Properties

Label 5488.2.a.p.1.6
Level $5488$
Weight $2$
Character 5488.1
Self dual yes
Analytic conductor $43.822$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5488,2,Mod(1,5488)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5488.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5488, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5488 = 2^{4} \cdot 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5488.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,5,0,-11,0,0,0,9,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.8219006293\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1279733.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 6x^{4} + 10x^{3} + 10x^{2} - 11x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 343)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.33192\) of defining polynomial
Character \(\chi\) \(=\) 5488.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.95499 q^{3} -1.95286 q^{5} +5.73194 q^{9} -2.65101 q^{11} +1.50061 q^{13} -5.77069 q^{15} -2.09215 q^{17} -6.38881 q^{19} +2.12424 q^{23} -1.18632 q^{25} +8.07285 q^{27} -7.42740 q^{29} -0.0654672 q^{31} -7.83370 q^{33} +0.537796 q^{37} +4.43428 q^{39} -11.8724 q^{41} +0.588754 q^{43} -11.1937 q^{45} +3.02880 q^{47} -6.18227 q^{51} +1.04162 q^{53} +5.17707 q^{55} -18.8788 q^{57} -2.27140 q^{59} +10.2767 q^{61} -2.93048 q^{65} +0.221714 q^{67} +6.27711 q^{69} -10.7708 q^{71} -10.2207 q^{73} -3.50556 q^{75} +13.2859 q^{79} +6.65934 q^{81} -11.8543 q^{83} +4.08568 q^{85} -21.9479 q^{87} -3.51020 q^{89} -0.193455 q^{93} +12.4765 q^{95} -14.6497 q^{97} -15.1954 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} - 11 q^{5} + 9 q^{9} + q^{11} - 7 q^{13} + 5 q^{15} - 26 q^{17} - 3 q^{19} + 9 q^{23} + 15 q^{25} + 8 q^{27} - 2 q^{29} - 2 q^{31} - 18 q^{33} - 2 q^{37} - 7 q^{39} - 28 q^{41} - 5 q^{43}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.95499 1.70606 0.853031 0.521860i \(-0.174762\pi\)
0.853031 + 0.521860i \(0.174762\pi\)
\(4\) 0 0
\(5\) −1.95286 −0.873348 −0.436674 0.899620i \(-0.643844\pi\)
−0.436674 + 0.899620i \(0.643844\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 5.73194 1.91065
\(10\) 0 0
\(11\) −2.65101 −0.799310 −0.399655 0.916666i \(-0.630870\pi\)
−0.399655 + 0.916666i \(0.630870\pi\)
\(12\) 0 0
\(13\) 1.50061 0.416194 0.208097 0.978108i \(-0.433273\pi\)
0.208097 + 0.978108i \(0.433273\pi\)
\(14\) 0 0
\(15\) −5.77069 −1.48999
\(16\) 0 0
\(17\) −2.09215 −0.507421 −0.253710 0.967280i \(-0.581651\pi\)
−0.253710 + 0.967280i \(0.581651\pi\)
\(18\) 0 0
\(19\) −6.38881 −1.46569 −0.732847 0.680394i \(-0.761809\pi\)
−0.732847 + 0.680394i \(0.761809\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.12424 0.442936 0.221468 0.975168i \(-0.428915\pi\)
0.221468 + 0.975168i \(0.428915\pi\)
\(24\) 0 0
\(25\) −1.18632 −0.237264
\(26\) 0 0
\(27\) 8.07285 1.55362
\(28\) 0 0
\(29\) −7.42740 −1.37923 −0.689617 0.724174i \(-0.742221\pi\)
−0.689617 + 0.724174i \(0.742221\pi\)
\(30\) 0 0
\(31\) −0.0654672 −0.0117582 −0.00587912 0.999983i \(-0.501871\pi\)
−0.00587912 + 0.999983i \(0.501871\pi\)
\(32\) 0 0
\(33\) −7.83370 −1.36367
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.537796 0.0884130 0.0442065 0.999022i \(-0.485924\pi\)
0.0442065 + 0.999022i \(0.485924\pi\)
\(38\) 0 0
\(39\) 4.43428 0.710053
\(40\) 0 0
\(41\) −11.8724 −1.85416 −0.927082 0.374858i \(-0.877691\pi\)
−0.927082 + 0.374858i \(0.877691\pi\)
\(42\) 0 0
\(43\) 0.588754 0.0897842 0.0448921 0.998992i \(-0.485706\pi\)
0.0448921 + 0.998992i \(0.485706\pi\)
\(44\) 0 0
\(45\) −11.1937 −1.66866
\(46\) 0 0
\(47\) 3.02880 0.441796 0.220898 0.975297i \(-0.429101\pi\)
0.220898 + 0.975297i \(0.429101\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −6.18227 −0.865691
\(52\) 0 0
\(53\) 1.04162 0.143078 0.0715390 0.997438i \(-0.477209\pi\)
0.0715390 + 0.997438i \(0.477209\pi\)
\(54\) 0 0
\(55\) 5.17707 0.698075
\(56\) 0 0
\(57\) −18.8788 −2.50056
\(58\) 0 0
\(59\) −2.27140 −0.295711 −0.147855 0.989009i \(-0.547237\pi\)
−0.147855 + 0.989009i \(0.547237\pi\)
\(60\) 0 0
\(61\) 10.2767 1.31580 0.657898 0.753107i \(-0.271446\pi\)
0.657898 + 0.753107i \(0.271446\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.93048 −0.363482
