Properties

Label 2-5488-1.1-c1-0-134
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.95·3-s − 1.95·5-s + 5.73·9-s − 2.65·11-s + 1.50·13-s − 5.77·15-s − 2.09·17-s − 6.38·19-s + 2.12·23-s − 1.18·25-s + 8.07·27-s − 7.42·29-s − 0.0654·31-s − 7.83·33-s + 0.537·37-s + 4.43·39-s − 11.8·41-s + 0.588·43-s − 11.1·45-s + 3.02·47-s − 6.18·51-s + 1.04·53-s + 5.17·55-s − 18.8·57-s − 2.27·59-s + 10.2·61-s − 2.93·65-s + ⋯
L(s)  = 1  + 1.70·3-s − 0.873·5-s + 1.91·9-s − 0.799·11-s + 0.416·13-s − 1.48·15-s − 0.507·17-s − 1.46·19-s + 0.442·23-s − 0.237·25-s + 1.55·27-s − 1.37·29-s − 0.0117·31-s − 1.36·33-s + 0.0884·37-s + 0.710·39-s − 1.85·41-s + 0.0897·43-s − 1.66·45-s + 0.441·47-s − 0.865·51-s + 0.143·53-s + 0.698·55-s − 2.50·57-s − 0.295·59-s + 1.31·61-s − 0.363·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2.95T + 3T^{2} \)
5 \( 1 + 1.95T + 5T^{2} \)
11 \( 1 + 2.65T + 11T^{2} \)
13 \( 1 - 1.50T + 13T^{2} \)
17 \( 1 + 2.09T + 17T^{2} \)
19 \( 1 + 6.38T + 19T^{2} \)
23 \( 1 - 2.12T + 23T^{2} \)
29 \( 1 + 7.42T + 29T^{2} \)
31 \( 1 + 0.0654T + 31T^{2} \)
37 \( 1 - 0.537T + 37T^{2} \)
41 \( 1 + 11.8T + 41T^{2} \)
43 \( 1 - 0.588T + 43T^{2} \)
47 \( 1 - 3.02T + 47T^{2} \)
53 \( 1 - 1.04T + 53T^{2} \)
59 \( 1 + 2.27T + 59T^{2} \)
61 \( 1 - 10.2T + 61T^{2} \)
67 \( 1 - 0.221T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 + 10.2T + 73T^{2} \)
79 \( 1 - 13.2T + 79T^{2} \)
83 \( 1 + 11.8T + 83T^{2} \)
89 \( 1 + 3.51T + 89T^{2} \)
97 \( 1 + 14.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.964363659537588151874181814534, −7.32853185145782981344292762654, −6.70581970258867667306620305973, −5.58282893637031744896509781202, −4.50427196503136681231061103925, −3.93805340381470038492693525728, −3.29032899599354060052231850915, −2.44974649897763804535483498043, −1.70792936231248930872098194297, 0, 1.70792936231248930872098194297, 2.44974649897763804535483498043, 3.29032899599354060052231850915, 3.93805340381470038492693525728, 4.50427196503136681231061103925, 5.58282893637031744896509781202, 6.70581970258867667306620305973, 7.32853185145782981344292762654, 7.964363659537588151874181814534

Graph of the $Z$-function along the critical line