Properties

Label 5472.2.d.e.2015.3
Level $5472$
Weight $2$
Character 5472.2015
Analytic conductor $43.694$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5472,2,Mod(2015,5472)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5472, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5472.2015"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2015.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 5472.2015
Dual form 5472.2.d.e.2015.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.896575i q^{5} -4.46410i q^{7} -2.96713 q^{11} +5.46410 q^{13} +7.20977i q^{17} -1.00000i q^{19} +0.378937 q^{23} +4.19615 q^{25} +8.48528i q^{29} +7.46410i q^{31} -4.00240 q^{35} +9.46410 q^{37} -2.82843i q^{41} +2.26795i q^{43} +8.24504 q^{47} -12.9282 q^{49} +7.45001i q^{53} +2.66025i q^{55} -3.10583 q^{59} -7.19615 q^{61} -4.89898i q^{65} +4.92820i q^{67} +9.52056 q^{71} +7.92820 q^{73} +13.2456i q^{77} +11.4641i q^{79} +8.10634 q^{83} +6.46410 q^{85} +5.93426i q^{89} -24.3923i q^{91} -0.896575 q^{95} +10.9282 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{13} - 8 q^{25} + 48 q^{37} - 48 q^{49} - 16 q^{61} + 8 q^{73} + 24 q^{85} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5472\mathbb{Z}\right)^\times\).

\(n\) \(1217\) \(2053\) \(3745\) \(4447\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 0.896575i − 0.400961i −0.979698 0.200480i \(-0.935750\pi\)
0.979698 0.200480i \(-0.0642503\pi\)
\(6\) 0 0
\(7\) − 4.46410i − 1.68727i −0.536916 0.843636i \(-0.680411\pi\)
0.536916 0.843636i \(-0.319589\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.96713 −0.894623 −0.447311 0.894378i \(-0.647618\pi\)
−0.447311 + 0.894378i \(0.647618\pi\)
\(12\) 0 0
\(13\) 5.46410 1.51547 0.757735 0.652563i \(-0.226306\pi\)
0.757735 + 0.652563i \(0.226306\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.20977i 1.74863i 0.485363 + 0.874313i \(0.338688\pi\)
−0.485363 + 0.874313i \(0.661312\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.378937 0.0790139 0.0395070 0.999219i \(-0.487421\pi\)
0.0395070 + 0.999219i \(0.487421\pi\)
\(24\) 0 0
\(25\) 4.19615 0.839230
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.48528i 1.57568i 0.615882 + 0.787839i \(0.288800\pi\)
−0.615882 + 0.787839i \(0.711200\pi\)
\(30\) 0 0
\(31\) 7.46410i 1.34059i 0.742094 + 0.670296i \(0.233833\pi\)
−0.742094 + 0.670296i \(0.766167\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00240 −0.676530
\(36\) 0 0
\(37\) 9.46410 1.55589 0.777944 0.628333i \(-0.216263\pi\)
0.777944 + 0.628333i \(0.216263\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 2.82843i − 0.441726i −0.975305 0.220863i \(-0.929113\pi\)
0.975305 0.220863i \(-0.0708874\pi\)
\(42\) 0 0
\(43\) 2.26795i 0.345859i 0.984934 + 0.172930i \(0.0553233\pi\)
−0.984934 + 0.172930i \(0.944677\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.24504 1.20266 0.601332 0.799000i \(-0.294637\pi\)
0.601332 + 0.799000i \(0.294637\pi\)
\(48\) 0 0
\(49\) −12.9282 −1.84689
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.45001i 1.02334i 0.859183 + 0.511668i \(0.170972\pi\)
−0.859183 + 0.511668i \(0.829028\pi\)
\(54\) 0 0
\(55\) 2.66025i 0.358709i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.10583 −0.404344 −0.202172 0.979350i \(-0.564800\pi\)
−0.202172 + 0.979350i \(0.564800\pi\)
\(60\) 0 0
\(61\) −7.19615 −0.921373 −0.460686 0.887563i \(-0.652397\pi\)
−0.460686 + 0.887563i \(0.652397\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 4.89898i − 0.607644i
\(66\) 0 0
\(67\) 4.92820i 0.602076i 0.953612 + 0.301038i \(0.0973331\pi\)
−0.953612 + 0.301038i \(0.902667\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.52056 1.12988 0.564941 0.825131i \(-0.308899\pi\)
0.564941 + 0.825131i \(0.308899\pi\)
\(72\) 0 0
\(73\) 7.92820 0.927926 0.463963 0.885855i \(-0.346427\pi\)
