Properties

Label 5488.2.a.s.1.5
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,0,0,-13,0,0,0,13,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 20x^{7} + 131x^{5} - 14x^{4} - 302x^{3} + 91x^{2} + 133x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2744)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.0511459\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0511459 q^{3} -0.342396 q^{5} -2.99738 q^{9} -2.07004 q^{11} +4.56820 q^{13} +0.0175121 q^{15} -3.03258 q^{17} +5.96658 q^{19} -0.364847 q^{23} -4.88277 q^{25} +0.306742 q^{27} -0.771564 q^{29} -1.14165 q^{31} +0.105874 q^{33} +8.56154 q^{37} -0.233645 q^{39} -7.12652 q^{41} +3.89506 q^{43} +1.02629 q^{45} +9.73147 q^{47} +0.155104 q^{51} +3.62458 q^{53} +0.708772 q^{55} -0.305166 q^{57} -13.4620 q^{59} -12.5942 q^{61} -1.56413 q^{65} +6.98529 q^{67} +0.0186604 q^{69} -13.4729 q^{71} -8.40566 q^{73} +0.249734 q^{75} +3.14740 q^{79} +8.97646 q^{81} +2.77912 q^{83} +1.03834 q^{85} +0.0394624 q^{87} -11.2101 q^{89} +0.0583907 q^{93} -2.04293 q^{95} -4.00431 q^{97} +6.20470 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 13 q^{5} + 13 q^{9} - 3 q^{11} - 20 q^{13} - 3 q^{15} - 10 q^{17} + 10 q^{19} + 4 q^{23} + 22 q^{25} + 3 q^{29} + 10 q^{31} - 7 q^{33} + 6 q^{37} + 20 q^{39} - 13 q^{41} + 8 q^{43} - 52 q^{45} - 10 q^{47}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0511459 −0.0295291 −0.0147646 0.999891i \(-0.504700\pi\)
−0.0147646 + 0.999891i \(0.504700\pi\)
\(4\) 0 0
\(5\) −0.342396 −0.153124 −0.0765620 0.997065i \(-0.524394\pi\)
−0.0765620 + 0.997065i \(0.524394\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.99738 −0.999128
\(10\) 0 0
\(11\) −2.07004 −0.624140 −0.312070 0.950059i \(-0.601022\pi\)
−0.312070 + 0.950059i \(0.601022\pi\)
\(12\) 0 0
\(13\) 4.56820 1.26699 0.633495 0.773747i \(-0.281620\pi\)
0.633495 + 0.773747i \(0.281620\pi\)
\(14\) 0 0
\(15\) 0.0175121 0.00452162
\(16\) 0 0
\(17\) −3.03258 −0.735509 −0.367755 0.929923i \(-0.619873\pi\)
−0.367755 + 0.929923i \(0.619873\pi\)
\(18\) 0 0
\(19\) 5.96658 1.36883 0.684413 0.729094i \(-0.260059\pi\)
0.684413 + 0.729094i \(0.260059\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.364847 −0.0760759 −0.0380379 0.999276i \(-0.512111\pi\)
−0.0380379 + 0.999276i \(0.512111\pi\)
\(24\) 0 0
\(25\) −4.88277 −0.976553
\(26\) 0 0
\(27\) 0.306742 0.0590325
\(28\) 0 0
\(29\) −0.771564 −0.143276 −0.0716379 0.997431i \(-0.522823\pi\)
−0.0716379 + 0.997431i \(0.522823\pi\)
\(30\) 0 0
\(31\) −1.14165 −0.205046 −0.102523 0.994731i \(-0.532692\pi\)
−0.102523 + 0.994731i \(0.532692\pi\)
\(32\) 0 0
\(33\) 0.105874 0.0184303
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8.56154 1.40751 0.703754 0.710444i \(-0.251506\pi\)
0.703754 + 0.710444i \(0.251506\pi\)
\(38\) 0 0
\(39\) −0.233645 −0.0374131
\(40\) 0 0
\(41\) −7.12652 −1.11298 −0.556488 0.830856i \(-0.687851\pi\)
−0.556488 + 0.830856i \(0.687851\pi\)
\(42\) 0 0
\(43\) 3.89506 0.593992 0.296996 0.954879i \(-0.404015\pi\)
0.296996 + 0.954879i \(0.404015\pi\)
\(44\) 0 0
\(45\) 1.02629 0.152990
\(46\) 0 0
\(47\) 9.73147 1.41948 0.709740 0.704464i \(-0.248812\pi\)
0.709740 + 0.704464i \(0.248812\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.155104 0.0217189
\(52\) 0 0
\(53\) 3.62458 0.497874 0.248937 0.968520i \(-0.419919\pi\)
0.248937 + 0.968520i \(0.419919\pi\)
\(54\) 0 0
\(55\) 0.708772 0.0955708
\(56\) 0 0
\(57\) −0.305166 −0.0404202
\(58\) 0 0
\(59\) −13.4620 −1.75260 −0.876299 0.481768i \(-0.839995\pi\)
−0.876299 + 0.481768i \(0.839995\pi\)
\(60\) 0 0
\(61\) −12.5942 −1.61252 −0.806261 0.591560i \(-0.798512\pi\)
−0.806261 + 0.591560i \(0.798512\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.56413 −0.194006
\(66\) 0 0
\(67\) 6.98529 0.853390 0.426695 0.904396i \(-0.359678\pi\)
0.426695 + 0.904396i \(0.359678\pi\)
\(68\) 0 0
\(69\) 0.0186604 0.00224645
\(70\) 0 0
\(71\) −13.4729 −1.59894 −0.799472 0.600704i \(-0.794887\pi\)
−0.799472 + 0.600704i \(0.794887\pi\)
\(72\) 0 0
\(73\) −8.40566 −0.983808 −0.491904 0.870650i \(-0.663699\pi\)
−0.491904 + 0.870650i \(0.663699\pi\)
\(74\) 0 0