\(66\) 0 0
\(67\) 0.221714 0.0270867 0.0135434 0.999908i \(-0.495689\pi\)
0.0135434 + 0.999908i \(0.495689\pi\)
\(68\) 0 0
\(69\) 6.27711 0.755676
\(70\) 0 0
\(71\) −10.7708 −1.27826 −0.639131 0.769098i \(-0.720706\pi\)
−0.639131 + 0.769098i \(0.720706\pi\)
\(72\) 0 0
\(73\) −10.2207 −1.19624 −0.598122 0.801405i \(-0.704086\pi\)
−0.598122 + 0.801405i \(0.704086\pi\)
\(74\) 0 0
\(75\) −3.50556 −0.404787
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.2859 1.49478 0.747392 0.664383i \(-0.231306\pi\)
0.747392 + 0.664383i \(0.231306\pi\)
\(80\) 0 0
\(81\) 6.65934 0.739927
\(82\) 0 0
\(83\) −11.8543 −1.30118 −0.650592 0.759428i \(-0.725479\pi\)
−0.650592 + 0.759428i \(0.725479\pi\)
\(84\) 0 0
\(85\) 4.08568 0.443155
\(86\) 0 0
\(87\) −21.9479 −2.35306
\(88\) 0 0
\(89\) −3.51020 −0.372080 −0.186040 0.982542i \(-0.559565\pi\)
−0.186040 + 0.982542i \(0.559565\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.193455 −0.0200603
\(94\) 0 0
\(95\) 12.4765 1.28006
\(96\) 0 0
\(97\) −14.6497 −1.48746 −0.743728 0.668483i \(-0.766944\pi\)
−0.743728 + 0.668483i \(0.766944\pi\)
\(98\) 0 0
\(99\) −15.1954 −1.52720
\(100\) 0 0
\(101\) −0.324269 −0.0322659 −0.0161330 0.999870i \(-0.505136\pi\)
−0.0161330 + 0.999870i \(0.505136\pi\)
\(102\) 0 0
\(103\) 10.1971 1.00475 0.502377 0.864648i \(-0.332459\pi\)
0.502377 + 0.864648i \(0.332459\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 15.3684 1.48572 0.742861 0.669446i \(-0.233468\pi\)
0.742861 + 0.669446i \(0.233468\pi\)
\(108\) 0 0
\(109\) −14.2387 −1.36382 −0.681911 0.731435i \(-0.738851\pi\)
−0.681911 + 0.731435i \(0.738851\pi\)
\(110\) 0 0
\(111\) 1.58918 0.150838
\(112\) 0 0
\(113\) −8.22812 −0.774037 −0.387018 0.922072i \(-0.626495\pi\)
−0.387018 + 0.922072i \(0.626495\pi\)
\(114\) 0 0
\(115\) −4.14836 −0.386837
\(116\) 0 0
\(117\) 8.60140 0.795200
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.97214 −0.361104
\(122\) 0 0
\(123\) −35.0829 −3.16332
\(124\) 0 0
\(125\) 12.0810 1.08056
\(126\) 0 0
\(127\) −15.7450 −1.39714 −0.698572 0.715540i \(-0.746181\pi\)
−0.698572 + 0.715540i \(0.746181\pi\)
\(128\) 0 0
\(129\) 1.73976 0.153177
\(130\) 0 0
\(131\) 8.25951 0.721636 0.360818 0.932636i \(-0.382497\pi\)
0.360818 + 0.932636i \(0.382497\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −15.7652 −1.35685
\(136\) 0 0
\(137\) 0.0780530 0.00666851 0.00333426 0.999994i \(-0.498939\pi\)
0.00333426 + 0.999994i \(0.498939\pi\)
\(138\) 0 0
\(139\) 15.6375 1.32635 0.663177 0.748463i \(-0.269208\pi\)
0.663177 + 0.748463i \(0.269208\pi\)
\(140\) 0 0
\(141\) 8.95007 0.753732
\(142\) 0 0
\(143\) −3.97813 −0.332668
\(144\) 0 0
\(145\) 14.5047 1.20455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.26566 −0.513303 −0.256652 0.966504i \(-0.582619\pi\)
−0.256652 + 0.966504i \(0.582619\pi\)
\(150\) 0 0
\(151\) 16.3222 1.32828 0.664142 0.747606i \(-0.268797\pi\)
0.664142 + 0.747606i \(0.268797\pi\)
\(152\) 0 0
\(153\) −11.9921 −0.969502
\(154\) 0 0
\(155\) 0.127848 0.0102690
\(156\) 0 0
\(157\) 13.3664 1.06675 0.533376 0.845878i \(-0.320923\pi\)
0.533376 + 0.845878i \(0.320923\pi\)
\(158\) 0 0
\(159\) 3.07798 0.244100
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 11.1164 0.870700 0.435350 0.900261i \(-0.356625\pi\)
0.435350 + 0.900261i \(0.356625\pi\)
\(164\) 0 0
\(165\) 15.2982 1.19096
\(166\) 0 0
\(167\) −8.91212 −0.689640 −0.344820 0.938669i \(-0.612060\pi\)
−0.344820 + 0.938669i \(0.612060\pi\)
\(168\) 0 0
\(169\) −10.7482 −0.826783
\(170\) 0 0
\(171\) −36.6203 −2.80042
\(172\) 0 0
\(173\) −3.24509 −0.246720 −0.123360 0.992362i \(-0.539367\pi\)
−0.123360 + 0.992362i \(0.539367\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.71194 −0.504501
\(178\) 0 0
\(179\) 4.04711 0.302495 0.151248 0.988496i \(-0.451671\pi\)
0.151248 + 0.988496i \(0.451671\pi\)
\(180\) 0 0
\(181\) −8.66577 −0.644121 −0.322061 0.946719i \(-0.604376\pi\)
−0.322061 + 0.946719i \(0.604376\pi\)
\(182\) 0 0
\(183\) 30.3675 2.24483
\(184\) 0 0
\(185\) −1.05024 −0.0772153
\(186\) 0 0
\(187\) 5.54631 0.405586
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.2165 −1.10102 −0.550512 0.834827i \(-0.685567\pi\)
−0.550512 + 0.834827i \(0.685567\pi\)