0.463963 + 0.885855i \(0.346427\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 13.2456i 1.50947i
\(78\) 0 0
\(79\) 11.4641i 1.28981i 0.764262 + 0.644906i \(0.223104\pi\)
−0.764262 + 0.644906i \(0.776896\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.10634 0.889787 0.444893 0.895584i \(-0.353242\pi\)
0.444893 + 0.895584i \(0.353242\pi\)
\(84\) 0 0
\(85\) 6.46410 0.701130
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.93426i 0.629030i 0.949253 + 0.314515i \(0.101842\pi\)
−0.949253 + 0.314515i \(0.898158\pi\)
\(90\) 0 0
\(91\) − 24.3923i − 2.55701i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.896575 −0.0919867
\(96\) 0 0
\(97\) 10.9282 1.10959 0.554795 0.831987i \(-0.312797\pi\)
0.554795 + 0.831987i \(0.312797\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 16.1112i − 1.60312i −0.597915 0.801560i \(-0.704004\pi\)
0.597915 0.801560i \(-0.295996\pi\)
\(102\) 0 0
\(103\) − 18.3923i − 1.81225i −0.423013 0.906124i \(-0.639027\pi\)
0.423013 0.906124i \(-0.360973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.69213 −0.646953 −0.323476 0.946236i \(-0.604852\pi\)
−0.323476 + 0.946236i \(0.604852\pi\)
\(108\) 0 0
\(109\) −6.39230 −0.612272 −0.306136 0.951988i \(-0.599036\pi\)
−0.306136 + 0.951988i \(0.599036\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1.51575i − 0.142590i −0.997455 0.0712949i \(-0.977287\pi\)
0.997455 0.0712949i \(-0.0227131\pi\)
\(114\) 0 0
\(115\) − 0.339746i − 0.0316815i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 32.1851 2.95041
\(120\) 0 0
\(121\) −2.19615 −0.199650
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 8.24504i − 0.737459i
\(126\) 0 0
\(127\) − 10.9282i − 0.969721i −0.874591 0.484861i \(-0.838870\pi\)
0.874591 0.484861i \(-0.161130\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.93237 −0.605684 −0.302842 0.953041i \(-0.597935\pi\)
−0.302842 + 0.953041i \(0.597935\pi\)
\(132\) 0 0
\(133\) −4.46410 −0.387087
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 13.8004i − 1.17904i −0.807752 0.589522i \(-0.799316\pi\)
0.807752 0.589522i \(-0.200684\pi\)
\(138\) 0 0
\(139\) 4.07180i 0.345365i 0.984978 + 0.172683i \(0.0552435\pi\)
−0.984978 + 0.172683i \(0.944756\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.2127 −1.35577
\(144\) 0 0
\(145\) 7.60770 0.631785
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.93237i 0.567922i 0.958836 + 0.283961i \(0.0916486\pi\)
−0.958836 + 0.283961i \(0.908351\pi\)
\(150\) 0 0
\(151\) 18.3923i 1.49674i 0.663279 + 0.748372i \(0.269164\pi\)
−0.663279 + 0.748372i \(0.730836\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 6.69213 0.537525
\(156\) 0 0
\(157\) 4.00000 0.319235 0.159617 0.987179i \(-0.448974\pi\)
0.159617 + 0.987179i \(0.448974\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 1.69161i − 0.133318i
\(162\) 0 0
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.82843 0.218870 0.109435 0.993994i \(-0.465096\pi\)
0.109435 + 0.993994i \(0.465096\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.5606i 1.41114i 0.708640 + 0.705570i \(0.249309\pi\)
−0.708640 + 0.705570i \(0.750691\pi\)
\(174\) 0 0
\(175\) − 18.7321i − 1.41601i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 11.3137 0.845626 0.422813 0.906217i \(-0.361043\pi\)
0.422813 + 0.906217i \(0.361043\pi\)
\(180\) 0 0
\(181\) −4.92820 −0.366310 −0.183155 0.983084i \(-0.558631\pi\)
−0.183155 + 0.983084i \(0.558631\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 8.48528i − 0.623850i
\(186\) 0 0
\(187\) − 21.3923i − 1.56436i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.5940 −1.49013 −0.745066 0.666991i \(-0.767582\pi\)
−0.745066 + 0.666991i \(0.767582\pi\)
\(192\) 0 0
\(193\) 8.53590 0.614427 0.307214 0.951641i \(-0.400603\pi\)
0.307214 + 0.951641i \(0.400603\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 10.4543i − 0.744838i −0.928065 0.372419i \(-0.878528\pi\)
0.928065 0.372419i \(-0.121472\pi\)
