02175i −0.0256133 0.0788296i
\(169\) 0.788314 2.42618i 0.0606395 0.186629i
\(170\) 0 0
\(171\) 15.7996 + 11.4791i 1.20822 + 0.877826i
\(172\) −3.57270 + 10.9957i −0.272416 + 0.838411i
\(173\) 4.62391 + 14.2309i 0.351550 + 1.08196i 0.957983 + 0.286824i \(0.0925996\pi\)
−0.606434 + 0.795134i \(0.707400\pi\)
\(174\) −1.27547 + 0.926680i −0.0966928 + 0.0702515i
\(175\) 0 0
\(176\) −3.14565 + 1.05113i −0.237113 + 0.0792316i
\(177\) −27.0193 −2.03089
\(178\) −1.08616 + 0.789142i −0.0814111 + 0.0591487i
\(179\) 3.75329 + 11.5514i 0.280534 + 0.863395i 0.987702 + 0.156349i \(0.0499725\pi\)
−0.707168 + 0.707046i \(0.750027\pi\)
\(180\) 0 0
\(181\) 11.5274 + 8.37513i 0.856823 + 0.622518i 0.927019 0.375015i \(-0.122362\pi\)
−0.0701958 + 0.997533i \(0.522362\pi\)
\(182\) 1.37806 + 1.00122i 0.102148 + 0.0742151i
\(183\) −8.08613 + 24.8865i −0.597744 + 1.83967i
\(184\) −1.28868 3.96614i −0.0950026 0.292388i
\(185\) 0 0
\(186\) −25.6439 −1.88030
\(187\) 10.7649 3.59712i 0.787209 0.263047i
\(188\) −2.96911 −0.216545
\(189\) 0.161739 0.117510i 0.0117647 0.00854759i
\(190\) 0 0
\(191\) −0.341287 + 1.05037i −0.0246946 + 0.0760023i −0.962644 0.270769i \(-0.912722\pi\)
0.937950 + 0.346771i \(0.112722\pi\)
\(192\) 2.01217 + 1.46193i 0.145216 + 0.105506i
\(193\) −8.85410 6.43288i −0.637332 0.463049i 0.221600 0.975138i \(-0.428872\pi\)
−0.858933 + 0.512089i \(0.828872\pi\)
\(194\) 0.541815 1.66754i 0.0389001 0.119722i
\(195\) 0 0
\(196\) 5.51217 4.00483i 0.393727 0.286059i
\(197\) 16.0572 1.14403 0.572014 0.820244i \(-0.306162\pi\)
0.572014 + 0.820244i \(0.306162\pi\)
\(198\) −6.28214 8.49691i −0.446452 0.603849i
\(199\) 27.1521 1.92476 0.962382 0.271699i \(-0.0875854\pi\)
0.962382 + 0.271699i \(0.0875854\pi\)
\(200\) 0 0
\(201\) −8.45342 26.0170i −0.596258 1.83509i
\(202\) −0.381966 + 1.17557i −0.0268750 + 0.0827129i
\(203\) 0.221508 + 0.160935i 0.0155468 + 0.0112954i
\(204\) −6.88598 5.00295i −0.482115 0.350277i
\(205\) 0 0
\(206\) 0.831378 + 2.55872i 0.0579248 + 0.178274i
\(207\) 10.7492 7.80977i 0.747123 0.542817i
\(208\) −3.94348 −0.273431
\(209\) −19.3861 6.12093i −1.34097 0.423393i
\(210\) 0 0
\(211\) −2.14302 + 1.55700i −0.147532 + 0.107188i −0.659103 0.752053i \(-0.729064\pi\)
0.511571 + 0.859241i \(0.329064\pi\)
\(212\) 1.62066 + 4.98789i 0.111308 + 0.342570i
\(213\) 7.88499 24.2675i 0.540271 1.66278i
\(214\) −0.263292 0.191292i −0.0179982 0.0130765i
\(215\) 0 0
\(216\) −0.143024 + 0.440183i −0.00973155 + 0.0299506i
\(217\) 1.37622 + 4.23556i 0.0934238 + 0.287529i
\(218\) 8.12957 5.90648i 0.550604 0.400037i
\(219\) −27.7025 −1.87196
\(220\) 0 0
\(221\) 13.4952 0.907786
\(222\) 14.7720 10.7325i 0.991428 0.720315i
\(223\) 1.94164 + 5.97576i 0.130022 + 0.400167i 0.994783 0.102018i \(-0.0325299\pi\)
−0.864761 + 0.502184i \(0.832530\pi\)
\(224\) 0.133479 0.410805i 0.00891842 0.0274481i
\(225\) 0 0
\(226\) −6.87380 4.99411i −0.457238 0.332203i
\(227\) 4.36790 13.4430i 0.289908 0.892245i −0.694977 0.719032i \(-0.744585\pi\)
0.984885 0.173212i \(-0.0554147\pi\)
\(228\) 4.71108 + 14.4992i 0.311999 + 0.960233i
\(229\) 3.14462 2.28470i 0.207802 0.150977i −0.479017 0.877806i \(-0.659007\pi\)
0.686819 + 0.726829i \(0.259007\pi\)
\(230\) 0 0
\(231\) −2.07029 + 2.89999i −0.136215 + 0.190805i
\(232\) −0.633874 −0.0416159
\(233\) 20.6947 15.0356i 1.35576 0.985016i 0.357056 0.934083i \(-0.383781\pi\)
0.998702 0.0509329i \(-0.0162195\pi\)
\(234\) −3.88257 11.9493i −0.253812 0.781153i
\(235\) 0 0
\(236\) −8.78868 6.38535i −0.572094 0.415651i
\(237\) −14.9837 10.8863i −0.973294 0.707139i
\(238\) −0.456785 + 1.40584i −0.0296090 + 0.0911270i
\(239\) −3.73255 11.4876i −0.241439 0.743072i −0.996202 0.0870747i \(-0.972248\pi\)
0.754763 0.655998i \(-0.227752\pi\)
\(240\) 0 0
\(241\) 23.5597 1.51762 0.758808 0.651314i \(-0.225782\pi\)
0.758808 + 0.651314i \(0.225782\pi\)
\(242\) 9.00563 + 6.31653i 0.578904 + 0.406042i
\(243\) 22.2985 1.43045
\(244\) −8.51153 + 6.18399i −0.544895 + 0.395889i
\(245\) 0 0
\(246\) −2.04246 + 6.28603i −0.130222 + 0.400783i
\(247\) −19.5554 14.2078i −1.24428 0.904024i
\(248\) −8.34129 6.06030i −0.529672 0.384829i
\(249\) 6.06027 18.6516i 0.384054 1.18200i
\(250\) 0 0
\(251\) 2.77289 2.01462i 0.175023 0.127162i −0.496825 0.867851i \(-0.665501\pi\)
0.671848 + 0.740689i \(0.265501\pi\)
\(252\) 1.37622 0.0866936
\(253\) −8.03628 + 11.2569i −0.505237 + 0.707718i
\(254\) 8.63913 0.542067
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −0.503634 + 1.55003i −0.0314158 + 0.0966879i −0.965535 0.260274i \(-0.916187\pi\)
0.934119 + 0.356961i \(0.116187\pi\)
\(258\) −23.2638 16.9021i −1.44834 1.05228i
\(259\) −2.56542 1.86389i −0.159408 0.115816i
\(260\) 0 0
\(261\) −0.624085 1.92073i −0.0386299 0.118890i
\(262\) −13.2151 + 9.60132i −0.816431 + 0.593172i
\(263\) 1.65168 0.101847 0.0509236 0.998703i \(-0.483783\pi\)
0.0509236 + 0.998703i \(0.483783\pi\)
\(264\) −0.0686945 8.24877i −0.00422786 0.507677i
\(265\) 0 0
\(266\) 2.14199 1.55625i 0.131334 0.0954195i
\(267\) −1.03187 3.17578i −0.0631497 0.194355i
\(268\) 3.39879 10.4604i 0.207614 0.638971i
\(269\) −17.9324 13.0287i −1.09336 0.794371i −0.113395 0.993550i \(-0.536173\pi\)
−0.979963 + 0.199179i \(0.936173\pi\)
\(270\) 0 0
\(271\) −2.27021 + 6.98698i −0.137905 + 0.424429i −0.996031 0.0890115i \(-0.971629\pi\)