\(75\) 0.249734 0.0288367
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.14740 0.354110 0.177055 0.984201i \(-0.443343\pi\)
0.177055 + 0.984201i \(0.443343\pi\)
\(80\) 0 0
\(81\) 8.97646 0.997385
\(82\) 0 0
\(83\) 2.77912 0.305048 0.152524 0.988300i \(-0.451260\pi\)
0.152524 + 0.988300i \(0.451260\pi\)
\(84\) 0 0
\(85\) 1.03834 0.112624
\(86\) 0 0
\(87\) 0.0394624 0.00423081
\(88\) 0 0
\(89\) −11.2101 −1.18827 −0.594136 0.804365i \(-0.702506\pi\)
−0.594136 + 0.804365i \(0.702506\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0.0583907 0.00605483
\(94\) 0 0
\(95\) −2.04293 −0.209600
\(96\) 0 0
\(97\) −4.00431 −0.406576 −0.203288 0.979119i \(-0.565163\pi\)
−0.203288 + 0.979119i \(0.565163\pi\)
\(98\) 0 0
\(99\) 6.20470 0.623596
\(100\) 0 0
\(101\) −10.5814 −1.05289 −0.526446 0.850209i \(-0.676476\pi\)
−0.526446 + 0.850209i \(0.676476\pi\)
\(102\) 0 0
\(103\) 6.58810 0.649145 0.324573 0.945861i \(-0.394780\pi\)
0.324573 + 0.945861i \(0.394780\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.61435 0.542760 0.271380 0.962472i \(-0.412520\pi\)
0.271380 + 0.962472i \(0.412520\pi\)
\(108\) 0 0
\(109\) 1.88678 0.180720 0.0903602 0.995909i \(-0.471198\pi\)
0.0903602 + 0.995909i \(0.471198\pi\)
\(110\) 0 0
\(111\) −0.437888 −0.0415625
\(112\) 0 0
\(113\) −4.33640 −0.407934 −0.203967 0.978978i \(-0.565384\pi\)
−0.203967 + 0.978978i \(0.565384\pi\)
\(114\) 0 0
\(115\) 0.124922 0.0116490
\(116\) 0 0
\(117\) −13.6926 −1.26588
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −6.71494 −0.610449
\(122\) 0 0
\(123\) 0.364492 0.0328652
\(124\) 0 0
\(125\) 3.38382 0.302658
\(126\) 0 0
\(127\) 12.6231 1.12012 0.560060 0.828452i \(-0.310778\pi\)
0.560060 + 0.828452i \(0.310778\pi\)
\(128\) 0 0
\(129\) −0.199217 −0.0175401
\(130\) 0 0
\(131\) 11.8827 1.03820 0.519099 0.854714i \(-0.326268\pi\)
0.519099 + 0.854714i \(0.326268\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.105027 −0.00903929
\(136\) 0 0
\(137\) −12.1524 −1.03825 −0.519124 0.854699i \(-0.673742\pi\)
−0.519124 + 0.854699i \(0.673742\pi\)
\(138\) 0 0
\(139\) −8.42138 −0.714292 −0.357146 0.934049i \(-0.616250\pi\)
−0.357146 + 0.934049i \(0.616250\pi\)
\(140\) 0 0
\(141\) −0.497725 −0.0419160
\(142\) 0 0
\(143\) −9.45634 −0.790779
\(144\) 0 0
\(145\) 0.264180 0.0219390
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.02530 −0.493612 −0.246806 0.969065i \(-0.579381\pi\)
−0.246806 + 0.969065i \(0.579381\pi\)
\(150\) 0 0
\(151\) 8.29219 0.674809 0.337405 0.941360i \(-0.390451\pi\)
0.337405 + 0.941360i \(0.390451\pi\)
\(152\) 0 0
\(153\) 9.08981 0.734868
\(154\) 0 0
\(155\) 0.390896 0.0313975
\(156\) 0 0
\(157\) −21.3058 −1.70039 −0.850194 0.526469i \(-0.823516\pi\)
−0.850194 + 0.526469i \(0.823516\pi\)
\(158\) 0 0
\(159\) −0.185382 −0.0147018
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −12.5494 −0.982945 −0.491472 0.870893i \(-0.663541\pi\)
−0.491472 + 0.870893i \(0.663541\pi\)
\(164\) 0 0
\(165\) −0.0362508 −0.00282212
\(166\) 0 0
\(167\) −8.31163 −0.643174 −0.321587 0.946880i \(-0.604216\pi\)
−0.321587 + 0.946880i \(0.604216\pi\)
\(168\) 0 0
\(169\) 7.86841 0.605262
\(170\) 0 0
\(171\) −17.8841 −1.36763
\(172\) 0 0
\(173\) −18.4798 −1.40499 −0.702496 0.711688i \(-0.747931\pi\)
−0.702496 + 0.711688i \(0.747931\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.688524 0.0517527
\(178\) 0 0
\(179\) −14.9156 −1.11484 −0.557422 0.830229i \(-0.688210\pi\)
−0.557422 + 0.830229i \(0.688210\pi\)
\(180\) 0 0
\(181\) 3.85341 0.286422 0.143211 0.989692i \(-0.454257\pi\)
0.143211 + 0.989692i \(0.454257\pi\)
\(182\) 0 0
\(183\) 0.644142 0.0476164
\(184\) 0 0
\(185\) −2.93143 −0.215523
\(186\) 0 0
\(187\) 6.27756 0.459061
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.9790 −1.37327 −0.686636 0.727001i \(-0.740914\pi\)
−0.686636 + 0.727001i \(0.740914\pi\)
\(192\) 0 0
\(193\) 7.74517 0.557510 0.278755 0.960362i \(-0.410078\pi\)
0.278755 + 0.960362i \(0.410078\pi\)
\(194\) 0 0
\(195\) 0.0799989 0.00572884
\(196\) 0 0
\(197\) −8.12267 −0.578716 −0.289358 0.957221i \(-0.593442\pi\)
−0.289358 + 0.957221i \(0.593442\pi\)