\(198\) 0 0
\(199\) − 20.2679i − 1.43676i −0.695653 0.718378i \(-0.744885\pi\)
0.695653 0.718378i \(-0.255115\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 37.8792 2.65860
\(204\) 0 0
\(205\) −2.53590 −0.177115
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.96713i 0.205241i
\(210\) 0 0
\(211\) − 2.00000i − 0.137686i −0.997628 0.0688428i \(-0.978069\pi\)
0.997628 0.0688428i \(-0.0219307\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.03339 0.138676
\(216\) 0 0
\(217\) 33.3205 2.26194
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 39.3949i 2.64999i
\(222\) 0 0
\(223\) − 22.9282i − 1.53539i −0.640818 0.767693i \(-0.721405\pi\)
0.640818 0.767693i \(-0.278595\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.6274 1.50183 0.750917 0.660396i \(-0.229612\pi\)
0.750917 + 0.660396i \(0.229612\pi\)
\(228\) 0 0
\(229\) −27.9808 −1.84902 −0.924510 0.381157i \(-0.875526\pi\)
−0.924510 + 0.381157i \(0.875526\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 19.5588i − 1.28134i −0.767818 0.640668i \(-0.778657\pi\)
0.767818 0.640668i \(-0.221343\pi\)
\(234\) 0 0
\(235\) − 7.39230i − 0.482221i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.62347 −0.234383 −0.117191 0.993109i \(-0.537389\pi\)
−0.117191 + 0.993109i \(0.537389\pi\)
\(240\) 0 0
\(241\) 12.0000 0.772988 0.386494 0.922292i \(-0.373686\pi\)
0.386494 + 0.922292i \(0.373686\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11.5911i 0.740529i
\(246\) 0 0
\(247\) − 5.46410i − 0.347672i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.9377 −1.25846 −0.629228 0.777221i \(-0.716629\pi\)
−0.629228 + 0.777221i \(0.716629\pi\)
\(252\) 0 0
\(253\) −1.12436 −0.0706876
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.14110i 0.258315i 0.991624 + 0.129158i \(0.0412273\pi\)
−0.991624 + 0.129158i \(0.958773\pi\)
\(258\) 0 0
\(259\) − 42.2487i − 2.62521i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 25.1141 1.54860 0.774300 0.632819i \(-0.218102\pi\)
0.774300 + 0.632819i \(0.218102\pi\)
\(264\) 0 0
\(265\) 6.67949 0.410318
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 23.4596i 1.43036i 0.698941 + 0.715179i \(0.253655\pi\)
−0.698941 + 0.715179i \(0.746345\pi\)
\(270\) 0 0
\(271\) − 0.535898i − 0.0325535i −0.999868 0.0162768i \(-0.994819\pi\)
0.999868 0.0162768i \(-0.00518128\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −12.4505 −0.750795
\(276\) 0 0
\(277\) 10.1244 0.608314 0.304157 0.952622i \(-0.401625\pi\)
0.304157 + 0.952622i \(0.401625\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 1.79315i − 0.106970i −0.998569 0.0534852i \(-0.982967\pi\)
0.998569 0.0534852i \(-0.0170330\pi\)
\(282\) 0 0
\(283\) 15.5885i 0.926638i 0.886192 + 0.463319i \(0.153342\pi\)
−0.886192 + 0.463319i \(0.846658\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.6264 −0.745312
\(288\) 0 0
\(289\) −34.9808 −2.05769
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 29.5969i 1.72907i 0.502571 + 0.864536i \(0.332388\pi\)
−0.502571 + 0.864536i \(0.667612\pi\)
\(294\) 0 0
\(295\) 2.78461i 0.162126i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.07055 0.119743
\(300\) 0 0
\(301\) 10.1244 0.583558
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.45189i 0.369434i
\(306\) 0 0
\(307\) 22.7846i 1.30039i 0.759769 + 0.650193i \(0.225312\pi\)
−0.759769 + 0.650193i \(0.774688\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −26.8057 −1.52001 −0.760006 0.649917i \(-0.774804\pi\)
−0.760006 + 0.649917i \(0.774804\pi\)
\(312\) 0 0
\(313\) 25.8564 1.46149 0.730745 0.682650i \(-0.239173\pi\)
0.730745 + 0.682650i \(0.239173\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.79315i − 0.100713i −0.998731 0.0503567i \(-0.983964\pi\)
0.998731 0.0503567i \(-0.0160358\pi\)
\(318\) 0 0
\(319\) − 25.1769i − 1.40964i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 7.20977 0.401162