0.858125 + 0.513440i \(0.171629\pi\)
\(272\) −1.05750 3.25466i −0.0641206 0.197343i
\(273\) −3.42748 + 2.49021i −0.207440 + 0.150714i
\(274\) −17.0593 −1.03059
\(275\) 0 0
\(276\) 10.3722 0.624332
\(277\) −12.5533 + 9.12054i −0.754258 + 0.548000i −0.897144 0.441739i \(-0.854362\pi\)
0.142886 + 0.989739i \(0.454362\pi\)
\(278\) 1.73646 + 5.34429i 0.104146 + 0.320529i
\(279\) 10.1512 31.2420i 0.607734 1.87041i
\(280\) 0 0
\(281\) 18.5343 + 13.4660i 1.10566 + 0.803311i 0.981975 0.189010i \(-0.0605278\pi\)
0.123688 + 0.992321i \(0.460528\pi\)
\(282\) 2.28201 7.02329i 0.135891 0.418231i
\(283\) 0.865901 + 2.66497i 0.0514724 + 0.158416i 0.973489 0.228735i \(-0.0734591\pi\)
−0.922016 + 0.387151i \(0.873459\pi\)
\(284\) 8.29982 6.03017i 0.492503 0.357825i
\(285\) 0 0
\(286\) 7.77552 + 10.5168i 0.459776 + 0.621870i
\(287\) 1.14787 0.0677565
\(288\) −2.57760 + 1.87274i −0.151886 + 0.110352i
\(289\) −1.63434 5.02999i −0.0961379 0.295882i
\(290\) 0 0
\(291\) 3.52805 + 2.56328i 0.206818 + 0.150262i
\(292\) −9.01089 6.54680i −0.527323 0.383122i
\(293\) 6.57473 20.2349i 0.384100 1.18214i −0.553032 0.833160i \(-0.686529\pi\)
0.937131 0.348977i \(-0.113471\pi\)
\(294\) 5.23668 + 16.1168i 0.305409 + 0.939953i
\(295\) 0 0
\(296\) 7.34129 0.426704
\(297\) 1.45592 0.486498i 0.0844810 0.0282295i
\(298\) 9.90004 0.573494
\(299\) −13.3045 + 9.66630i −0.769420 + 0.559016i
\(300\) 0 0
\(301\) −1.54322 + 4.74953i −0.0889494 + 0.273758i
\(302\) 9.28605 + 6.74671i 0.534352 + 0.388229i
\(303\) −2.48718 1.80705i −0.142885 0.103812i
\(304\) −1.89414 + 5.82957i −0.108636 + 0.334349i
\(305\) 0 0
\(306\) 8.82095 6.40879i 0.504260 0.366366i
\(307\) 2.92114 0.166718 0.0833591 0.996520i \(-0.473435\pi\)
0.0833591 + 0.996520i \(0.473435\pi\)
\(308\) −1.35875 + 0.454029i −0.0774221 + 0.0258707i
\(309\) −6.69151 −0.380667
\(310\) 0 0
\(311\) −1.18284 3.64040i −0.0670726 0.206428i 0.911903 0.410406i \(-0.134613\pi\)
−0.978976 + 0.203978i \(0.934613\pi\)
\(312\) 3.03089 9.32812i 0.171590 0.528101i
\(313\) −22.0764 16.0395i −1.24783 0.906604i −0.249739 0.968313i \(-0.580345\pi\)
−0.998094 + 0.0617096i \(0.980345\pi\)
\(314\) −6.11418 4.44221i −0.345043 0.250688i
\(315\) 0 0
\(316\) −2.30110 7.08205i −0.129447 0.398396i
\(317\) −23.2634 + 16.9018i −1.30660 + 0.949302i −0.999997 0.00253464i \(-0.999193\pi\)
−0.306605 + 0.951837i \(0.599193\pi\)
\(318\) −13.0442 −0.731484
\(319\) 1.24984 + 1.69047i 0.0699774 + 0.0946479i
\(320\) 0 0
\(321\) 0.654855 0.475780i 0.0365504 0.0265554i
\(322\) −0.556639 1.71316i −0.0310203 0.0954706i
\(323\) 6.48205 19.9497i 0.360671 1.11003i
\(324\) 6.80149 + 4.94157i 0.377861 + 0.274532i
\(325\) 0 0
\(326\) 0.973385 2.99577i 0.0539108 0.165920i
\(327\) 7.72325 + 23.7697i 0.427097 + 1.31447i
\(328\) −2.14991 + 1.56200i −0.118709 + 0.0862470i
\(329\) −1.28250 −0.0707063
\(330\) 0 0
\(331\) −15.2961 −0.840752 −0.420376 0.907350i \(-0.638102\pi\)
−0.420376 + 0.907350i \(0.638102\pi\)
\(332\) 6.37909 4.63468i 0.350098 0.254361i
\(333\) 7.22790 + 22.2452i 0.396087 + 1.21903i
\(334\) 1.68469 5.18494i 0.0921820 0.283707i
\(335\) 0 0
\(336\) 0.869151 + 0.631475i 0.0474161 + 0.0344498i
\(337\) 6.00704 18.4878i 0.327224 1.00709i −0.643203 0.765696i \(-0.722395\pi\)
0.970427 0.241396i \(-0.0776053\pi\)
\(338\) 0.788314 + 2.42618i 0.0428786 + 0.131967i
\(339\) 17.0964 12.4213i 0.928550 0.674631i
\(340\) 0 0
\(341\) 0.284767 + 34.1945i 0.0154210 + 1.85174i
\(342\) −19.5293 −1.05603
\(343\) 4.82712 3.50711i 0.260640 0.189366i
\(344\) −3.57270 10.9957i −0.192627 0.592846i
\(345\) 0 0
\(346\) −12.1056 8.79521i −0.650799 0.472833i
\(347\) 7.46620 + 5.42452i 0.400807 + 0.291203i 0.769870 0.638201i \(-0.220321\pi\)
−0.369063 + 0.929405i \(0.620321\pi\)
\(348\) 0.487185 1.49940i 0.0261158 0.0803763i
\(349\) 4.72374 + 14.5382i 0.252856 + 0.778211i 0.994244 + 0.107135i \(0.0341677\pi\)
−0.741388 + 0.671076i \(0.765832\pi\)
\(350\) 0 0
\(351\) 1.82518 0.0974210
\(352\) 1.92705 2.69935i 0.102712 0.143876i
\(353\) −6.10571 −0.324974 −0.162487 0.986711i \(-0.551952\pi\)
−0.162487 + 0.986711i \(0.551952\pi\)
\(354\) 21.8591 15.8815i 1.16180 0.844094i
\(355\) 0 0
\(356\) 0.414876 1.27686i 0.0219884 0.0676733i
\(357\) −2.97437 2.16101i −0.157420 0.114373i
\(358\) −9.82624 7.13918i −0.519333 0.377317i
\(359\) −8.32545 + 25.6231i −0.439400 + 1.35233i 0.449109 + 0.893477i \(0.351741\pi\)
−0.888510 + 0.458858i \(0.848259\pi\)
\(360\) 0 0
\(361\) −15.0247 + 10.9161i −0.790776 + 0.574532i
\(362\) −14.2486 −0.748891
\(363\) −21.8630 + 16.4476i −1.14751 + 0.863277i
\(364\) −1.70337 −0.0892809
\(365\) 0 0
\(366\) −8.08613 24.8865i −0.422669 1.30084i
\(367\) −7.72900 + 23.7874i −0.403451 + 1.24169i 0.518732 + 0.854937i \(0.326404\pi\)
−0.922182 + 0.386756i \(0.873596\pi\)
\(368\) 3.37380 + 2.45121i 0.175872 + 0.127778i
\(369\) −6.84980 4.97667i −0.356586 0.259075i
\(370\) 0 0
\(371\) 0.700039 + 2.15450i 0.0363442 + 0.111856i
\(372\) 20.7463 15.0731i 1.07565 0.781503i
\(373\) 27.5557 1.42678 0.713389 0.700768i \(-0.247159\pi\)
0.713389 + 0.700768i \(0.247159\pi\)
\(374\) −6.59467 + 9.23759i −0.341002 + 0.477664i
\(375\) 0 0
\(376\) 2.40206 1.74520i 0.123877 0.0900018i
\(377\) 0.772441 + 2.37733i 0.0397827 + 0.122439i
\(378\) −0.0617786 + 0.190135i −0.00317755 + 0.00977949i