\(198\) 0 0
\(199\) −13.5620 −0.961382 −0.480691 0.876890i \(-0.659614\pi\)
−0.480691 + 0.876890i \(0.659614\pi\)
\(200\) 0 0
\(201\) −0.357269 −0.0251998
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 2.44009 0.170423
\(206\) 0 0
\(207\) 1.09359 0.0760096
\(208\) 0 0
\(209\) −12.3510 −0.854339
\(210\) 0 0
\(211\) −25.4596 −1.75271 −0.876355 0.481666i \(-0.840032\pi\)
−0.876355 + 0.481666i \(0.840032\pi\)
\(212\) 0 0
\(213\) 0.689086 0.0472154
\(214\) 0 0
\(215\) −1.33365 −0.0909544
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0.429915 0.0290510
\(220\) 0 0
\(221\) −13.8534 −0.931882
\(222\) 0 0
\(223\) 11.5822 0.775604 0.387802 0.921743i \(-0.373234\pi\)
0.387802 + 0.921743i \(0.373234\pi\)
\(224\) 0 0
\(225\) 14.6355 0.975702
\(226\) 0 0
\(227\) −1.29158 −0.0857251 −0.0428626 0.999081i \(-0.513648\pi\)
−0.0428626 + 0.999081i \(0.513648\pi\)
\(228\) 0 0
\(229\) −9.32706 −0.616349 −0.308175 0.951330i \(-0.599718\pi\)
−0.308175 + 0.951330i \(0.599718\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.1827 1.06017 0.530084 0.847945i \(-0.322161\pi\)
0.530084 + 0.847945i \(0.322161\pi\)
\(234\) 0 0
\(235\) −3.33201 −0.217357
\(236\) 0 0
\(237\) −0.160977 −0.0104565
\(238\) 0 0
\(239\) 16.5483 1.07042 0.535209 0.844720i \(-0.320233\pi\)
0.535209 + 0.844720i \(0.320233\pi\)
\(240\) 0 0
\(241\) −18.9203 −1.21876 −0.609381 0.792878i \(-0.708582\pi\)
−0.609381 + 0.792878i \(0.708582\pi\)
\(242\) 0 0
\(243\) −1.37933 −0.0884844
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 27.2565 1.73429
\(248\) 0 0
\(249\) −0.142141 −0.00900780
\(250\) 0 0
\(251\) 3.22125 0.203323 0.101662 0.994819i \(-0.467584\pi\)
0.101662 + 0.994819i \(0.467584\pi\)
\(252\) 0 0
\(253\) 0.755248 0.0474820
\(254\) 0 0
\(255\) −0.0531070 −0.00332569
\(256\) 0 0
\(257\) 12.8497 0.801539 0.400770 0.916179i \(-0.368743\pi\)
0.400770 + 0.916179i \(0.368743\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.31267 0.143151
\(262\) 0 0
\(263\) −14.1853 −0.874703 −0.437352 0.899291i \(-0.644084\pi\)
−0.437352 + 0.899291i \(0.644084\pi\)
\(264\) 0 0
\(265\) −1.24104 −0.0762364
\(266\) 0 0
\(267\) 0.573353 0.0350886
\(268\) 0 0
\(269\) 0.570801 0.0348023 0.0174012 0.999849i \(-0.494461\pi\)
0.0174012 + 0.999849i \(0.494461\pi\)
\(270\) 0 0
\(271\) 18.4959 1.12355 0.561774 0.827291i \(-0.310119\pi\)
0.561774 + 0.827291i \(0.310119\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 10.1075 0.609506
\(276\) 0 0
\(277\) 4.22545 0.253883 0.126941 0.991910i \(-0.459484\pi\)
0.126941 + 0.991910i \(0.459484\pi\)
\(278\) 0 0
\(279\) 3.42196 0.204867
\(280\) 0 0
\(281\) −8.46608 −0.505044 −0.252522 0.967591i \(-0.581260\pi\)
−0.252522 + 0.967591i \(0.581260\pi\)
\(282\) 0 0
\(283\) −10.8345 −0.644044 −0.322022 0.946732i \(-0.604363\pi\)
−0.322022 + 0.946732i \(0.604363\pi\)
\(284\) 0 0
\(285\) 0.104488 0.00618931
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.80345 −0.459026
\(290\) 0 0
\(291\) 0.204804 0.0120058
\(292\) 0 0
\(293\) 10.3369 0.603890 0.301945 0.953325i \(-0.402364\pi\)
0.301945 + 0.953325i \(0.402364\pi\)
\(294\) 0 0
\(295\) 4.60932 0.268365
\(296\) 0 0
\(297\) −0.634967 −0.0368445
\(298\) 0 0
\(299\) −1.66669 −0.0963874
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.541197 0.0310910
\(304\) 0 0
\(305\) 4.31220 0.246916
\(306\) 0 0
\(307\) 19.0192 1.08548 0.542741 0.839900i \(-0.317387\pi\)
0.542741 + 0.839900i \(0.317387\pi\)
\(308\) 0 0
\(309\) −0.336955 −0.0191687
\(310\) 0 0
\(311\) −30.2980 −1.71804 −0.859021 0.511941i \(-0.828927\pi\)
−0.859021 + 0.511941i \(0.828927\pi\)
\(312\) 0 0
\(313\) 31.3723 1.77327 0.886635 0.462470i \(-0.153037\pi\)
0.886635 + 0.462470i \(0.153037\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.74650 −0.210424 −0.105212 0.994450i \(-0.533552\pi\)
−0.105212 + 0.994450i \(0.533552\pi\)
\(318\) 0 0
\(319\) 1.59717 0.0894242
\(320\) 0 0
\(321\) −0.287151 −0.0160272
\(322\) 0 0
\(323\) −18.0941 −1.00678
\(324\) 0 0
\(325\) −22.3054 −1.23728
\(326\) 0 0
\(327\) −0.0965009 −0.00533651
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.60640 0.253191 0.126595 0.991954i \(-0.459595\pi\)