\(192\) 0 0
\(193\) 10.2716 0.739364 0.369682 0.929158i \(-0.379467\pi\)
0.369682 + 0.929158i \(0.379467\pi\)
\(194\) 0 0
\(195\) −8.65954 −0.620123
\(196\) 0 0
\(197\) 7.72522 0.550399 0.275200 0.961387i \(-0.411256\pi\)
0.275200 + 0.961387i \(0.411256\pi\)
\(198\) 0 0
\(199\) −14.7692 −1.04696 −0.523482 0.852037i \(-0.675367\pi\)
−0.523482 + 0.852037i \(0.675367\pi\)
\(200\) 0 0
\(201\) 0.655163 0.0462116
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 23.1853 1.61933
\(206\) 0 0
\(207\) 12.1760 0.846294
\(208\) 0 0
\(209\) 16.9368 1.17154
\(210\) 0 0
\(211\) 4.88834 0.336527 0.168264 0.985742i \(-0.446184\pi\)
0.168264 + 0.985742i \(0.446184\pi\)
\(212\) 0 0
\(213\) −31.8276 −2.18079
\(214\) 0 0
\(215\) −1.14976 −0.0784128
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −30.2021 −2.04087
\(220\) 0 0
\(221\) −3.13950 −0.211185
\(222\) 0 0
\(223\) 1.74696 0.116985 0.0584925 0.998288i \(-0.481371\pi\)
0.0584925 + 0.998288i \(0.481371\pi\)
\(224\) 0 0
\(225\) −6.79992 −0.453328
\(226\) 0 0
\(227\) 23.6939 1.57262 0.786311 0.617831i \(-0.211988\pi\)
0.786311 + 0.617831i \(0.211988\pi\)
\(228\) 0 0
\(229\) −13.1910 −0.871685 −0.435843 0.900023i \(-0.643550\pi\)
−0.435843 + 0.900023i \(0.643550\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.2901 1.39476 0.697379 0.716703i \(-0.254349\pi\)
0.697379 + 0.716703i \(0.254349\pi\)
\(234\) 0 0
\(235\) −5.91484 −0.385842
\(236\) 0 0
\(237\) 39.2598 2.55020
\(238\) 0 0
\(239\) 11.2612 0.728429 0.364215 0.931315i \(-0.381337\pi\)
0.364215 + 0.931315i \(0.381337\pi\)
\(240\) 0 0
\(241\) −9.26049 −0.596521 −0.298260 0.954485i \(-0.596406\pi\)
−0.298260 + 0.954485i \(0.596406\pi\)
\(242\) 0 0
\(243\) −4.54030 −0.291260
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −9.58710 −0.610013
\(248\) 0 0
\(249\) −35.0294 −2.21990
\(250\) 0 0
\(251\) −19.8599 −1.25355 −0.626773 0.779202i \(-0.715625\pi\)
−0.626773 + 0.779202i \(0.715625\pi\)
\(252\) 0 0
\(253\) −5.63140 −0.354043
\(254\) 0 0
\(255\) 12.0731 0.756049
\(256\) 0 0
\(257\) −25.1574 −1.56927 −0.784637 0.619955i \(-0.787151\pi\)
−0.784637 + 0.619955i \(0.787151\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −42.5735 −2.63523
\(262\) 0 0
\(263\) 10.3286 0.636887 0.318444 0.947942i \(-0.396840\pi\)
0.318444 + 0.947942i \(0.396840\pi\)
\(264\) 0 0
\(265\) −2.03415 −0.124957
\(266\) 0 0
\(267\) −10.3726 −0.634792
\(268\) 0 0
\(269\) 0.448329 0.0273351 0.0136676 0.999907i \(-0.495649\pi\)
0.0136676 + 0.999907i \(0.495649\pi\)
\(270\) 0 0
\(271\) −23.9630 −1.45565 −0.727825 0.685763i \(-0.759469\pi\)
−0.727825 + 0.685763i \(0.759469\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.14495 0.189648
\(276\) 0 0
\(277\) 15.1757 0.911822 0.455911 0.890025i \(-0.349314\pi\)
0.455911 + 0.890025i \(0.349314\pi\)
\(278\) 0 0
\(279\) −0.375254 −0.0224659
\(280\) 0 0
\(281\) 10.0320 0.598460 0.299230 0.954181i \(-0.403270\pi\)
0.299230 + 0.954181i \(0.403270\pi\)
\(282\) 0 0
\(283\) −2.10305 −0.125014 −0.0625068 0.998045i \(-0.519910\pi\)
−0.0625068 + 0.998045i \(0.519910\pi\)
\(284\) 0 0
\(285\) 36.8678 2.18386
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −12.6229 −0.742524
\(290\) 0 0
\(291\) −43.2898 −2.53769
\(292\) 0 0
\(293\) −18.6487 −1.08947 −0.544735 0.838608i \(-0.683370\pi\)
−0.544735 + 0.838608i \(0.683370\pi\)
\(294\) 0 0
\(295\) 4.43573 0.258258
\(296\) 0 0
\(297\) −21.4012 −1.24183
\(298\) 0 0
\(299\) 3.18766 0.184347
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.958209 −0.0550477
\(304\) 0 0
\(305\) −20.0690 −1.14915
\(306\) 0 0
\(307\) 9.72652 0.555122 0.277561 0.960708i \(-0.410474\pi\)
0.277561 + 0.960708i \(0.410474\pi\)
\(308\) 0 0
\(309\) 30.1324 1.71417
\(310\) 0 0
\(311\) −27.8427 −1.57881 −0.789406 0.613871i \(-0.789611\pi\)
−0.789406 + 0.613871i \(0.789611\pi\)
\(312\) 0 0
\(313\) −20.2150 −1.14262 −0.571311 0.820734i \(-0.693565\pi\)
−0.571311 + 0.820734i \(0.693565\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.8535 0.665760 0.332880 0.942969i \(-0.391980\pi\)
0.332880 + 0.942969i \(0.391980\pi\)
\(318\) 0 0
\(319\) 19.6901 1.10244
\(320\) 0 0
\(321\) 45.4135 2.53473
\(322\) 0 0
\(323\) 13.3663 0.743723
\(324\) 0 0