\(379\) 19.0027 + 13.8063i 0.976105 + 0.709182i 0.956835 0.290633i \(-0.0938658\pi\)
0.0192700 + 0.999814i \(0.493866\pi\)
\(380\) 0 0
\(381\) −6.63989 + 20.4355i −0.340172 + 1.04694i
\(382\) −0.341287 1.05037i −0.0174617 0.0537417i
\(383\) −15.1470 + 11.0050i −0.773977 + 0.562327i −0.903165 0.429293i \(-0.858763\pi\)
0.129188 + 0.991620i \(0.458763\pi\)
\(384\) −2.48718 −0.126924
\(385\) 0 0
\(386\) 10.9443 0.557049
\(387\) 29.8010 21.6517i 1.51487 1.10062i
\(388\) 0.541815 + 1.66754i 0.0275065 + 0.0846563i
\(389\) 2.29210 7.05435i 0.116214 0.357670i −0.875984 0.482340i \(-0.839787\pi\)
0.992198 + 0.124670i \(0.0397871\pi\)
\(390\) 0 0
\(391\) −11.5457 8.38842i −0.583890 0.424221i
\(392\) −2.10546 + 6.47995i −0.106342 + 0.327287i
\(393\) −12.5546 38.6391i −0.633296 1.94908i
\(394\) −12.9906 + 9.43819i −0.654455 + 0.475489i
\(395\) 0 0
\(396\) 10.0767 + 3.18160i 0.506374 + 0.159881i
\(397\) 22.6398 1.13626 0.568130 0.822939i \(-0.307667\pi\)
0.568130 + 0.822939i \(0.307667\pi\)
\(398\) −21.9665 + 15.9596i −1.10108 + 0.799984i
\(399\) 2.03493 + 6.26287i 0.101874 + 0.313536i
\(400\) 0 0
\(401\) −21.8299 15.8603i −1.09013 0.792026i −0.110709 0.993853i \(-0.535312\pi\)
−0.979421 + 0.201826i \(0.935312\pi\)
\(402\) 22.1313 + 16.0794i 1.10381 + 0.801966i
\(403\) −12.5643 + 38.6689i −0.625871 + 1.92623i
\(404\) −0.381966 1.17557i −0.0190035 0.0584868i
\(405\) 0 0
\(406\) −0.273800 −0.0135884
\(407\) −14.4751 19.5783i −0.717505 0.970461i
\(408\) 8.51153 0.421384
\(409\) 7.55854 5.49160i 0.373746 0.271542i −0.385017 0.922910i \(-0.625804\pi\)
0.758762 + 0.651367i \(0.225804\pi\)
\(410\) 0 0
\(411\) 13.1115 40.3529i 0.646741 1.99046i
\(412\) −2.17657 1.58137i −0.107232 0.0779087i
\(413\) −3.79623 2.75813i −0.186800 0.135718i
\(414\) −4.10584 + 12.6365i −0.201791 + 0.621049i
\(415\) 0 0
\(416\) 3.19034 2.31792i 0.156419 0.113645i
\(417\) −13.9763 −0.684421
\(418\) 19.2815 6.44295i 0.943089 0.315135i
\(419\) 16.5607 0.809044 0.404522 0.914528i \(-0.367438\pi\)
0.404522 + 0.914528i \(0.367438\pi\)
\(420\) 0 0
\(421\) 0.581094 + 1.78842i 0.0283208 + 0.0871624i 0.964218 0.265111i \(-0.0854087\pi\)
−0.935897 + 0.352274i \(0.885409\pi\)
\(422\) 0.818562 2.51928i 0.0398470 0.122636i
\(423\) 7.65318 + 5.56036i 0.372110 + 0.270354i
\(424\) −4.24295 3.08268i −0.206056 0.149708i
\(425\) 0 0
\(426\) 7.88499 + 24.2675i 0.382029 + 1.17576i
\(427\) −3.67652 + 2.67115i −0.177919 + 0.129266i
\(428\) 0.325446 0.0157310
\(429\) −30.8531 + 10.3096i −1.48960 + 0.497753i
\(430\) 0 0
\(431\) −19.0974 + 13.8751i −0.919889 + 0.668339i −0.943496 0.331383i \(-0.892485\pi\)
0.0236072 + 0.999721i \(0.492485\pi\)
\(432\) −0.143024 0.440183i −0.00688124 0.0211783i
\(433\) 4.90556 15.0977i 0.235746 0.725551i −0.761276 0.648428i \(-0.775427\pi\)
0.997022 0.0771230i \(-0.0245734\pi\)
\(434\) −3.60299 2.61772i −0.172949 0.125655i
\(435\) 0 0
\(436\) −3.10522 + 9.55688i −0.148713 + 0.457692i
\(437\) 7.89904 + 24.3107i 0.377862 + 1.16294i
\(438\) 22.4118 16.2831i 1.07088 0.778036i
\(439\) −11.6082 −0.554031 −0.277016 0.960865i \(-0.589345\pi\)
−0.277016 + 0.960865i \(0.589345\pi\)
\(440\) 0 0
\(441\) −21.7082 −1.03372
\(442\) −10.9178 + 7.93228i −0.519309 + 0.377300i
\(443\) −2.94892 9.07585i −0.140108 0.431207i 0.856242 0.516575i \(-0.172793\pi\)
−0.996349 + 0.0853684i \(0.972793\pi\)
\(444\) −5.64238 + 17.3655i −0.267776 + 0.824129i
\(445\) 0 0
\(446\) −5.08329 3.69322i −0.240701 0.174879i
\(447\) −7.60900 + 23.4181i −0.359893 + 1.10764i
\(448\) 0.133479 + 0.410805i 0.00630627 + 0.0194087i
\(449\) −16.0576 + 11.6665i −0.757805 + 0.550578i −0.898236 0.439513i \(-0.855151\pi\)
0.140431 + 0.990090i \(0.455151\pi\)
\(450\) 0 0
\(451\) 8.40472 + 2.65369i 0.395763 + 0.124957i
\(452\) 8.49649 0.399641
\(453\) −23.0961 + 16.7803i −1.08515 + 0.788408i
\(454\) 4.36790 + 13.4430i 0.204996 + 0.630912i
\(455\) 0 0
\(456\) −12.3338 8.96100i −0.577581 0.419637i
\(457\) 3.40265 + 2.47217i 0.159169 + 0.115643i 0.664519 0.747271i \(-0.268636\pi\)
−0.505350 + 0.862915i \(0.668636\pi\)
\(458\) −1.20114 + 3.69672i −0.0561254 + 0.172736i
\(459\) 0.489450 + 1.50637i 0.0228456 + 0.0703115i
\(460\) 0 0
\(461\) 9.44809 0.440041 0.220021 0.975495i \(-0.429388\pi\)
0.220021 + 0.975495i \(0.429388\pi\)
\(462\) −0.0296723 3.56302i −0.00138048 0.165767i
\(463\) 26.5879 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(464\) 0.512815 0.372582i 0.0238068 0.0172967i
\(465\) 0 0
\(466\) −7.90469 + 24.3281i −0.366178 + 1.12698i
\(467\) 14.7476 + 10.7148i 0.682438 + 0.495820i 0.874165 0.485628i \(-0.161409\pi\)
−0.191728 + 0.981448i \(0.561409\pi\)
\(468\) 10.1647 + 7.38510i 0.469864 + 0.341376i
\(469\) 1.46809 4.51833i 0.0677903 0.208637i
\(470\) 0 0
\(471\) 15.2071 11.0486i 0.700705 0.509092i
\(472\) 10.8634 0.500029
\(473\) −22.2796 + 31.2085i −1.02442 + 1.43497i
\(474\) 18.5208 0.850690
\(475\) 0 0
\(476\) −0.456785 1.40584i −0.0209367 0.0644365i
\(477\) 5.16358 15.8919i 0.236424 0.727638i
\(478\) 9.77195 + 7.09974i 0.446959 + 0.324734i
\(479\) 10.5221 + 7.64476i 0.480768 + 0.349298i 0.801623 0.597830i \(-0.203970\pi\)
−0.320855 + 0.947128i \(0.603970\pi\)
\(480\) 0 0
\(481\) −8.94611 27.5333i −0.407907 1.25541i
\(482\) −19.0602 + 13.8481i −0.868170 + 0.630762i
\(483\) 4.48022 0.203857