0.126595 + 0.991954i \(0.459595\pi\)
\(332\) 0 0
\(333\) −25.6622 −1.40628
\(334\) 0 0
\(335\) −2.39174 −0.130674
\(336\) 0 0
\(337\) −22.6282 −1.23264 −0.616319 0.787497i \(-0.711377\pi\)
−0.616319 + 0.787497i \(0.711377\pi\)
\(338\) 0 0
\(339\) 0.221789 0.0120459
\(340\) 0 0
\(341\) 2.36326 0.127977
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −0.00638926 −0.000343986 0
\(346\) 0 0
\(347\) 31.2638 1.67833 0.839164 0.543879i \(-0.183045\pi\)
0.839164 + 0.543879i \(0.183045\pi\)
\(348\) 0 0
\(349\) −9.45243 −0.505977 −0.252989 0.967469i \(-0.581414\pi\)
−0.252989 + 0.967469i \(0.581414\pi\)
\(350\) 0 0
\(351\) 1.40126 0.0747935
\(352\) 0 0
\(353\) −0.358715 −0.0190925 −0.00954623 0.999954i \(-0.503039\pi\)
−0.00954623 + 0.999954i \(0.503039\pi\)
\(354\) 0 0
\(355\) 4.61307 0.244837
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −19.0511 −1.00548 −0.502739 0.864438i \(-0.667674\pi\)
−0.502739 + 0.864438i \(0.667674\pi\)
\(360\) 0 0
\(361\) 16.6000 0.873685
\(362\) 0 0
\(363\) 0.343442 0.0180260
\(364\) 0 0
\(365\) 2.87806 0.150645
\(366\) 0 0
\(367\) 22.2022 1.15894 0.579472 0.814992i \(-0.303259\pi\)
0.579472 + 0.814992i \(0.303259\pi\)
\(368\) 0 0
\(369\) 21.3609 1.11200
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −31.6567 −1.63912 −0.819560 0.572994i \(-0.805782\pi\)
−0.819560 + 0.572994i \(0.805782\pi\)
\(374\) 0 0
\(375\) −0.173068 −0.00893721
\(376\) 0 0
\(377\) −3.52465 −0.181529
\(378\) 0 0
\(379\) 16.0332 0.823572 0.411786 0.911281i \(-0.364905\pi\)
0.411786 + 0.911281i \(0.364905\pi\)
\(380\) 0 0
\(381\) −0.645620 −0.0330761
\(382\) 0 0
\(383\) −19.6681 −1.00499 −0.502496 0.864580i \(-0.667585\pi\)
−0.502496 + 0.864580i \(0.667585\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −11.6750 −0.593474
\(388\) 0 0
\(389\) 30.3100 1.53678 0.768390 0.639982i \(-0.221058\pi\)
0.768390 + 0.639982i \(0.221058\pi\)
\(390\) 0 0
\(391\) 1.10643 0.0559545
\(392\) 0 0
\(393\) −0.607753 −0.0306571
\(394\) 0 0
\(395\) −1.07766 −0.0542227
\(396\) 0 0
\(397\) −16.2003 −0.813069 −0.406535 0.913635i \(-0.633263\pi\)
−0.406535 + 0.913635i \(0.633263\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.16007 0.407495 0.203747 0.979024i \(-0.434688\pi\)
0.203747 + 0.979024i \(0.434688\pi\)
\(402\) 0 0
\(403\) −5.21527 −0.259791
\(404\) 0 0
\(405\) −3.07350 −0.152724
\(406\) 0 0
\(407\) −17.7227 −0.878482
\(408\) 0 0
\(409\) −26.3946 −1.30513 −0.652565 0.757733i \(-0.726307\pi\)
−0.652565 + 0.757733i \(0.726307\pi\)
\(410\) 0 0
\(411\) 0.621544 0.0306585
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −0.951559 −0.0467102
\(416\) 0 0
\(417\) 0.430719 0.0210924
\(418\) 0 0
\(419\) −27.1902 −1.32833 −0.664164 0.747587i \(-0.731212\pi\)
−0.664164 + 0.747587i \(0.731212\pi\)
\(420\) 0 0
\(421\) 23.7404 1.15703 0.578517 0.815670i \(-0.303632\pi\)
0.578517 + 0.815670i \(0.303632\pi\)
\(422\) 0 0
\(423\) −29.1689 −1.41824
\(424\) 0 0
\(425\) 14.8074 0.718264
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0.483653 0.0233510
\(430\) 0 0
\(431\) 26.4493 1.27402 0.637009 0.770856i \(-0.280171\pi\)
0.637009 + 0.770856i \(0.280171\pi\)
\(432\) 0 0
\(433\) 38.0388 1.82803 0.914014 0.405684i \(-0.132966\pi\)
0.914014 + 0.405684i \(0.132966\pi\)
\(434\) 0 0
\(435\) −0.0135117 −0.000647838 0
\(436\) 0 0
\(437\) −2.17689 −0.104135
\(438\) 0 0
\(439\) −24.5018 −1.16941 −0.584705 0.811246i \(-0.698790\pi\)
−0.584705 + 0.811246i \(0.698790\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.67050 0.316925 0.158463 0.987365i \(-0.449346\pi\)
0.158463 + 0.987365i \(0.449346\pi\)
\(444\) 0 0
\(445\) 3.83830 0.181953
\(446\) 0 0
\(447\) 0.308170 0.0145759
\(448\) 0 0
\(449\) 22.6007 1.06659 0.533296 0.845928i \(-0.320953\pi\)
0.533296 + 0.845928i \(0.320953\pi\)
\(450\) 0 0
\(451\) 14.7522 0.694652
\(452\) 0 0
\(453\) −0.424112 −0.0199265
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 41.2215 1.92826 0.964130 0.265431i \(-0.0855141\pi\)
0.964130 + 0.265431i \(0.0855141\pi\)
\(458\) 0 0
\(459\) −0.930219 −0.0434189
\(460\) 0 0
\(461\) −21.8689 −1.01854 −0.509269 0.860608i \(-0.670084\pi\)