\(325\) −1.78020 −0.0987479
\(326\) 0 0
\(327\) −42.0752 −2.32677
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −12.6856 −0.697261 −0.348631 0.937260i \(-0.613353\pi\)
−0.348631 + 0.937260i \(0.613353\pi\)
\(332\) 0 0
\(333\) 3.08261 0.168926
\(334\) 0 0
\(335\) −0.432978 −0.0236561
\(336\) 0 0
\(337\) 28.8310 1.57053 0.785264 0.619162i \(-0.212527\pi\)
0.785264 + 0.619162i \(0.212527\pi\)
\(338\) 0 0
\(339\) −24.3140 −1.32055
\(340\) 0 0
\(341\) 0.173554 0.00939848
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −12.2583 −0.659967
\(346\) 0 0
\(347\) −15.5749 −0.836103 −0.418052 0.908423i \(-0.637287\pi\)
−0.418052 + 0.908423i \(0.637287\pi\)
\(348\) 0 0
\(349\) −9.08484 −0.486300 −0.243150 0.969989i \(-0.578181\pi\)
−0.243150 + 0.969989i \(0.578181\pi\)
\(350\) 0 0
\(351\) 12.1142 0.646608
\(352\) 0 0
\(353\) −22.9922 −1.22375 −0.611876 0.790954i \(-0.709585\pi\)
−0.611876 + 0.790954i \(0.709585\pi\)
\(354\) 0 0
\(355\) 21.0340 1.11637
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 14.1163 0.745030 0.372515 0.928026i \(-0.378496\pi\)
0.372515 + 0.928026i \(0.378496\pi\)
\(360\) 0 0
\(361\) 21.8169 1.14826
\(362\) 0 0
\(363\) −11.7376 −0.616065
\(364\) 0 0
\(365\) 19.9597 1.04474
\(366\) 0 0
\(367\) 13.1892 0.688469 0.344235 0.938884i \(-0.388138\pi\)
0.344235 + 0.938884i \(0.388138\pi\)
\(368\) 0 0
\(369\) −68.0522 −3.54265
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 9.15428 0.473991 0.236995 0.971511i \(-0.423837\pi\)
0.236995 + 0.971511i \(0.423837\pi\)
\(374\) 0 0
\(375\) 35.6993 1.84351
\(376\) 0 0
\(377\) −11.1456 −0.574029
\(378\) 0 0
\(379\) −3.07480 −0.157942 −0.0789710 0.996877i \(-0.525163\pi\)
−0.0789710 + 0.996877i \(0.525163\pi\)
\(380\) 0 0
\(381\) −46.5263 −2.38361
\(382\) 0 0
\(383\) 1.09321 0.0558605 0.0279303 0.999610i \(-0.491108\pi\)
0.0279303 + 0.999610i \(0.491108\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.37471 0.171546
\(388\) 0 0
\(389\) −11.8335 −0.599981 −0.299991 0.953942i \(-0.596984\pi\)
−0.299991 + 0.953942i \(0.596984\pi\)
\(390\) 0 0
\(391\) −4.44424 −0.224755
\(392\) 0 0
\(393\) 24.4067 1.23116
\(394\) 0 0
\(395\) −25.9456 −1.30547
\(396\) 0 0
\(397\) 28.2609 1.41838 0.709188 0.705020i \(-0.249062\pi\)
0.709188 + 0.705020i \(0.249062\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.66256 −0.332713 −0.166356 0.986066i \(-0.553200\pi\)
−0.166356 + 0.986066i \(0.553200\pi\)
\(402\) 0 0
\(403\) −0.0982406 −0.00489371
\(404\) 0 0
\(405\) −13.0048 −0.646213
\(406\) 0 0
\(407\) −1.42570 −0.0706694
\(408\) 0 0
\(409\) −11.7556 −0.581276 −0.290638 0.956833i \(-0.593868\pi\)
−0.290638 + 0.956833i \(0.593868\pi\)
\(410\) 0 0
\(411\) 0.230645 0.0113769
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 23.1499 1.13639
\(416\) 0 0
\(417\) 46.2085 2.26284
\(418\) 0 0
\(419\) 6.77442 0.330952 0.165476 0.986214i \(-0.447084\pi\)
0.165476 + 0.986214i \(0.447084\pi\)
\(420\) 0 0
\(421\) −1.52728 −0.0744351 −0.0372175 0.999307i \(-0.511849\pi\)
−0.0372175 + 0.999307i \(0.511849\pi\)
\(422\) 0 0
\(423\) 17.3609 0.844117
\(424\) 0 0
\(425\) 2.48196 0.120393
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −11.7553 −0.567552
\(430\) 0 0
\(431\) −3.78461 −0.182298 −0.0911491 0.995837i \(-0.529054\pi\)
−0.0911491 + 0.995837i \(0.529054\pi\)
\(432\) 0 0
\(433\) −3.53219 −0.169746 −0.0848730 0.996392i \(-0.527048\pi\)
−0.0848730 + 0.996392i \(0.527048\pi\)
\(434\) 0 0
\(435\) 42.8612 2.05504
\(436\) 0 0
\(437\) −13.5714 −0.649208
\(438\) 0 0
\(439\) 11.4480 0.546381 0.273190 0.961960i \(-0.411921\pi\)
0.273190 + 0.961960i \(0.411921\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.5209 0.642400 0.321200 0.947011i \(-0.395914\pi\)
0.321200 + 0.947011i \(0.395914\pi\)
\(444\) 0 0
\(445\) 6.85494 0.324955
\(446\) 0 0
\(447\) −18.5150 −0.875727
\(448\) 0 0
\(449\) −18.0667 −0.852621 −0.426310 0.904577i \(-0.640187\pi\)
−0.426310 + 0.904577i \(0.640187\pi\)
\(450\) 0 0
\(451\) 31.4740 1.48205
\(452\) 0 0
\(453\) 48.2320 2.26614
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 27.8916 1.30471 0.652357 0.757912i \(-0.273780\pi\)
0.652357 + 0.757912i \(0.273780\pi\)
\(458\) 0 0
\(459\) −16.8896 −0.788340
\(460\) 0 0