\(484\) −10.9985 + 0.183200i −0.499931 + 0.00832727i
\(485\) 0 0
\(486\) −18.0399 + 13.1067i −0.818306 + 0.594534i
\(487\) 2.38148 + 7.32943i 0.107915 + 0.332128i 0.990404 0.138206i \(-0.0441335\pi\)
−0.882489 + 0.470334i \(0.844133\pi\)
\(488\) 3.25112 10.0059i 0.147171 0.452946i
\(489\) 6.33823 + 4.60499i 0.286625 + 0.208245i
\(490\) 0 0
\(491\) 4.16722 12.8254i 0.188064 0.578802i −0.811924 0.583764i \(-0.801579\pi\)
0.999988 + 0.00496193i \(0.00157944\pi\)
\(492\) −2.04246 6.28603i −0.0920810 0.283396i
\(493\) −1.75493 + 1.27503i −0.0790382 + 0.0574246i
\(494\) 24.1718 1.08754
\(495\) 0 0
\(496\) 10.3104 0.462951
\(497\) 3.58507 2.60471i 0.160812 0.116837i
\(498\) 6.06027 + 18.6516i 0.271567 + 0.835797i
\(499\) 4.25919 13.1084i 0.190667 0.586814i −0.809332 0.587351i \(-0.800171\pi\)
1.00000 0.000536806i \(0.000170871\pi\)
\(500\) 0 0
\(501\) 10.9699 + 7.97010i 0.490099 + 0.356078i
\(502\) −1.05915 + 3.25973i −0.0472721 + 0.145489i
\(503\) −1.95116 6.00504i −0.0869977 0.267752i 0.898088 0.439816i \(-0.144956\pi\)
−0.985086 + 0.172064i \(0.944956\pi\)
\(504\) −1.11338 + 0.808921i −0.0495940 + 0.0360322i
\(505\) 0 0
\(506\) −0.115180 13.8307i −0.00512036 0.614848i
\(507\) −6.34490 −0.281787
\(508\) −6.98921 + 5.07796i −0.310096 + 0.225298i
\(509\) 13.3957 + 41.2278i 0.593755 + 1.82739i 0.560826 + 0.827934i \(0.310484\pi\)
0.0329295 + 0.999458i \(0.489516\pi\)
\(510\) 0 0
\(511\) −3.89222 2.82786i −0.172182 0.125097i
\(512\) −0.809017 0.587785i −0.0357538 0.0259767i
\(513\) 0.876675 2.69813i 0.0387062 0.119125i
\(514\) −0.503634 1.55003i −0.0222143 0.0683687i
\(515\) 0 0
\(516\) 28.7556 1.26590
\(517\) −9.39047 2.96493i −0.412993 0.130397i
\(518\) 3.17104 0.139327
\(519\) 30.1088 21.8753i 1.32163 0.960219i
\(520\) 0 0
\(521\) 6.70203 20.6267i 0.293621 0.903673i −0.690060 0.723752i \(-0.742416\pi\)
0.983681 0.179921i \(-0.0575842\pi\)
\(522\) 1.63387 + 1.18708i 0.0715127 + 0.0519570i
\(523\) 12.3618 + 8.98136i 0.540543 + 0.392727i 0.824287 0.566173i \(-0.191577\pi\)
−0.283744 + 0.958900i \(0.591577\pi\)
\(524\) 5.04771 15.5353i 0.220510 0.678661i
\(525\) 0 0
\(526\) −1.33624 + 0.970836i −0.0582629 + 0.0423304i
\(527\) −35.2838 −1.53699
\(528\) 4.90408 + 6.63302i 0.213423 + 0.288665i
\(529\) −5.60904 −0.243871
\(530\) 0 0
\(531\) 10.6956 + 32.9177i 0.464150 + 1.42851i
\(532\) −0.818166 + 2.51806i −0.0354720 + 0.109172i
\(533\) 8.47812 + 6.15971i 0.367228 + 0.266807i
\(534\) 2.70148 + 1.96274i 0.116905 + 0.0849361i
\(535\) 0 0
\(536\) 3.39879 + 10.4604i 0.146805 + 0.451821i
\(537\) 24.4397 17.7565i 1.05465 0.766248i
\(538\) 22.1657 0.955630
\(539\) 21.4327 7.16176i 0.923170 0.308479i
\(540\) 0 0
\(541\) 19.5314 14.1904i 0.839721 0.610093i −0.0825716 0.996585i \(-0.526313\pi\)
0.922293 + 0.386492i \(0.126313\pi\)
\(542\) −2.27021 6.98698i −0.0975138 0.300116i
\(543\) 10.9512 33.7044i 0.469963 1.44640i
\(544\) 2.76858 + 2.01149i 0.118702 + 0.0862420i
\(545\) 0 0
\(546\) 1.30918 4.02924i 0.0560277 0.172436i
\(547\) −10.3431 31.8327i −0.442237 1.36107i −0.885485 0.464668i \(-0.846174\pi\)
0.443248 0.896399i \(-0.353826\pi\)
\(548\) 13.8012 10.0272i 0.589560 0.428340i
\(549\) 33.5203 1.43061
\(550\) 0 0
\(551\) 3.88538 0.165523
\(552\) −8.39127 + 6.09661i −0.357156 + 0.259489i
\(553\) −0.993949 3.05906i −0.0422670 0.130085i
\(554\) 4.79495 14.7573i 0.203718 0.626980i
\(555\) 0 0
\(556\) −4.54612 3.30295i −0.192798 0.140076i
\(557\) 1.27788 3.93292i 0.0541456 0.166643i −0.920327 0.391150i \(-0.872077\pi\)
0.974472 + 0.224507i \(0.0720772\pi\)
\(558\) 10.1512 + 31.2420i 0.429733 + 1.32258i
\(559\) −36.8852 + 26.7987i −1.56008 + 1.13346i
\(560\) 0 0
\(561\) −16.7825 22.6992i −0.708559 0.958362i
\(562\) −22.9096 −0.966385
\(563\) 22.3363 16.2283i 0.941364 0.683941i −0.00738424 0.999973i \(-0.502350\pi\)
0.948749 + 0.316031i \(0.102350\pi\)
\(564\) 2.28201 + 7.02329i 0.0960898 + 0.295734i
\(565\) 0 0
\(566\) −2.26696 1.64704i −0.0952873 0.0692303i
\(567\) 2.93788 + 2.13449i 0.123379 + 0.0896403i
\(568\) −3.17025 + 9.75702i −0.133021 + 0.409395i
\(569\) −2.40142 7.39081i −0.100673 0.309839i 0.888018 0.459809i \(-0.152082\pi\)
−0.988691 + 0.149970i \(0.952082\pi\)
\(570\) 0 0
\(571\) −1.73373 −0.0725544 −0.0362772 0.999342i \(-0.511550\pi\)
−0.0362772 + 0.999342i \(0.511550\pi\)
\(572\) −12.4721 3.93792i −0.521486 0.164653i
\(573\) 2.74691 0.114754
\(574\) −0.928644 + 0.674699i −0.0387609 + 0.0281614i
\(575\) 0 0
\(576\) 0.984555 3.03015i 0.0410231 0.126256i
\(577\) 5.45036 + 3.95992i 0.226902 + 0.164854i 0.695428 0.718596i \(-0.255215\pi\)
−0.468526 + 0.883450i \(0.655215\pi\)
\(578\) 4.27877 + 3.10871i 0.177973 + 0.129305i
\(579\) −8.41157 + 25.8882i −0.349573 + 1.07588i
\(580\) 0 0
\(581\) 2.75542 2.00193i 0.114314 0.0830541i
\(582\) −4.36091 −0.180765
\(583\) 0.144852 + 17.3937i 0.00599916 + 0.720373i
\(584\) 11.1381 0.460897
\(585\) 0 0
\(586\) 6.57473 + 20.2349i 0.271599 + 0.835897i
\(587\) −10.8498 + 33.3923i −0.447820 + 1.37825i 0.431541 + 0.902093i \(0.357970\pi\)
−0.879361 + 0.476156i \(0.842030\pi\)
\(588\) −13.7098 9.96075i −0.565382 0.410774i
\(589\) 51.1285 + 37.1470i 2.10671 + 1.53062i
\(590\) 0 0
\(591\) −12.3413 37.9826i −0.507653 1.56239i
\(592\) −5.93923 + 4.31510i −0.244101 + 0.177350i
\(593\) 5.17098 0.212347 0.106173 0.994348i \(-0.466140\pi\)