−0.509269 + 0.860608i \(0.670084\pi\)
\(462\) 0 0
\(463\) −18.6568 −0.867055 −0.433527 0.901140i \(-0.642731\pi\)
−0.433527 + 0.901140i \(0.642731\pi\)
\(464\) 0 0
\(465\) −0.0199927 −0.000927140 0
\(466\) 0 0
\(467\) −38.6977 −1.79072 −0.895359 0.445345i \(-0.853081\pi\)
−0.895359 + 0.445345i \(0.853081\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.08971 0.0502110
\(472\) 0 0
\(473\) −8.06293 −0.370734
\(474\) 0 0
\(475\) −29.1334 −1.33673
\(476\) 0 0
\(477\) −10.8642 −0.497440
\(478\) 0 0
\(479\) −9.04999 −0.413505 −0.206752 0.978393i \(-0.566289\pi\)
−0.206752 + 0.978393i \(0.566289\pi\)
\(480\) 0 0
\(481\) 39.1108 1.78330
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.37106 0.0622565
\(486\) 0 0
\(487\) −29.4815 −1.33593 −0.667967 0.744191i \(-0.732835\pi\)
−0.667967 + 0.744191i \(0.732835\pi\)
\(488\) 0 0
\(489\) 0.641851 0.0290255
\(490\) 0 0
\(491\) 43.9409 1.98302 0.991512 0.130012i \(-0.0415016\pi\)
0.991512 + 0.130012i \(0.0415016\pi\)
\(492\) 0 0
\(493\) 2.33983 0.105381
\(494\) 0 0
\(495\) −2.12446 −0.0954875
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.3222 −0.999280 −0.499640 0.866233i \(-0.666534\pi\)
−0.499640 + 0.866233i \(0.666534\pi\)
\(500\) 0 0
\(501\) 0.425106 0.0189923
\(502\) 0 0
\(503\) −36.1482 −1.61177 −0.805885 0.592073i \(-0.798310\pi\)
−0.805885 + 0.592073i \(0.798310\pi\)
\(504\) 0 0
\(505\) 3.62304 0.161223
\(506\) 0 0
\(507\) −0.402437 −0.0178729
\(508\) 0 0
\(509\) −16.3922 −0.726570 −0.363285 0.931678i \(-0.618345\pi\)
−0.363285 + 0.931678i \(0.618345\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.83020 0.0808052
\(514\) 0 0
\(515\) −2.25574 −0.0993997
\(516\) 0 0
\(517\) −20.1445 −0.885954
\(518\) 0 0
\(519\) 0.945165 0.0414881
\(520\) 0 0
\(521\) 11.8391 0.518679 0.259339 0.965786i \(-0.416495\pi\)
0.259339 + 0.965786i \(0.416495\pi\)
\(522\) 0 0
\(523\) −27.0376 −1.18227 −0.591135 0.806573i \(-0.701320\pi\)
−0.591135 + 0.806573i \(0.701320\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.46214 0.150813
\(528\) 0 0
\(529\) −22.8669 −0.994212
\(530\) 0 0
\(531\) 40.3507 1.75107
\(532\) 0 0
\(533\) −32.5553 −1.41013
\(534\) 0 0
\(535\) −1.92233 −0.0831095
\(536\) 0 0
\(537\) 0.762872 0.0329204
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.9847 −0.515262 −0.257631 0.966243i \(-0.582942\pi\)
−0.257631 + 0.966243i \(0.582942\pi\)
\(542\) 0 0
\(543\) −0.197086 −0.00845778
\(544\) 0 0
\(545\) −0.646024 −0.0276726
\(546\) 0 0
\(547\) 16.0040 0.684284 0.342142 0.939648i \(-0.388848\pi\)
0.342142 + 0.939648i \(0.388848\pi\)
\(548\) 0 0
\(549\) 37.7497 1.61112
\(550\) 0 0
\(551\) −4.60359 −0.196120
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.149931 0.00636421
\(556\) 0 0
\(557\) 16.4355 0.696394 0.348197 0.937421i \(-0.386794\pi\)
0.348197 + 0.937421i \(0.386794\pi\)
\(558\) 0 0
\(559\) 17.7934 0.752581
\(560\) 0 0
\(561\) −0.321072 −0.0135557
\(562\) 0 0
\(563\) −13.0302 −0.549159 −0.274580 0.961564i \(-0.588539\pi\)
−0.274580 + 0.961564i \(0.588539\pi\)
\(564\) 0 0
\(565\) 1.48476 0.0624645
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −40.2493 −1.68734 −0.843668 0.536865i \(-0.819608\pi\)
−0.843668 + 0.536865i \(0.819608\pi\)
\(570\) 0 0
\(571\) −35.3843 −1.48079 −0.740394 0.672173i \(-0.765361\pi\)
−0.740394 + 0.672173i \(0.765361\pi\)
\(572\) 0 0
\(573\) 0.970699 0.0405515
\(574\) 0 0
\(575\) 1.78146 0.0742921
\(576\) 0 0
\(577\) −15.3580 −0.639364 −0.319682 0.947525i \(-0.603576\pi\)
−0.319682 + 0.947525i \(0.603576\pi\)
\(578\) 0 0
\(579\) −0.396134 −0.0164628
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −7.50301 −0.310743
\(584\) 0 0
\(585\) 4.68830 0.193837
\(586\) 0 0
\(587\) 1.66914 0.0688928 0.0344464 0.999407i \(-0.489033\pi\)
0.0344464 + 0.999407i \(0.489033\pi\)
\(588\) 0 0
\(589\) −6.81173 −0.280672
\(590\) 0 0
\(591\) 0.415441 0.0170890
\(592\) 0 0
\(593\) 42.6294 1.75058 0.875289 0.483600i \(-0.160671\pi\)
0.875289 + 0.483600i \(0.160671\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.693639 0.0283888
\(598\) 0 0
\(599\) 36.5904 1.49504 0.747522 0.664237i \(-0.231243\pi\)