\(461\) −27.9948 −1.30385 −0.651925 0.758284i \(-0.726038\pi\)
−0.651925 + 0.758284i \(0.726038\pi\)
\(462\) 0 0
\(463\) 37.3527 1.73593 0.867964 0.496627i \(-0.165428\pi\)
0.867964 + 0.496627i \(0.165428\pi\)
\(464\) 0 0
\(465\) 0.377790 0.0175196
\(466\) 0 0
\(467\) −28.8663 −1.33577 −0.667886 0.744264i \(-0.732801\pi\)
−0.667886 + 0.744264i \(0.732801\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 39.4974 1.81995
\(472\) 0 0
\(473\) −1.56079 −0.0717654
\(474\) 0 0
\(475\) 7.57918 0.347757
\(476\) 0 0
\(477\) 5.97052 0.273372
\(478\) 0 0
\(479\) 25.0973 1.14672 0.573362 0.819302i \(-0.305639\pi\)
0.573362 + 0.819302i \(0.305639\pi\)
\(480\) 0 0
\(481\) 0.807021 0.0367970
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.6089 1.29907
\(486\) 0 0
\(487\) 41.0234 1.85895 0.929474 0.368888i \(-0.120262\pi\)
0.929474 + 0.368888i \(0.120262\pi\)
\(488\) 0 0
\(489\) 32.8487 1.48547
\(490\) 0 0
\(491\) −0.985019 −0.0444533 −0.0222266 0.999753i \(-0.507076\pi\)
−0.0222266 + 0.999753i \(0.507076\pi\)
\(492\) 0 0
\(493\) 15.5392 0.699852
\(494\) 0 0
\(495\) 29.6746 1.33378
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 9.68113 0.433387 0.216693 0.976240i \(-0.430473\pi\)
0.216693 + 0.976240i \(0.430473\pi\)
\(500\) 0 0
\(501\) −26.3352 −1.17657
\(502\) 0 0
\(503\) −12.4080 −0.553243 −0.276622 0.960979i \(-0.589215\pi\)
−0.276622 + 0.960979i \(0.589215\pi\)
\(504\) 0 0
\(505\) 0.633252 0.0281794
\(506\) 0 0
\(507\) −31.7607 −1.41054
\(508\) 0 0
\(509\) −13.7199 −0.608122 −0.304061 0.952653i \(-0.598343\pi\)
−0.304061 + 0.952653i \(0.598343\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −51.5759 −2.27713
\(514\) 0 0
\(515\) −19.9136 −0.877500
\(516\) 0 0
\(517\) −8.02939 −0.353132
\(518\) 0 0
\(519\) −9.58920 −0.420919
\(520\) 0 0
\(521\) 34.1034 1.49410 0.747049 0.664769i \(-0.231470\pi\)
0.747049 + 0.664769i \(0.231470\pi\)
\(522\) 0 0
\(523\) 5.24558 0.229373 0.114687 0.993402i \(-0.463414\pi\)
0.114687 + 0.993402i \(0.463414\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.136967 0.00596638
\(528\) 0 0
\(529\) −18.4876 −0.803808
\(530\) 0 0
\(531\) −13.0195 −0.564999
\(532\) 0 0
\(533\) −17.8159 −0.771692
\(534\) 0 0
\(535\) −30.0125 −1.29755
\(536\) 0 0
\(537\) 11.9592 0.516075
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 43.6622 1.87719 0.938593 0.345027i \(-0.112130\pi\)
0.938593 + 0.345027i \(0.112130\pi\)
\(542\) 0 0
\(543\) −25.6072 −1.09891
\(544\) 0 0
\(545\) 27.8063 1.19109
\(546\) 0 0
\(547\) 36.2818 1.55130 0.775648 0.631166i \(-0.217423\pi\)
0.775648 + 0.631166i \(0.217423\pi\)
\(548\) 0 0
\(549\) 58.9055 2.51402
\(550\) 0 0
\(551\) 47.4523 2.02153
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.10345 −0.131734
\(556\) 0 0
\(557\) −7.19093 −0.304689 −0.152345 0.988327i \(-0.548682\pi\)
−0.152345 + 0.988327i \(0.548682\pi\)
\(558\) 0 0
\(559\) 0.883490 0.0373676
\(560\) 0 0
\(561\) 16.3893 0.691956
\(562\) 0 0
\(563\) 11.6990 0.493053 0.246527 0.969136i \(-0.420711\pi\)
0.246527 + 0.969136i \(0.420711\pi\)
\(564\) 0 0
\(565\) 16.0684 0.676003
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 24.2886 1.01823 0.509115 0.860698i \(-0.329973\pi\)
0.509115 + 0.860698i \(0.329973\pi\)
\(570\) 0 0
\(571\) −1.58477 −0.0663206 −0.0331603 0.999450i \(-0.510557\pi\)
−0.0331603 + 0.999450i \(0.510557\pi\)
\(572\) 0 0
\(573\) −44.9644 −1.87842
\(574\) 0 0
\(575\) −2.52004 −0.105093
\(576\) 0 0
\(577\) 17.9000 0.745188 0.372594 0.927994i \(-0.378468\pi\)
0.372594 + 0.927994i \(0.378468\pi\)
\(578\) 0 0
\(579\) 30.3523 1.26140
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.76135 −0.114364
\(584\) 0 0
\(585\) −16.7974 −0.694486
\(586\) 0 0
\(587\) −1.07134 −0.0442189 −0.0221094 0.999756i \(-0.507038\pi\)
−0.0221094 + 0.999756i \(0.507038\pi\)
\(588\) 0 0
\(589\) 0.418257 0.0172340
\(590\) 0 0
\(591\) 22.8279 0.939015
\(592\) 0 0
\(593\) 5.21037 0.213964 0.106982 0.994261i \(-0.465881\pi\)
0.106982 + 0.994261i \(0.465881\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −43.6429 −1.78619
\(598\) 0 0
\(599\) −19.3597 −0.791015 −0.395508 0.918463i \(-0.629431\pi\)
−0.395508 + 0.918463i \(0.629431\pi\)
\(600\) 0 0
\(601\) 15.0693 0.614689 0.307345 0.951598i \(-0.400560\pi\)