0.106173 + 0.994348i \(0.466140\pi\)
\(594\) −0.891907 + 1.24935i −0.0365954 + 0.0512616i
\(595\) 0 0
\(596\) −8.00930 + 5.81910i −0.328074 + 0.238360i
\(597\) −20.8687 64.2271i −0.854097 2.62864i
\(598\) 5.08187 15.6404i 0.207813 0.639583i
\(599\) −13.5879 9.87221i −0.555188 0.403368i 0.274507 0.961585i \(-0.411485\pi\)
−0.829695 + 0.558217i \(0.811485\pi\)
\(600\) 0 0
\(601\) −8.19285 + 25.2150i −0.334193 + 1.02854i 0.632925 + 0.774213i \(0.281854\pi\)
−0.967118 + 0.254328i \(0.918146\pi\)
\(602\) −1.54322 4.74953i −0.0628968 0.193576i
\(603\) −28.3503 + 20.5977i −1.15451 + 0.838803i
\(604\) −11.4782 −0.467041
\(605\) 0 0
\(606\) 3.07433 0.124886
\(607\) 36.2383 26.3287i 1.47087 1.06865i 0.490508 0.871437i \(-0.336811\pi\)
0.980361 0.197212i \(-0.0631887\pi\)
\(608\) −1.89414 5.82957i −0.0768176 0.236420i
\(609\) 0.210437 0.647660i 0.00852736 0.0262445i
\(610\) 0 0
\(611\) −9.47248 6.88216i −0.383216 0.278422i
\(612\) −3.36930 + 10.3696i −0.136196 + 0.419168i
\(613\) −0.354366 1.09063i −0.0143127 0.0440500i 0.943645 0.330959i \(-0.107372\pi\)
−0.957958 + 0.286909i \(0.907372\pi\)
\(614\) −2.36325 + 1.71700i −0.0953731 + 0.0692926i
\(615\) 0 0
\(616\) 0.832382 1.16597i 0.0335376 0.0469784i
\(617\) 23.3790 0.941202 0.470601 0.882346i \(-0.344037\pi\)
0.470601 + 0.882346i \(0.344037\pi\)
\(618\) 5.41354 3.93317i 0.217765 0.158215i
\(619\) −7.30246 22.4747i −0.293511 0.903334i −0.983718 0.179721i \(-0.942480\pi\)
0.690207 0.723612i \(-0.257520\pi\)
\(620\) 0 0
\(621\) −1.56151 1.13451i −0.0626614 0.0455262i
\(622\) 3.09671 + 2.24989i 0.124167 + 0.0902124i
\(623\) 0.179204 0.551534i 0.00717966 0.0220967i
\(624\) 3.03089 + 9.32812i 0.121333 + 0.373424i
\(625\) 0 0
\(626\) 27.2880 1.09065
\(627\) 0.421068 + 50.5614i 0.0168158 + 2.01923i
\(628\) 7.55754 0.301579
\(629\) 20.3250 14.7669i 0.810409 0.588797i
\(630\) 0 0
\(631\) −4.16946 + 12.8323i −0.165983 + 0.510844i −0.999107 0.0422418i \(-0.986550\pi\)
0.833124 + 0.553086i \(0.186550\pi\)
\(632\) 6.02435 + 4.37695i 0.239636 + 0.174106i
\(633\) 5.33010 + 3.87254i 0.211852 + 0.153920i
\(634\) 8.88582 27.3478i 0.352901 1.08612i
\(635\) 0 0
\(636\) 10.5530 7.66721i 0.418454 0.304025i
\(637\) 26.8686 1.06457
\(638\) −2.00477 0.632981i −0.0793696 0.0250600i
\(639\) −32.6865 −1.29306
\(640\) 0 0
\(641\) −0.719738 2.21513i −0.0284279 0.0874922i 0.935836 0.352436i \(-0.114647\pi\)
−0.964264 + 0.264944i \(0.914647\pi\)
\(642\) −0.250132 + 0.769828i −0.00987193 + 0.0303827i
\(643\) 22.9946 + 16.7065i 0.906817 + 0.658841i 0.940208 0.340601i \(-0.110631\pi\)
−0.0333908 + 0.999442i \(0.510631\pi\)
\(644\) 1.45730 + 1.05879i 0.0574257 + 0.0417222i
\(645\) 0 0
\(646\) 6.48205 + 19.9497i 0.255033 + 0.784910i
\(647\) 20.1803 14.6619i 0.793371 0.576418i −0.115591 0.993297i \(-0.536876\pi\)
0.908962 + 0.416879i \(0.136876\pi\)
\(648\) −8.40711 −0.330262
\(649\) −21.4198 28.9714i −0.840801 1.13723i
\(650\) 0 0
\(651\) 8.96129 6.51076i 0.351221 0.255177i
\(652\) 0.973385 + 2.99577i 0.0381207 + 0.117323i
\(653\) −12.3022 + 37.8624i −0.481424 + 1.48167i 0.355671 + 0.934611i \(0.384252\pi\)
−0.837095 + 0.547058i \(0.815748\pi\)
\(654\) −20.2197 14.6905i −0.790654 0.574444i
\(655\) 0 0
\(656\) 0.821192 2.52737i 0.0320622 0.0986772i
\(657\) 10.9661 + 33.7500i 0.427826 + 1.31671i
\(658\) 1.03756 0.753832i 0.0404483 0.0293874i
\(659\) −28.4602 −1.10865 −0.554327 0.832299i \(-0.687024\pi\)
−0.554327 + 0.832299i \(0.687024\pi\)
\(660\) 0 0
\(661\) 22.1958 0.863316 0.431658 0.902037i \(-0.357929\pi\)
0.431658 + 0.902037i \(0.357929\pi\)
\(662\) 12.3748 8.99085i 0.480962 0.349439i
\(663\) −10.3722 31.9223i −0.402822 1.23976i
\(664\) −2.43660 + 7.49907i −0.0945583 + 0.291020i
\(665\) 0 0
\(666\) −18.9229 13.7483i −0.733247 0.532735i
\(667\) 0.816860 2.51404i 0.0316289 0.0973439i
\(668\) 1.68469 + 5.18494i 0.0651825 + 0.200611i
\(669\) 12.6431 9.18573i 0.488809 0.355141i
\(670\) 0 0
\(671\) −33.0949 + 11.0587i −1.27761 + 0.426917i
\(672\) −1.07433 −0.0414432
\(673\) −14.6642 + 10.6541i −0.565262 + 0.410687i −0.833381 0.552699i \(-0.813598\pi\)
0.268119 + 0.963386i \(0.413598\pi\)
\(674\) 6.00704 + 18.4878i 0.231382 + 0.712122i
\(675\) 0 0
\(676\) −2.06383 1.49946i −0.0793781 0.0576716i
\(677\) −14.2420 10.3474i −0.547365 0.397684i 0.279448 0.960161i \(-0.409849\pi\)
−0.826813 + 0.562477i \(0.809849\pi\)
\(678\) −6.53025 + 20.0980i −0.250793 + 0.771861i
\(679\) 0.234035 + 0.720285i 0.00898143 + 0.0276420i
\(680\) 0 0
\(681\) −35.1559 −1.34718
\(682\) −20.3294 27.4966i −0.778454 1.05290i
\(683\) −37.4782 −1.43406 −0.717031 0.697041i \(-0.754500\pi\)
−0.717031 + 0.697041i \(0.754500\pi\)
\(684\) 15.7996 11.4791i 0.604112 0.438913i
\(685\) 0 0
\(686\) −1.84380 + 5.67462i −0.0703965 + 0.216658i
\(687\) −7.82124 5.68247i −0.298399 0.216800i
\(688\) 9.35346 + 6.79569i 0.356597 + 0.259083i
\(689\) −6.39105 + 19.6696i −0.243480 + 0.749354i
\(690\) 0 0
\(691\) −9.75191 + 7.08518i −0.370980 + 0.269533i −0.757617 0.652699i \(-0.773637\pi\)
0.386637 + 0.922232i \(0.373637\pi\)
\(692\) 14.9633 0.568819
\(693\) 4.35260 + 1.37428i 0.165341 + 0.0522045i
\(694\) −9.22874 −0.350318
\(695\) 0 0
\(696\) 0.487185 + 1.49940i 0.0184667 + 0.0568346i
\(697\) −2.81025 + 8.64905i −0.106446 + 0.327606i