0.747522 + 0.664237i \(0.231243\pi\)
\(600\) 0 0
\(601\) 14.7372 0.601143 0.300571 0.953759i \(-0.402823\pi\)
0.300571 + 0.953759i \(0.402823\pi\)
\(602\) 0 0
\(603\) −20.9376 −0.852645
\(604\) 0 0
\(605\) 2.29917 0.0934744
\(606\) 0 0
\(607\) −36.8630 −1.49622 −0.748111 0.663573i \(-0.769039\pi\)
−0.748111 + 0.663573i \(0.769039\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44.4552 1.79847
\(612\) 0 0
\(613\) −37.0948 −1.49824 −0.749122 0.662432i \(-0.769524\pi\)
−0.749122 + 0.662432i \(0.769524\pi\)
\(614\) 0 0
\(615\) −0.124801 −0.00503245
\(616\) 0 0
\(617\) 14.9852 0.603279 0.301640 0.953422i \(-0.402466\pi\)
0.301640 + 0.953422i \(0.402466\pi\)
\(618\) 0 0
\(619\) 21.9345 0.881621 0.440811 0.897600i \(-0.354691\pi\)
0.440811 + 0.897600i \(0.354691\pi\)
\(620\) 0 0
\(621\) −0.111914 −0.00449095
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 23.2552 0.930209
\(626\) 0 0
\(627\) 0.631705 0.0252279
\(628\) 0 0
\(629\) −25.9636 −1.03524
\(630\) 0 0
\(631\) −5.77408 −0.229862 −0.114931 0.993373i \(-0.536665\pi\)
−0.114931 + 0.993373i \(0.536665\pi\)
\(632\) 0 0
\(633\) 1.30215 0.0517560
\(634\) 0 0
\(635\) −4.32210 −0.171517
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 40.3836 1.59755
\(640\) 0 0
\(641\) −19.9157 −0.786621 −0.393311 0.919406i \(-0.628670\pi\)
−0.393311 + 0.919406i \(0.628670\pi\)
\(642\) 0 0
\(643\) 10.0697 0.397112 0.198556 0.980090i \(-0.436375\pi\)
0.198556 + 0.980090i \(0.436375\pi\)
\(644\) 0 0
\(645\) 0.0682109 0.00268580
\(646\) 0 0
\(647\) −3.16255 −0.124333 −0.0621663 0.998066i \(-0.519801\pi\)
−0.0621663 + 0.998066i \(0.519801\pi\)
\(648\) 0 0
\(649\) 27.8668 1.09387
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.4828 0.879821 0.439910 0.898042i \(-0.355010\pi\)
0.439910 + 0.898042i \(0.355010\pi\)
\(654\) 0 0
\(655\) −4.06859 −0.158973
\(656\) 0 0
\(657\) 25.1950 0.982950
\(658\) 0 0
\(659\) −18.4940 −0.720426 −0.360213 0.932870i \(-0.617296\pi\)
−0.360213 + 0.932870i \(0.617296\pi\)
\(660\) 0 0
\(661\) −25.1019 −0.976350 −0.488175 0.872746i \(-0.662337\pi\)
−0.488175 + 0.872746i \(0.662337\pi\)
\(662\) 0 0
\(663\) 0.708546 0.0275177
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.281503 0.0108998
\(668\) 0 0
\(669\) −0.592384 −0.0229029
\(670\) 0 0
\(671\) 26.0705 1.00644
\(672\) 0 0
\(673\) −23.6027 −0.909816 −0.454908 0.890538i \(-0.650328\pi\)
−0.454908 + 0.890538i \(0.650328\pi\)
\(674\) 0 0
\(675\) −1.49775 −0.0576483
\(676\) 0 0
\(677\) −14.0872 −0.541413 −0.270707 0.962662i \(-0.587257\pi\)
−0.270707 + 0.962662i \(0.587257\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.0660590 0.00253139
\(682\) 0 0
\(683\) −9.53028 −0.364666 −0.182333 0.983237i \(-0.558365\pi\)
−0.182333 + 0.983237i \(0.558365\pi\)
\(684\) 0 0
\(685\) 4.16092 0.158981
\(686\) 0 0
\(687\) 0.477041 0.0182002
\(688\) 0 0
\(689\) 16.5578 0.630801
\(690\) 0 0
\(691\) −33.4538 −1.27264 −0.636321 0.771425i \(-0.719545\pi\)
−0.636321 + 0.771425i \(0.719545\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.88344 0.109375
\(696\) 0 0
\(697\) 21.6118 0.818603
\(698\) 0 0
\(699\) −0.827682 −0.0313058
\(700\) 0 0
\(701\) 31.8333 1.20233 0.601164 0.799125i \(-0.294704\pi\)
0.601164 + 0.799125i \(0.294704\pi\)
\(702\) 0 0
\(703\) 51.0831 1.92663
\(704\) 0 0
\(705\) 0.170419 0.00641835
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.9975 0.938802 0.469401 0.882985i \(-0.344470\pi\)
0.469401 + 0.882985i \(0.344470\pi\)
\(710\) 0 0
\(711\) −9.43396 −0.353801
\(712\) 0 0
\(713\) 0.416527 0.0155991
\(714\) 0 0
\(715\) 3.23781 0.121087
\(716\) 0 0
\(717\) −0.846376 −0.0316085
\(718\) 0 0
\(719\) −18.7817 −0.700438 −0.350219 0.936668i \(-0.613893\pi\)
−0.350219 + 0.936668i \(0.613893\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0.967695 0.0359889
\(724\) 0 0
\(725\) 3.76737 0.139916
\(726\) 0 0
\(727\) 16.3132 0.605021 0.302511 0.953146i \(-0.402175\pi\)
0.302511 + 0.953146i \(0.402175\pi\)
\(728\) 0 0
\(729\) −26.8588 −0.994772
\(730\) 0 0
\(731\) −11.8121 −0.436886
\(732\) 0 0
\(733\) −24.4567 −0.903328 −0.451664 0.892188i \(-0.649169\pi\)