0.307345 + 0.951598i \(0.400560\pi\)
\(602\) 0 0
\(603\) 1.27085 0.0517532
\(604\) 0 0
\(605\) 7.75705 0.315369
\(606\) 0 0
\(607\) −30.9662 −1.25688 −0.628440 0.777858i \(-0.716306\pi\)
−0.628440 + 0.777858i \(0.716306\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.54505 0.183873
\(612\) 0 0
\(613\) 3.75434 0.151636 0.0758182 0.997122i \(-0.475843\pi\)
0.0758182 + 0.997122i \(0.475843\pi\)
\(614\) 0 0
\(615\) 68.5122 2.76268
\(616\) 0 0
\(617\) 28.0758 1.13029 0.565145 0.824991i \(-0.308820\pi\)
0.565145 + 0.824991i \(0.308820\pi\)
\(618\) 0 0
\(619\) −19.3674 −0.778441 −0.389221 0.921145i \(-0.627256\pi\)
−0.389221 + 0.921145i \(0.627256\pi\)
\(620\) 0 0
\(621\) 17.1487 0.688154
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.6610 −0.706442
\(626\) 0 0
\(627\) 50.0480 1.99873
\(628\) 0 0
\(629\) −1.12515 −0.0448626
\(630\) 0 0
\(631\) −40.7248 −1.62123 −0.810615 0.585580i \(-0.800867\pi\)
−0.810615 + 0.585580i \(0.800867\pi\)
\(632\) 0 0
\(633\) 14.4450 0.574136
\(634\) 0 0
\(635\) 30.7479 1.22019
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −61.7377 −2.44231
\(640\) 0 0
\(641\) 0.706513 0.0279056 0.0139528 0.999903i \(-0.495559\pi\)
0.0139528 + 0.999903i \(0.495559\pi\)
\(642\) 0 0
\(643\) 16.5495 0.652650 0.326325 0.945258i \(-0.394190\pi\)
0.326325 + 0.945258i \(0.394190\pi\)
\(644\) 0 0
\(645\) −3.39752 −0.133777
\(646\) 0 0
\(647\) −11.7596 −0.462317 −0.231159 0.972916i \(-0.574252\pi\)
−0.231159 + 0.972916i \(0.574252\pi\)
\(648\) 0 0
\(649\) 6.02150 0.236364
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.5877 0.883925 0.441962 0.897034i \(-0.354282\pi\)
0.441962 + 0.897034i \(0.354282\pi\)
\(654\) 0 0
\(655\) −16.1297 −0.630239
\(656\) 0 0
\(657\) −58.5846 −2.28560
\(658\) 0 0
\(659\) −18.0135 −0.701705 −0.350852 0.936431i \(-0.614108\pi\)
−0.350852 + 0.936431i \(0.614108\pi\)
\(660\) 0 0
\(661\) −37.6880 −1.46590 −0.732948 0.680285i \(-0.761856\pi\)
−0.732948 + 0.680285i \(0.761856\pi\)
\(662\) 0 0
\(663\) −9.27717 −0.360295
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −15.7776 −0.610912
\(668\) 0 0
\(669\) 5.16223 0.199584
\(670\) 0 0
\(671\) −27.2436 −1.05173
\(672\) 0 0
\(673\) −18.7754 −0.723738 −0.361869 0.932229i \(-0.617861\pi\)
−0.361869 + 0.932229i \(0.617861\pi\)
\(674\) 0 0
\(675\) −9.57699 −0.368619
\(676\) 0 0
\(677\) 3.85662 0.148222 0.0741110 0.997250i \(-0.476388\pi\)
0.0741110 + 0.997250i \(0.476388\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 70.0153 2.68299
\(682\) 0 0
\(683\) −40.0543 −1.53264 −0.766318 0.642461i \(-0.777913\pi\)
−0.766318 + 0.642461i \(0.777913\pi\)
\(684\) 0 0
\(685\) −0.152427 −0.00582393
\(686\) 0 0
\(687\) −38.9792 −1.48715
\(688\) 0 0
\(689\) 1.56307 0.0595482
\(690\) 0 0
\(691\) −33.8236 −1.28671 −0.643356 0.765567i \(-0.722458\pi\)
−0.643356 + 0.765567i \(0.722458\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −30.5379 −1.15837
\(696\) 0 0
\(697\) 24.8389 0.940842
\(698\) 0 0
\(699\) 62.9118 2.37954
\(700\) 0 0
\(701\) 41.0095 1.54891 0.774453 0.632631i \(-0.218025\pi\)
0.774453 + 0.632631i \(0.218025\pi\)
\(702\) 0 0
\(703\) −3.43587 −0.129586
\(704\) 0 0
\(705\) −17.4783 −0.658270
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −24.8640 −0.933787 −0.466893 0.884314i \(-0.654627\pi\)
−0.466893 + 0.884314i \(0.654627\pi\)
\(710\) 0 0
\(711\) 76.1542 2.85601
\(712\) 0 0
\(713\) −0.139068 −0.00520815
\(714\) 0 0
\(715\) 7.76875 0.290535
\(716\) 0 0
\(717\) 33.2768 1.24275
\(718\) 0 0
\(719\) 20.1550 0.751654 0.375827 0.926690i \(-0.377359\pi\)
0.375827 + 0.926690i \(0.377359\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −27.3646 −1.01770
\(724\) 0 0
\(725\) 8.81128 0.327243
\(726\) 0 0
\(727\) 39.6430 1.47028 0.735138 0.677918i \(-0.237117\pi\)
0.735138 + 0.677918i \(0.237117\pi\)
\(728\) 0 0
\(729\) −33.3945 −1.23683
\(730\) 0 0
\(731\) −1.23176 −0.0455584
\(732\) 0 0
\(733\) 4.69321 0.173348 0.0866738 0.996237i \(-0.472376\pi\)
0.0866738 + 0.996237i \(0.472376\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.587767 −0.0216507
\(738\) 0 0
\(739\) −24.4235 −0.898433 −0.449216 0.893423i \(-0.648297\pi\)
−0.449216 + 0.893423i \(0.648297\pi\)
\(740\) 0 0
\(741\) −28.3298 −1.04072