\(698\) −12.3669 8.98509i −0.468095 0.340091i
\(699\) −51.4717 37.3964i −1.94684 1.41446i
\(700\) 0 0
\(701\) −8.60170 26.4733i −0.324882 0.999884i −0.971494 0.237065i \(-0.923815\pi\)
0.646612 0.762819i \(-0.276185\pi\)
\(702\) −1.47660 + 1.07281i −0.0557308 + 0.0404908i
\(703\) −44.9989 −1.69717
\(704\) 0.0276194 + 3.31651i 0.00104095 + 0.124996i
\(705\) 0 0
\(706\) 4.93962 3.58885i 0.185905 0.135068i
\(707\) −0.164989 0.507783i −0.00620504 0.0190971i
\(708\) −8.34942 + 25.6969i −0.313790 + 0.965748i
\(709\) −22.1770 16.1125i −0.832874 0.605119i 0.0874968 0.996165i \(-0.472113\pi\)
−0.920371 + 0.391046i \(0.872113\pi\)
\(710\) 0 0
\(711\) −7.33150 + 22.5640i −0.274953 + 0.846217i
\(712\) 0.414876 + 1.27686i 0.0155481 + 0.0478523i
\(713\) 34.7852 25.2729i 1.30272 0.946479i
\(714\) 3.67652 0.137590
\(715\) 0 0
\(716\) 12.1459 0.453914
\(717\) −24.3046 + 17.6584i −0.907674 + 0.659464i
\(718\) −8.32545 25.6231i −0.310703 0.956245i
\(719\) −12.0166 + 36.9832i −0.448142 + 1.37924i 0.430858 + 0.902420i \(0.358211\pi\)
−0.879001 + 0.476821i \(0.841789\pi\)
\(720\) 0 0
\(721\) −0.940163 0.683068i −0.0350135 0.0254388i
\(722\) 5.73894 17.6626i 0.213581 0.657336i
\(723\) −18.1076 55.7295i −0.673429 2.07260i
\(724\) 11.5274 8.37513i 0.428412 0.311259i
\(725\) 0 0
\(726\) 8.01988 26.1572i 0.297646 0.970784i
\(727\) 32.3326 1.19915 0.599575 0.800319i \(-0.295336\pi\)
0.599575 + 0.800319i \(0.295336\pi\)
\(728\) 1.37806 1.00122i 0.0510741 0.0371075i
\(729\) −9.34444 28.7592i −0.346090 1.06516i
\(730\) 0 0
\(731\) −32.0090 23.2559i −1.18390 0.860151i
\(732\) 21.1698 + 15.3807i 0.782457 + 0.568488i
\(733\) 3.39701 10.4549i 0.125472 0.386162i −0.868515 0.495663i \(-0.834925\pi\)
0.993987 + 0.109501i \(0.0349252\pi\)
\(734\) −7.72900 23.7874i −0.285283 0.878010i
\(735\) 0 0
\(736\) −4.17025 −0.153717
\(737\) 21.1951 29.6894i 0.780731 1.09362i
\(738\) 8.46681 0.311668
\(739\) −15.0306 + 10.9204i −0.552910 + 0.401713i −0.828857 0.559460i \(-0.811009\pi\)
0.275947 + 0.961173i \(0.411009\pi\)
\(740\) 0 0
\(741\) −18.5780 + 57.1773i −0.682481 + 2.10046i
\(742\) −1.83273 1.33155i −0.0672815 0.0488829i
\(743\) −16.4936 11.9833i −0.605091 0.439624i 0.242591 0.970129i \(-0.422003\pi\)
−0.847682 + 0.530504i \(0.822003\pi\)
\(744\) −7.92439 + 24.3888i −0.290522 + 0.894135i
\(745\) 0 0
\(746\) −22.2930 + 16.1968i −0.816205 + 0.593007i
\(747\) −25.1223 −0.919176
\(748\) −0.0945179 11.3496i −0.00345592 0.414983i
\(749\) 0.140575 0.00513651
\(750\) 0 0
\(751\) 12.9995 + 40.0084i 0.474359 + 1.45993i 0.846820 + 0.531879i \(0.178514\pi\)
−0.372462 + 0.928048i \(0.621486\pi\)
\(752\) −0.917506 + 2.82379i −0.0334580 + 0.102973i
\(753\) −6.89669 5.01074i −0.251329 0.182601i
\(754\) −2.02228 1.46927i −0.0736470 0.0535077i
\(755\) 0 0
\(756\) −0.0617786 0.190135i −0.00224687 0.00691515i
\(757\) −1.27328 + 0.925095i −0.0462783 + 0.0336232i −0.610684 0.791874i \(-0.709105\pi\)
0.564406 + 0.825498i \(0.309105\pi\)
\(758\) −23.4887 −0.853147
\(759\) 32.8043 + 10.3576i 1.19072 + 0.375955i
\(760\) 0 0
\(761\) 11.7245 8.51838i 0.425015 0.308791i −0.354638 0.935004i \(-0.615396\pi\)
0.779652 + 0.626213i \(0.215396\pi\)
\(762\) −6.63989 20.4355i −0.240538 0.740299i
\(763\) −1.34129 + 4.12806i −0.0485578 + 0.149446i
\(764\) 0.893500 + 0.649166i 0.0323257 + 0.0234860i
\(765\) 0 0
\(766\) 5.78565 17.8064i 0.209044 0.643372i
\(767\) −13.2382 40.7429i −0.478003 1.47114i
\(768\) 2.01217 1.46193i 0.0726081 0.0527529i
\(769\) 50.5632 1.82335 0.911677 0.410907i \(-0.134788\pi\)
0.911677 + 0.410907i \(0.134788\pi\)
\(770\) 0 0
\(771\) 4.05360 0.145987
\(772\) −8.85410 + 6.43288i −0.318666 + 0.231524i
\(773\) 10.9064 + 33.5665i 0.392276 + 1.20730i 0.931063 + 0.364860i \(0.118883\pi\)
−0.538786 + 0.842443i \(0.681117\pi\)
\(774\) −11.3830 + 35.0331i −0.409152 + 1.25924i
\(775\) 0 0
\(776\) −1.41849 1.03059i −0.0509208 0.0369961i
\(777\) −2.43720 + 7.50095i −0.0874342 + 0.269095i
\(778\) 2.29210 + 7.05435i 0.0821757 + 0.252911i
\(779\) 13.1780 9.57438i 0.472151 0.343038i
\(780\) 0 0
\(781\) 32.2717 10.7836i 1.15477 0.385869i
\(782\) 14.2712 0.510338
\(783\) −0.237349 + 0.172444i −0.00848216 + 0.00616265i
\(784\) −2.10546 6.47995i −0.0751951 0.231427i
\(785\) 0 0
\(786\) 32.8684 + 23.8803i 1.17238 + 0.851781i
\(787\) 0.304466 + 0.221208i 0.0108530 + 0.00788520i 0.593199 0.805056i \(-0.297865\pi\)
−0.582346 + 0.812941i \(0.697865\pi\)
\(788\) 4.96195 15.2713i 0.176762 0.544018i
\(789\) −1.26946 3.90698i −0.0451938 0.139092i
\(790\) 0 0
\(791\) 3.67002 0.130491
\(792\) −10.0223 + 3.34898i −0.356128 + 0.119001i
\(793\) −41.4887 −1.47331
\(794\) −18.3160 + 13.3074i −0.650011 + 0.472260i
\(795\) 0 0
\(796\) 8.39047 25.8232i 0.297393 0.915280i
\(797\) −17.2167 12.5086i −0.609845 0.443079i 0.239514 0.970893i \(-0.423012\pi\)
−0.849360 + 0.527814i \(0.823012\pi\)
\(798\) −5.32752 3.87067i −0.188592 0.137020i
\(799\) 3.13985 9.66346i 0.111080 0.341869i
\(800\) 0 0
\(801\) −3.46060 + 2.51427i −0.122274 + 0.0888375i
\(802\) 26.9832 0.952809
\(803\) −21.9614 29.7039i −0.775001 1.04823i
\(804\) −27.3558 −0.964766
\(805\) 0 0
\(806\) −12.5643 38.6689i −0.442558 1.36205i
\(807\) −17.0361 + 52.4319i −0.599701 + 1.84569i
\(808\) 1.00000 + 0.726543i 0.0351799 + 0.0255597i
\(809\) 10.5822 + 7.68843i 0.372051 + 0.270311i 0.758061 0.652184i \(-0.226147\pi\)