−0.451664 + 0.892188i \(0.649169\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −14.4598 −0.532635
\(738\) 0 0
\(739\) 36.6708 1.34896 0.674479 0.738294i \(-0.264368\pi\)
0.674479 + 0.738294i \(0.264368\pi\)
\(740\) 0 0
\(741\) −1.39406 −0.0512120
\(742\) 0 0
\(743\) 7.45052 0.273333 0.136667 0.990617i \(-0.456361\pi\)
0.136667 + 0.990617i \(0.456361\pi\)
\(744\) 0 0
\(745\) 2.06304 0.0755839
\(746\) 0 0
\(747\) −8.33009 −0.304782
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −33.2124 −1.21194 −0.605969 0.795488i \(-0.707214\pi\)
−0.605969 + 0.795488i \(0.707214\pi\)
\(752\) 0 0
\(753\) −0.164754 −0.00600395
\(754\) 0 0
\(755\) −2.83921 −0.103329
\(756\) 0 0
\(757\) 36.5598 1.32879 0.664395 0.747382i \(-0.268689\pi\)
0.664395 + 0.747382i \(0.268689\pi\)
\(758\) 0 0
\(759\) −0.0386278 −0.00140210
\(760\) 0 0
\(761\) 46.1954 1.67458 0.837291 0.546757i \(-0.184138\pi\)
0.837291 + 0.546757i \(0.184138\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.11231 −0.112526
\(766\) 0 0
\(767\) −61.4969 −2.22052
\(768\) 0 0
\(769\) −19.5242 −0.704060 −0.352030 0.935989i \(-0.614509\pi\)
−0.352030 + 0.935989i \(0.614509\pi\)
\(770\) 0 0
\(771\) −0.657207 −0.0236687
\(772\) 0 0
\(773\) 5.64922 0.203188 0.101594 0.994826i \(-0.467606\pi\)
0.101594 + 0.994826i \(0.467606\pi\)
\(774\) 0 0
\(775\) 5.57440 0.200238
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −42.5209 −1.52347
\(780\) 0 0
\(781\) 27.8895 0.997964
\(782\) 0 0
\(783\) −0.236671 −0.00845793
\(784\) 0 0
\(785\) 7.29502 0.260370
\(786\) 0 0
\(787\) 30.8459 1.09954 0.549768 0.835317i \(-0.314716\pi\)
0.549768 + 0.835317i \(0.314716\pi\)
\(788\) 0 0
\(789\) 0.725521 0.0258292
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −57.5328 −2.04305
\(794\) 0 0
\(795\) 0.0634741 0.00225119
\(796\) 0 0
\(797\) 4.59861 0.162891 0.0814456 0.996678i \(-0.474046\pi\)
0.0814456 + 0.996678i \(0.474046\pi\)
\(798\) 0 0
\(799\) −29.5115 −1.04404
\(800\) 0 0
\(801\) 33.6011 1.18724
\(802\) 0 0
\(803\) 17.4000 0.614034
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.0291941 −0.00102768
\(808\) 0 0
\(809\) −29.8037 −1.04784 −0.523921 0.851767i \(-0.675531\pi\)
−0.523921 + 0.851767i \(0.675531\pi\)
\(810\) 0 0
\(811\) 7.25941 0.254912 0.127456 0.991844i \(-0.459319\pi\)
0.127456 + 0.991844i \(0.459319\pi\)
\(812\) 0 0
\(813\) −0.945992 −0.0331774
\(814\) 0 0
\(815\) 4.29686 0.150512
\(816\) 0 0
\(817\) 23.2402 0.813072
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.3594 1.47835 0.739177 0.673512i \(-0.235215\pi\)
0.739177 + 0.673512i \(0.235215\pi\)
\(822\) 0 0
\(823\) 35.1716 1.22601 0.613003 0.790081i \(-0.289962\pi\)
0.613003 + 0.790081i \(0.289962\pi\)
\(824\) 0 0
\(825\) −0.516958 −0.0179982
\(826\) 0 0
\(827\) −19.5363 −0.679343 −0.339671 0.940544i \(-0.610316\pi\)
−0.339671 + 0.940544i \(0.610316\pi\)
\(828\) 0 0
\(829\) 11.2043 0.389141 0.194570 0.980889i \(-0.437669\pi\)
0.194570 + 0.980889i \(0.437669\pi\)
\(830\) 0 0
\(831\) −0.216115 −0.00749693
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.84587 0.0984853
\(836\) 0 0
\(837\) −0.350191 −0.0121044
\(838\) 0 0
\(839\) −47.0494 −1.62433 −0.812164 0.583430i \(-0.801710\pi\)
−0.812164 + 0.583430i \(0.801710\pi\)
\(840\) 0 0
\(841\) −28.4047 −0.979472
\(842\) 0 0
\(843\) 0.433006 0.0149135
\(844\) 0 0
\(845\) −2.69411 −0.0926801
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0.554141 0.0190181
\(850\) 0 0
\(851\) −3.12365 −0.107077
\(852\) 0 0
\(853\) 37.9168 1.29825 0.649124 0.760683i \(-0.275136\pi\)
0.649124 + 0.760683i \(0.275136\pi\)
\(854\) 0 0
\(855\) 6.12345 0.209417
\(856\) 0 0
\(857\) 48.3340 1.65106 0.825529 0.564360i \(-0.190877\pi\)
0.825529 + 0.564360i \(0.190877\pi\)
\(858\) 0 0
\(859\) 23.7594 0.810661 0.405331 0.914170i \(-0.367156\pi\)
0.405331 + 0.914170i \(0.367156\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.09654 −0.173488 −0.0867440 0.996231i \(-0.527646\pi\)
−0.0867440 + 0.996231i \(0.527646\pi\)
\(864\) 0 0
\(865\) 6.32740 0.215138
\(866\) 0 0
\(867\) 0.399115 0.0135546
\(868\) 0 0
\(869\) −6.51523 −0.221014
\(870\) 0 0