\(742\) 0 0
\(743\) −28.1516 −1.03278 −0.516391 0.856353i \(-0.672725\pi\)
−0.516391 + 0.856353i \(0.672725\pi\)
\(744\) 0 0
\(745\) 12.2360 0.448292
\(746\) 0 0
\(747\) −67.9484 −2.48610
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 28.7070 1.04753 0.523766 0.851862i \(-0.324526\pi\)
0.523766 + 0.851862i \(0.324526\pi\)
\(752\) 0 0
\(753\) −58.6858 −2.13863
\(754\) 0 0
\(755\) −31.8751 −1.16005
\(756\) 0 0
\(757\) −34.9823 −1.27145 −0.635726 0.771915i \(-0.719299\pi\)
−0.635726 + 0.771915i \(0.719299\pi\)
\(758\) 0 0
\(759\) −16.6407 −0.604019
\(760\) 0 0
\(761\) −47.2861 −1.71412 −0.857060 0.515216i \(-0.827712\pi\)
−0.857060 + 0.515216i \(0.827712\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 23.4189 0.846712
\(766\) 0 0
\(767\) −3.40848 −0.123073
\(768\) 0 0
\(769\) 41.8758 1.51008 0.755040 0.655678i \(-0.227617\pi\)
0.755040 + 0.655678i \(0.227617\pi\)
\(770\) 0 0
\(771\) −74.3397 −2.67728
\(772\) 0 0
\(773\) 21.0942 0.758706 0.379353 0.925252i \(-0.376147\pi\)
0.379353 + 0.925252i \(0.376147\pi\)
\(774\) 0 0
\(775\) 0.0776650 0.00278981
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 75.8508 2.71764
\(780\) 0 0
\(781\) 28.5536 1.02173
\(782\) 0 0
\(783\) −59.9603 −2.14281
\(784\) 0 0
\(785\) −26.1027 −0.931646
\(786\) 0 0
\(787\) 40.2501 1.43476 0.717380 0.696682i \(-0.245341\pi\)
0.717380 + 0.696682i \(0.245341\pi\)
\(788\) 0 0
\(789\) 30.5208 1.08657
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 15.4213 0.547627
\(794\) 0 0
\(795\) −6.01088 −0.213184
\(796\) 0 0
\(797\) 5.32667 0.188680 0.0943401 0.995540i \(-0.469926\pi\)
0.0943401 + 0.995540i \(0.469926\pi\)
\(798\) 0 0
\(799\) −6.33671 −0.224177
\(800\) 0 0
\(801\) −20.1202 −0.710914
\(802\) 0 0
\(803\) 27.0952 0.956170
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.32481 0.0466354
\(808\) 0 0
\(809\) 38.3657 1.34887 0.674434 0.738335i \(-0.264388\pi\)
0.674434 + 0.738335i \(0.264388\pi\)
\(810\) 0 0
\(811\) 33.5120 1.17676 0.588382 0.808583i \(-0.299765\pi\)
0.588382 + 0.808583i \(0.299765\pi\)
\(812\) 0 0
\(813\) −70.8104 −2.48343
\(814\) 0 0
\(815\) −21.7087 −0.760424
\(816\) 0 0
\(817\) −3.76144 −0.131596
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36.9875 −1.29087 −0.645437 0.763814i \(-0.723325\pi\)
−0.645437 + 0.763814i \(0.723325\pi\)
\(822\) 0 0
\(823\) −8.10944 −0.282677 −0.141339 0.989961i \(-0.545141\pi\)
−0.141339 + 0.989961i \(0.545141\pi\)
\(824\) 0 0
\(825\) 9.29328 0.323551
\(826\) 0 0
\(827\) 47.9413 1.66708 0.833541 0.552458i \(-0.186310\pi\)
0.833541 + 0.552458i \(0.186310\pi\)
\(828\) 0 0
\(829\) −29.4695 −1.02352 −0.511758 0.859129i \(-0.671006\pi\)
−0.511758 + 0.859129i \(0.671006\pi\)
\(830\) 0 0
\(831\) 44.8441 1.55562
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 17.4042 0.602296
\(836\) 0 0
\(837\) −0.528507 −0.0182679
\(838\) 0 0
\(839\) 42.6216 1.47146 0.735731 0.677274i \(-0.236839\pi\)
0.735731 + 0.677274i \(0.236839\pi\)
\(840\) 0 0
\(841\) 26.1663 0.902287
\(842\) 0 0
\(843\) 29.6445 1.02101
\(844\) 0 0
\(845\) 20.9897 0.722069
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −6.21449 −0.213281
\(850\) 0 0
\(851\) 1.14241 0.0391613
\(852\) 0 0
\(853\) 44.8312 1.53499 0.767496 0.641054i \(-0.221502\pi\)
0.767496 + 0.641054i \(0.221502\pi\)
\(854\) 0 0
\(855\) 71.5145 2.44574
\(856\) 0 0
\(857\) −32.5489 −1.11185 −0.555924 0.831233i \(-0.687636\pi\)
−0.555924 + 0.831233i \(0.687636\pi\)
\(858\) 0 0
\(859\) −34.8831 −1.19020 −0.595099 0.803653i \(-0.702887\pi\)
−0.595099 + 0.803653i \(0.702887\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.66021 0.0565141 0.0282571 0.999601i \(-0.491004\pi\)
0.0282571 + 0.999601i \(0.491004\pi\)
\(864\) 0 0
\(865\) 6.33722 0.215472
\(866\) 0 0
\(867\) −37.3005 −1.26679
\(868\) 0 0
\(869\) −35.2212 −1.19480
\(870\) 0 0
\(871\) 0.332706 0.0112733
\(872\) 0 0
\(873\) −83.9714 −2.84200
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 30.5981 1.03323 0.516613 0.856219i \(-0.327193\pi\)
0.516613 + 0.856219i \(0.327193\pi\)
\(878\) 0 0
\(879\) −55.1067 −1.85870
\(880\) 0 0
\(881\) −51.9678 −1.75084 −0.875419 0.483365i \(-0.839414\pi\)
−0.875419 + 0.483365i \(0.839414\pi\)
\(882\) 0 0
