Properties

Label 2-5488-1.1-c1-0-100
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.0511·3-s − 0.342·5-s − 2.99·9-s − 2.07·11-s + 4.56·13-s + 0.0175·15-s − 3.03·17-s + 5.96·19-s − 0.364·23-s − 4.88·25-s + 0.306·27-s − 0.771·29-s − 1.14·31-s + 0.105·33-s + 8.56·37-s − 0.233·39-s − 7.12·41-s + 3.89·43-s + 1.02·45-s + 9.73·47-s + 0.155·51-s + 3.62·53-s + 0.708·55-s − 0.305·57-s − 13.4·59-s − 12.5·61-s − 1.56·65-s + ⋯
L(s)  = 1  − 0.0295·3-s − 0.153·5-s − 0.999·9-s − 0.624·11-s + 1.26·13-s + 0.00452·15-s − 0.735·17-s + 1.36·19-s − 0.0760·23-s − 0.976·25-s + 0.0590·27-s − 0.143·29-s − 0.205·31-s + 0.0184·33-s + 1.40·37-s − 0.0374·39-s − 1.11·41-s + 0.593·43-s + 0.152·45-s + 1.41·47-s + 0.0217·51-s + 0.497·53-s + 0.0955·55-s − 0.0404·57-s − 1.75·59-s − 1.61·61-s − 0.194·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 0.0511T + 3T^{2} \)
5 \( 1 + 0.342T + 5T^{2} \)
11 \( 1 + 2.07T + 11T^{2} \)
13 \( 1 - 4.56T + 13T^{2} \)
17 \( 1 + 3.03T + 17T^{2} \)
19 \( 1 - 5.96T + 19T^{2} \)
23 \( 1 + 0.364T + 23T^{2} \)
29 \( 1 + 0.771T + 29T^{2} \)
31 \( 1 + 1.14T + 31T^{2} \)
37 \( 1 - 8.56T + 37T^{2} \)
41 \( 1 + 7.12T + 41T^{2} \)
43 \( 1 - 3.89T + 43T^{2} \)
47 \( 1 - 9.73T + 47T^{2} \)
53 \( 1 - 3.62T + 53T^{2} \)
59 \( 1 + 13.4T + 59T^{2} \)
61 \( 1 + 12.5T + 61T^{2} \)
67 \( 1 - 6.98T + 67T^{2} \)
71 \( 1 + 13.4T + 71T^{2} \)
73 \( 1 + 8.40T + 73T^{2} \)
79 \( 1 - 3.14T + 79T^{2} \)
83 \( 1 - 2.77T + 83T^{2} \)
89 \( 1 + 11.2T + 89T^{2} \)
97 \( 1 + 4.00T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80145137149241511237525099976, −7.25242832252786804281019570958, −6.04090000876731383795543991884, −5.88984893139611970175417650756, −4.93679862170841735561735902139, −4.03306113853385906595110338496, −3.22625662380822497252418926754, −2.48915087601228680277231954505, −1.28675627754182362974753625273, 0, 1.28675627754182362974753625273, 2.48915087601228680277231954505, 3.22625662380822497252418926754, 4.03306113853385906595110338496, 4.93679862170841735561735902139, 5.88984893139611970175417650756, 6.04090000876731383795543991884, 7.25242832252786804281019570958, 7.80145137149241511237525099976

Graph of the $Z$-function along the critical line