−0.386010 + 0.922495i \(0.626147\pi\)
\(810\) 0 0
\(811\) 12.6338 + 38.8829i 0.443634 + 1.36536i 0.883975 + 0.467533i \(0.154857\pi\)
−0.440342 + 0.897830i \(0.645143\pi\)
\(812\) 0.221508 0.160935i 0.00777342 0.00564772i
\(813\) 18.2722 0.640835
\(814\) 23.2185 + 7.33094i 0.813807 + 0.256949i
\(815\) 0 0
\(816\) −6.88598 + 5.00295i −0.241057 + 0.175138i
\(817\) 21.8991 + 67.3986i 0.766154 + 2.35798i
\(818\) −2.88711 + 8.88560i −0.100945 + 0.310678i
\(819\) 4.39061 + 3.18996i 0.153420 + 0.111466i
\(820\) 0 0
\(821\) 8.77898 27.0189i 0.306389 0.942967i −0.672767 0.739855i \(-0.734894\pi\)
0.979155 0.203112i \(-0.0651057\pi\)
\(822\) 13.1115 + 40.3529i 0.457315 + 1.40747i
\(823\) −9.60724 + 6.98007i −0.334887 + 0.243310i −0.742502 0.669844i \(-0.766361\pi\)
0.407614 + 0.913154i \(0.366361\pi\)
\(824\) 2.69039 0.0937243
\(825\) 0 0
\(826\) 4.69240 0.163270
\(827\) −45.5209 + 33.0728i −1.58292 + 1.15006i −0.669659 + 0.742668i \(0.733560\pi\)
−0.913256 + 0.407387i \(0.866440\pi\)
\(828\) −4.10584 12.6365i −0.142688 0.439148i
\(829\) 4.24409 13.0620i 0.147403 0.453661i −0.849909 0.526930i \(-0.823343\pi\)
0.997312 + 0.0732690i \(0.0233432\pi\)
\(830\) 0 0
\(831\) 31.2225 + 22.6845i 1.08310 + 0.786916i
\(832\) −1.21860 + 3.75047i −0.0422474 + 0.130024i
\(833\) 7.20522 + 22.1754i 0.249646 + 0.768332i
\(834\) 11.3070 8.21505i 0.391531 0.284464i
\(835\) 0 0
\(836\) −11.8120 + 16.5458i −0.408526 + 0.572250i
\(837\) −4.77202 −0.164945
\(838\) −13.3979 + 9.73415i −0.462823 + 0.336261i
\(839\) −9.95199 30.6291i −0.343581 1.05743i −0.962339 0.271852i \(-0.912364\pi\)
0.618758 0.785581i \(-0.287636\pi\)
\(840\) 0 0
\(841\) 23.1364 + 16.8096i 0.797808 + 0.579641i
\(842\) −1.52132 1.10531i −0.0524283 0.0380914i
\(843\) 17.6079 54.1917i 0.606450 1.86646i
\(844\) 0.818562 + 2.51928i 0.0281761 + 0.0867170i
\(845\) 0 0
\(846\) −9.45985 −0.325236
\(847\) −4.75075 + 0.0791325i −0.163238 + 0.00271902i
\(848\) 5.24458 0.180100
\(849\) 5.63834 4.09649i 0.193507 0.140591i
\(850\) 0 0
\(851\) −9.46055 + 29.1166i −0.324303 + 0.998103i
\(852\) −20.6432 14.9981i −0.707224 0.513828i
\(853\) 25.6606 + 18.6435i 0.878604 + 0.638343i 0.932882 0.360183i \(-0.117286\pi\)
−0.0542781 + 0.998526i \(0.517286\pi\)
\(854\) 1.40431 4.32201i 0.0480544 0.147896i
\(855\) 0 0
\(856\) −0.263292 + 0.191292i −0.00899912 + 0.00653824i
\(857\) −25.5670 −0.873353 −0.436677 0.899619i \(-0.643845\pi\)
−0.436677 + 0.899619i \(0.643845\pi\)
\(858\) 18.9008 26.4756i 0.645264 0.903863i
\(859\) 35.0484 1.19584 0.597919 0.801557i \(-0.295995\pi\)
0.597919 + 0.801557i \(0.295995\pi\)
\(860\) 0 0
\(861\) −0.882230 2.71523i −0.0300663 0.0925347i
\(862\) 7.29456 22.4503i 0.248454 0.764662i
\(863\) 17.5376 + 12.7418i 0.596986 + 0.433736i 0.844808 0.535070i \(-0.179715\pi\)
−0.247822 + 0.968806i \(0.579715\pi\)
\(864\) 0.374442 + 0.272048i 0.0127388 + 0.00925525i
\(865\) 0 0
\(866\) 4.90556 + 15.0977i 0.166698 + 0.513042i
\(867\) −10.6421 + 7.73193i −0.361424 + 0.262590i
\(868\) 4.45353 0.151163
\(869\) −0.205668 24.6964i −0.00697681 0.837768i
\(870\) 0 0
\(871\) 35.0897 25.4941i 1.18897 0.863836i
\(872\) −3.10522 9.55688i −0.105156 0.323637i
\(873\) 1.72627 5.31291i 0.0584254 0.179815i
\(874\) −20.6799 15.0249i −0.699510 0.508223i
\(875\) 0 0
\(876\) −8.56053 + 26.3466i −0.289233 + 0.890169i
\(877\) −8.01263 24.6603i −0.270567 0.832721i −0.990358 0.138530i \(-0.955762\pi\)
0.719791 0.694191i \(-0.244238\pi\)
\(878\) 9.39127 6.82315i 0.316940 0.230270i
\(879\) −52.9180 −1.78488
\(880\) 0 0
\(881\) −47.5332 −1.60143 −0.800717 0.599042i \(-0.795548\pi\)
−0.800717 + 0.599042i \(0.795548\pi\)
\(882\) 17.5623 12.7597i 0.591353 0.429643i
\(883\) −6.75830 20.7999i −0.227435 0.699973i −0.998035 0.0626542i \(-0.980043\pi\)
0.770600 0.637319i \(-0.219957\pi\)
\(884\) 4.17025 12.8347i 0.140261 0.431678i
\(885\) 0 0
\(886\) 7.72038 + 5.60918i 0.259371 + 0.188444i
\(887\) −2.14278 + 6.59480i −0.0719475 + 0.221432i −0.980564 0.196200i \(-0.937140\pi\)
0.908616 + 0.417632i \(0.137140\pi\)
\(888\) −5.64238 17.3655i −0.189346 0.582747i
\(889\) −3.01896 + 2.19340i −0.101253 + 0.0735644i
\(890\) 0 0
\(891\) 16.5766 + 22.4207i 0.555338 + 0.751123i
\(892\) 6.28329 0.210380
\(893\) −14.7236 + 10.6973i −0.492706 + 0.357972i
\(894\) −7.60900 23.4181i −0.254483 0.783218i
\(895\) 0 0
\(896\) −0.349452 0.253891i −0.0116744 0.00848192i
\(897\) 33.0908 + 24.0419i 1.10487 + 0.802735i
\(898\) 6.13346 18.8768i 0.204676 0.629928i
\(899\) −2.01958 6.21563i −0.0673568 0.207303i
\(900\) 0 0
\(901\) −17.9478 −0.597927
\(902\) −8.35936 + 2.79329i −0.278336 + 0.0930065i
\(903\) 12.4209 0.413341
\(904\) −6.87380 + 4.99411i −0.228619 + 0.166102i
\(905\) 0 0
\(906\) 8.82193 27.1511i 0.293089 0.902035i
\(907\) −34.2462 24.8813i −1.13713 0.826170i −0.150409 0.988624i \(-0.548059\pi\)
−0.986716 + 0.162454i \(0.948059\pi\)
\(908\) −11.4353 8.30824i −0.379494 0.275719i
\(909\) −1.21698 + 3.74547i −0.0403646 + 0.124229i
\(910\) 0 0
\(911\) 7.64031 5.55101i 0.253135 0.183913i −0.453980 0.891012i \(-0.649996\pi\)
0.707115 + 0.707099i \(0.249996\pi\)
\(912\) 15.2454 0.504825
\(913\) 24.8034 8.28812i 0.820874 0.274297i
\(914\) −4.20591 −0.139119
\(915\) 0 0
\(916\) −1.20114 3.69672i −0.0396867 0.122143i