\(883\) −22.8041 −0.767420 −0.383710 0.923454i \(-0.625354\pi\)
−0.383710 + 0.923454i \(0.625354\pi\)
\(884\) 0 0
\(885\) 13.1075 0.440604
\(886\) 0 0
\(887\) −14.9208 −0.500993 −0.250496 0.968118i \(-0.580594\pi\)
−0.250496 + 0.968118i \(0.580594\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −17.6540 −0.591431
\(892\) 0 0
\(893\) −19.3505 −0.647538
\(894\) 0 0
\(895\) −7.90346 −0.264183
\(896\) 0 0
\(897\) 9.41949 0.314508
\(898\) 0 0
\(899\) 0.486251 0.0162174
\(900\) 0 0
\(901\) −2.17923 −0.0726007
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 16.9231 0.562542
\(906\) 0 0
\(907\) 41.6207 1.38199 0.690996 0.722858i \(-0.257172\pi\)
0.690996 + 0.722858i \(0.257172\pi\)
\(908\) 0 0
\(909\) −1.85869 −0.0616488
\(910\) 0 0
\(911\) −21.8850 −0.725083 −0.362541 0.931968i \(-0.618091\pi\)
−0.362541 + 0.931968i \(0.618091\pi\)
\(912\) 0 0
\(913\) 31.4260 1.04005
\(914\) 0 0
\(915\) −59.3036 −1.96052
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.45638 −0.147002 −0.0735012 0.997295i \(-0.523417\pi\)
−0.0735012 + 0.997295i \(0.523417\pi\)
\(920\) 0 0
\(921\) 28.7417 0.947072
\(922\) 0 0
\(923\) −16.1628 −0.532005
\(924\) 0 0
\(925\) −0.637998 −0.0209772
\(926\) 0 0
\(927\) 58.4495 1.91973
\(928\) 0 0
\(929\) −18.0749 −0.593019 −0.296509 0.955030i \(-0.595823\pi\)
−0.296509 + 0.955030i \(0.595823\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −82.2747 −2.69355
\(934\) 0 0
\(935\) −10.8312 −0.354218
\(936\) 0 0
\(937\) 23.0218 0.752088 0.376044 0.926602i \(-0.377284\pi\)
0.376044 + 0.926602i \(0.377284\pi\)
\(938\) 0 0
\(939\) −59.7352 −1.94938
\(940\) 0 0
\(941\) 11.2388 0.366373 0.183186 0.983078i \(-0.441359\pi\)
0.183186 + 0.983078i \(0.441359\pi\)
\(942\) 0 0
\(943\) −25.2200 −0.821275
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −8.60672 −0.279681 −0.139840 0.990174i \(-0.544659\pi\)
−0.139840 + 0.990174i \(0.544659\pi\)
\(948\) 0 0
\(949\) −15.3373 −0.497870
\(950\) 0 0
\(951\) 35.0270 1.13583
\(952\) 0 0
\(953\) −16.0513 −0.519951 −0.259976 0.965615i \(-0.583715\pi\)
−0.259976 + 0.965615i \(0.583715\pi\)
\(954\) 0 0
\(955\) 29.7157 0.961577
\(956\) 0 0
\(957\) 58.1841 1.88082
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −30.9957 −0.999862
\(962\) 0 0
\(963\) 88.0909 2.83869
\(964\) 0 0
\(965\) −20.0590 −0.645721
\(966\) 0 0
\(967\) −15.6295 −0.502610 −0.251305 0.967908i \(-0.580860\pi\)
−0.251305 + 0.967908i \(0.580860\pi\)
\(968\) 0 0
\(969\) 39.4974 1.26884
\(970\) 0 0
\(971\) 5.03310 0.161520 0.0807600 0.996734i \(-0.474265\pi\)
0.0807600 + 0.996734i \(0.474265\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −5.26047 −0.168470
\(976\) 0 0
\(977\) 17.0593 0.545776 0.272888 0.962046i \(-0.412021\pi\)
0.272888 + 0.962046i \(0.412021\pi\)
\(978\) 0 0
\(979\) 9.30557 0.297407
\(980\) 0 0
\(981\) −81.6156 −2.60578
\(982\) 0 0
\(983\) 26.8870 0.857561 0.428781 0.903409i \(-0.358943\pi\)
0.428781 + 0.903409i \(0.358943\pi\)
\(984\) 0 0
\(985\) −15.0863 −0.480690
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.25066 0.0397686
\(990\) 0 0
\(991\) −30.0379 −0.954184 −0.477092 0.878853i \(-0.658309\pi\)
−0.477092 + 0.878853i \(0.658309\pi\)
\(992\) 0 0
\(993\) −37.4857 −1.18957
\(994\) 0 0
\(995\) 28.8423 0.914364
\(996\) 0 0
\(997\) 42.6067 1.34937 0.674684 0.738107i \(-0.264280\pi\)
0.674684 + 0.738107i \(0.264280\pi\)
\(998\) 0 0
\(999\) 4.34155 0.137360
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5488.2.a.p.1.6 6
4.3 odd 2 343.2.a.c.1.1 6
7.6 odd 2 5488.2.a.h.1.1 6
12.11 even 2 3087.2.a.k.1.6 6
20.19 odd 2 8575.2.a.o.1.6 6
28.3 even 6 343.2.c.d.324.6 12
28.11 odd 6 343.2.c.e.324.6 12
28.19 even 6 343.2.c.d.18.6 12
28.23 odd 6 343.2.c.e.18.6 12
28.27 even 2 343.2.a.d.1.1 yes 6
84.83 odd 2 3087.2.a.j.1.6 6
140.139 even 2 8575.2.a.n.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
343.2.a.c.1.1 6 4.3 odd 2
343.2.a.d.1.1 yes 6 28.27 even 2
343.2.c.d.18.6 12 28.19 even 6
343.2.c.d.324.6 12 28.3 even 6
343.2.c.e.18.6 12 28.23 odd 6
343.2.c.e.324.6 12 28.11 odd 6
3087.2.a.j.1.6 6 84.83 odd 2
3087.2.a.k.1.6 6 12.11 even 2
5488.2.a.h.1.1 6 7.6 odd 2
5488.2.a.p.1.6 6 1.1 even 1 trivial
8575.2.a.n.1.6 6 140.139 even 2
8575.2.a.o.1.6 6 20.19 odd 2