\(871\) 31.9102 1.08124
\(872\) 0 0
\(873\) 12.0024 0.406221
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −7.79930 −0.263364 −0.131682 0.991292i \(-0.542038\pi\)
−0.131682 + 0.991292i \(0.542038\pi\)
\(878\) 0 0
\(879\) −0.528692 −0.0178323
\(880\) 0 0
\(881\) −27.5192 −0.927144 −0.463572 0.886059i \(-0.653432\pi\)
−0.463572 + 0.886059i \(0.653432\pi\)
\(882\) 0 0
\(883\) 42.0423 1.41484 0.707419 0.706795i \(-0.249859\pi\)
0.707419 + 0.706795i \(0.249859\pi\)
\(884\) 0 0
\(885\) −0.235748 −0.00792458
\(886\) 0 0
\(887\) 15.5806 0.523144 0.261572 0.965184i \(-0.415759\pi\)
0.261572 + 0.965184i \(0.415759\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −18.5816 −0.622508
\(892\) 0 0
\(893\) 58.0635 1.94302
\(894\) 0 0
\(895\) 5.10704 0.170710
\(896\) 0 0
\(897\) 0.0852446 0.00284623
\(898\) 0 0
\(899\) 0.880855 0.0293781
\(900\) 0 0
\(901\) −10.9918 −0.366191
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.31939 −0.0438580
\(906\) 0 0
\(907\) 32.2447 1.07067 0.535334 0.844640i \(-0.320186\pi\)
0.535334 + 0.844640i \(0.320186\pi\)
\(908\) 0 0
\(909\) 31.7166 1.05197
\(910\) 0 0
\(911\) 41.5953 1.37811 0.689056 0.724708i \(-0.258025\pi\)
0.689056 + 0.724708i \(0.258025\pi\)
\(912\) 0 0
\(913\) −5.75289 −0.190393
\(914\) 0 0
\(915\) −0.220552 −0.00729121
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −31.4125 −1.03620 −0.518101 0.855320i \(-0.673361\pi\)
−0.518101 + 0.855320i \(0.673361\pi\)
\(920\) 0 0
\(921\) −0.972753 −0.0320533
\(922\) 0 0
\(923\) −61.5470 −2.02584
\(924\) 0 0
\(925\) −41.8040 −1.37451
\(926\) 0 0
\(927\) −19.7471 −0.648579
\(928\) 0 0
\(929\) 44.6965 1.46645 0.733223 0.679989i \(-0.238015\pi\)
0.733223 + 0.679989i \(0.238015\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 1.54962 0.0507322
\(934\) 0 0
\(935\) −2.14941 −0.0702932
\(936\) 0 0
\(937\) −2.85775 −0.0933586 −0.0466793 0.998910i \(-0.514864\pi\)
−0.0466793 + 0.998910i \(0.514864\pi\)
\(938\) 0 0
\(939\) −1.60457 −0.0523631
\(940\) 0 0
\(941\) −12.1864 −0.397265 −0.198632 0.980074i \(-0.563650\pi\)
−0.198632 + 0.980074i \(0.563650\pi\)
\(942\) 0 0
\(943\) 2.60009 0.0846706
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.81341 0.286397 0.143199 0.989694i \(-0.454261\pi\)
0.143199 + 0.989694i \(0.454261\pi\)
\(948\) 0 0
\(949\) −38.3987 −1.24647
\(950\) 0 0
\(951\) 0.191618 0.00621365
\(952\) 0 0
\(953\) 55.2630 1.79014 0.895071 0.445923i \(-0.147125\pi\)
0.895071 + 0.445923i \(0.147125\pi\)
\(954\) 0 0
\(955\) 6.49833 0.210281
\(956\) 0 0
\(957\) −0.0816886 −0.00264062
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.6966 −0.957956
\(962\) 0 0
\(963\) −16.8284 −0.542286
\(964\) 0 0
\(965\) −2.65191 −0.0853681
\(966\) 0 0
\(967\) −3.33608 −0.107281 −0.0536406 0.998560i \(-0.517083\pi\)
−0.0536406 + 0.998560i \(0.517083\pi\)
\(968\) 0 0
\(969\) 0.925441 0.0297294
\(970\) 0 0
\(971\) 26.7478 0.858377 0.429189 0.903215i \(-0.358800\pi\)
0.429189 + 0.903215i \(0.358800\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.14083 0.0365358
\(976\) 0 0
\(977\) 12.6696 0.405337 0.202668 0.979247i \(-0.435039\pi\)
0.202668 + 0.979247i \(0.435039\pi\)
\(978\) 0 0
\(979\) 23.2054 0.741648
\(980\) 0 0
\(981\) −5.65539 −0.180563
\(982\) 0 0
\(983\) 33.9244 1.08202 0.541010 0.841016i \(-0.318042\pi\)
0.541010 + 0.841016i \(0.318042\pi\)
\(984\) 0 0
\(985\) 2.78117 0.0886153
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.42110 −0.0451885
\(990\) 0 0
\(991\) 51.9178 1.64922 0.824611 0.565700i \(-0.191394\pi\)
0.824611 + 0.565700i \(0.191394\pi\)
\(992\) 0 0
\(993\) −0.235599 −0.00747650
\(994\) 0 0
\(995\) 4.64356 0.147211
\(996\) 0 0
\(997\) 21.6197 0.684703 0.342351 0.939572i \(-0.388777\pi\)
0.342351 + 0.939572i \(0.388777\pi\)
\(998\) 0 0
\(999\) 2.62618 0.0830887
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.s.1.5 9
4.3 odd 2 2744.2.a.d.1.5 9
7.6 odd 2 5488.2.a.t.1.5 9
28.27 even 2 2744.2.a.e.1.5 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2744.2.a.d.1.5 9 4.3 odd 2
2744.2.a.e.1.5 yes 9 28.27 even 2
5488.2.a.s.1.5 9 1.1 even 1 trivial
5488.2.a.t.1.5 9 7.6 odd 2