\(917\) 2.18034 6.71040i 0.0720012 0.221597i
\(918\) −1.28140 0.930990i −0.0422924 0.0307272i
\(919\) 14.1560 + 10.2849i 0.466963 + 0.339269i 0.796257 0.604959i \(-0.206811\pi\)
−0.329294 + 0.944228i \(0.606811\pi\)
\(920\) 0 0
\(921\) −2.24514 6.90982i −0.0739798 0.227686i
\(922\) −7.64366 + 5.55345i −0.251731 + 0.182893i
\(923\) 40.4567 1.33165
\(924\) 2.11830 + 2.86511i 0.0696869 + 0.0942551i
\(925\) 0 0
\(926\) −21.5100 + 15.6280i −0.706864 + 0.513567i
\(927\) 2.64884 + 8.15230i 0.0869994 + 0.267757i
\(928\) −0.195878 + 0.602850i −0.00643001 + 0.0197895i
\(929\) −15.9892 11.6168i −0.524587 0.381135i 0.293742 0.955885i \(-0.405099\pi\)
−0.818329 + 0.574750i \(0.805099\pi\)
\(930\) 0 0
\(931\) 12.9056 39.7193i 0.422963 1.30175i
\(932\) −7.90469 24.3281i −0.258927 0.796895i
\(933\) −7.70209 + 5.59590i −0.252155 + 0.183201i
\(934\) −18.2290 −0.596472
\(935\) 0 0
\(936\) −12.5643 −0.410676
\(937\) 23.0660 16.7584i 0.753533 0.547474i −0.143387 0.989667i \(-0.545799\pi\)
0.896920 + 0.442193i \(0.145799\pi\)
\(938\) 1.46809 + 4.51833i 0.0479350 + 0.147529i
\(939\) −20.9730 + 64.5484i −0.684429 + 2.10646i
\(940\) 0 0
\(941\) 24.5781 + 17.8571i 0.801225 + 0.582124i 0.911273 0.411802i \(-0.135101\pi\)
−0.110048 + 0.993926i \(0.535101\pi\)
\(942\) −5.80859 + 17.8770i −0.189254 + 0.582464i
\(943\) −3.42457 10.5398i −0.111519 0.343222i
\(944\) −8.78868 + 6.38535i −0.286047 + 0.207825i
\(945\) 0 0
\(946\) −0.319322 38.3439i −0.0103821 1.24667i
\(947\) −2.37805 −0.0772763 −0.0386382 0.999253i \(-0.512302\pi\)
−0.0386382 + 0.999253i \(0.512302\pi\)
\(948\) −14.9837 + 10.8863i −0.486647 + 0.353570i
\(949\) −13.5729 41.7731i −0.440595 1.35601i
\(950\) 0 0
\(951\) 57.8604 + 42.0380i 1.87625 + 1.36318i
\(952\) 1.19588 + 0.868856i 0.0387586 + 0.0281598i
\(953\) 13.7214 42.2300i 0.444479 1.36796i −0.438576 0.898694i \(-0.644517\pi\)
0.883055 0.469270i \(-0.155483\pi\)
\(954\) 5.16358 + 15.8919i 0.167177 + 0.514518i
\(955\) 0 0
\(956\) −12.0788 −0.390656
\(957\) 3.03812 4.25569i 0.0982084 0.137567i
\(958\) −13.0061 −0.420206
\(959\) 5.96139 4.33121i 0.192503 0.139862i
\(960\) 0 0
\(961\) 23.2703 71.6186i 0.750655 2.31028i
\(962\) 23.4212 + 17.0165i 0.755130 + 0.548634i
\(963\) −0.838870 0.609475i −0.0270322 0.0196400i
\(964\) 7.28036 22.4066i 0.234485 0.721670i
\(965\) 0 0
\(966\) −3.62457 + 2.63341i −0.116619 + 0.0847285i
\(967\) −11.4834 −0.369283 −0.184641 0.982806i \(-0.559112\pi\)
−0.184641 + 0.982806i \(0.559112\pi\)
\(968\) 8.79027 6.61295i 0.282530 0.212548i
\(969\) −52.1720 −1.67601
\(970\) 0 0
\(971\) −1.38789 4.27147i −0.0445394 0.137078i 0.926314 0.376753i \(-0.122959\pi\)
−0.970853 + 0.239674i \(0.922959\pi\)
\(972\) 6.89063 21.2072i 0.221017 0.680220i
\(973\) −1.96368 1.42670i −0.0629527 0.0457378i
\(974\) −6.23479 4.52984i −0.199775 0.145145i
\(975\) 0 0
\(976\) 3.25112 + 10.0059i 0.104066 + 0.320281i
\(977\) 5.74228 4.17201i 0.183712 0.133474i −0.492128 0.870523i \(-0.663781\pi\)
0.675840 + 0.737048i \(0.263781\pi\)
\(978\) −7.83448 −0.250519
\(979\) 2.58720 3.62406i 0.0826872 0.115825i
\(980\) 0 0
\(981\) 25.9015 18.8186i 0.826972 0.600830i
\(982\) 4.16722 + 12.8254i 0.132981 + 0.409275i
\(983\) −17.1375 + 52.7437i −0.546600 + 1.68226i 0.170555 + 0.985348i \(0.445444\pi\)
−0.717155 + 0.696914i \(0.754556\pi\)
\(984\) 5.34722 + 3.88498i 0.170463 + 0.123849i
\(985\) 0 0
\(986\) 0.670325 2.06305i 0.0213475 0.0657008i
\(987\) 0.985703 + 3.03368i 0.0313753 + 0.0965632i
\(988\) −19.5554 + 14.2078i −0.622141 + 0.452012i
\(989\) 48.2144 1.53313
\(990\) 0 0
\(991\) 1.24021 0.0393967 0.0196983 0.999806i \(-0.493729\pi\)
0.0196983 + 0.999806i \(0.493729\pi\)
\(992\) −8.34129 + 6.06030i −0.264836 + 0.192415i
\(993\) 11.7563 + 36.1823i 0.373076 + 1.14821i
\(994\) −1.36938 + 4.21450i −0.0434340 + 0.133676i
\(995\) 0 0
\(996\) −15.8660 11.5273i −0.502733 0.365257i
\(997\) 10.2928 31.6781i 0.325977 1.00325i −0.645021 0.764165i \(-0.723151\pi\)
0.970998 0.239089i \(-0.0768488\pi\)
\(998\) 4.25919 + 13.1084i 0.134822 + 0.414940i
\(999\) 2.74888 1.99718i 0.0869708 0.0631880i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.l.201.1 8
5.2 odd 4 550.2.ba.f.399.1 16
5.3 odd 4 550.2.ba.f.399.4 16
5.4 even 2 110.2.g.c.91.2 yes 8
11.2 odd 10 6050.2.a.cy.1.2 4
11.4 even 5 inner 550.2.h.l.301.1 8
11.9 even 5 6050.2.a.dh.1.2 4
15.14 odd 2 990.2.n.j.91.2 8
20.19 odd 2 880.2.bo.g.641.1 8
55.4 even 10 110.2.g.c.81.2 8
55.9 even 10 1210.2.a.u.1.3 4
55.24 odd 10 1210.2.a.v.1.3 4
55.37 odd 20 550.2.ba.f.499.4 16
55.48 odd 20 550.2.ba.f.499.1 16
165.59 odd 10 990.2.n.j.631.2 8
220.59 odd 10 880.2.bo.g.81.1 8
220.79 even 10 9680.2.a.ci.1.2 4
220.119 odd 10 9680.2.a.cj.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.g.c.81.2 8 55.4 even 10
110.2.g.c.91.2 yes 8 5.4 even 2
550.2.h.l.201.1 8 1.1 even 1 trivial
550.2.h.l.301.1 8 11.4 even 5 inner
550.2.ba.f.399.1 16 5.2 odd 4
550.2.ba.f.399.4 16 5.3 odd 4
550.2.ba.f.499.1 16 55.48 odd 20
550.2.ba.f.499.4 16 55.37 odd 20
880.2.bo.g.81.1 8 220.59 odd 10
880.2.bo.g.641.1 8 20.19 odd 2
990.2.n.j.91.2 8 15.14 odd 2
990.2.n.j.631.2 8 165.59 odd 10
1210.2.a.u.1.3 4 55.9 even 10
1210.2.a.v.1.3 4 55.24 odd 10
6050.2.a.cy.1.2 4 11.2 odd 10
6050.2.a.dh.1.2 4 11.9 even 5
9680.2.a.ci.1.2 4 220.79 even 10
9680.2.a.cj.1.2 4 220.119 odd 10