\(324\) 0 0
\(325\) 22.9282 1.27183
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 36.8067i − 2.02922i
\(330\) 0 0
\(331\) 27.8564i 1.53113i 0.643361 + 0.765563i \(0.277540\pi\)
−0.643361 + 0.765563i \(0.722460\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.41851 0.241409
\(336\) 0 0
\(337\) −9.46410 −0.515542 −0.257771 0.966206i \(-0.582988\pi\)
−0.257771 + 0.966206i \(0.582988\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 22.1469i − 1.19932i
\(342\) 0 0
\(343\) 26.4641i 1.42893i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5187 0.564672 0.282336 0.959316i \(-0.408891\pi\)
0.282336 + 0.959316i \(0.408891\pi\)
\(348\) 0 0
\(349\) 16.3205 0.873617 0.436808 0.899555i \(-0.356109\pi\)
0.436808 + 0.899555i \(0.356109\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 13.2827i − 0.706968i −0.935441 0.353484i \(-0.884997\pi\)
0.935441 0.353484i \(-0.115003\pi\)
\(354\) 0 0
\(355\) − 8.53590i − 0.453038i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.69024 0.405875 0.202938 0.979192i \(-0.434951\pi\)
0.202938 + 0.979192i \(0.434951\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 7.10823i − 0.372062i
\(366\) 0 0
\(367\) 24.2487i 1.26577i 0.774245 + 0.632886i \(0.218130\pi\)
−0.774245 + 0.632886i \(0.781870\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 33.2576 1.72665
\(372\) 0 0
\(373\) 4.78461 0.247738 0.123869 0.992299i \(-0.460470\pi\)
0.123869 + 0.992299i \(0.460470\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 46.3644i 2.38789i
\(378\) 0 0
\(379\) − 13.6077i − 0.698980i −0.936940 0.349490i \(-0.886355\pi\)
0.936940 0.349490i \(-0.113645\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.9743 −0.765153 −0.382577 0.923924i \(-0.624963\pi\)
−0.382577 + 0.923924i \(0.624963\pi\)
\(384\) 0 0
\(385\) 11.8756 0.605239
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.5951i 1.55123i 0.631206 + 0.775616i \(0.282560\pi\)
−0.631206 + 0.775616i \(0.717440\pi\)
\(390\) 0 0
\(391\) 2.73205i 0.138166i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 10.2784 0.517164
\(396\) 0 0
\(397\) 6.32051 0.317217 0.158609 0.987342i \(-0.449299\pi\)
0.158609 + 0.987342i \(0.449299\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 20.6312i 1.03027i 0.857108 + 0.515136i \(0.172259\pi\)
−0.857108 + 0.515136i \(0.827741\pi\)
\(402\) 0 0
\(403\) 40.7846i 2.03163i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −28.0812 −1.39193
\(408\) 0 0
\(409\) −33.3205 −1.64759 −0.823797 0.566886i \(-0.808148\pi\)
−0.823797 + 0.566886i \(0.808148\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 13.8647i 0.682239i
\(414\) 0 0
\(415\) − 7.26795i − 0.356770i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −29.7728 −1.45450 −0.727249 0.686374i \(-0.759201\pi\)
−0.727249 + 0.686374i \(0.759201\pi\)
\(420\) 0 0
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 30.2533i 1.46750i
\(426\) 0 0
\(427\) 32.1244i 1.55461i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 33.7381 1.62510 0.812552 0.582888i \(-0.198077\pi\)
0.812552 + 0.582888i \(0.198077\pi\)
\(432\) 0 0
\(433\) 20.3923 0.979992 0.489996 0.871725i \(-0.336998\pi\)
0.489996 + 0.871725i \(0.336998\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 0.378937i − 0.0181270i
\(438\) 0 0
\(439\) − 9.85641i − 0.470421i −0.971945 0.235210i \(-0.924422\pi\)
0.971945 0.235210i \(-0.0755779\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.82654 0.181804 0.0909022 0.995860i \(-0.471025\pi\)
0.0909022 + 0.995860i \(0.471025\pi\)
\(444\) 0 0
\(445\) 5.32051 0.252216
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 11.1106i − 0.524343i −0.965021 0.262172i \(-0.915561\pi\)
0.965021 0.262172i \(-0.0844387\pi\)
\(450\) 0 0
\(451\) 8.39230i 0.395178i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −21.8695 −1.02526
\(456\) 0 0
\(457\) 30.8564 1.44340 0.721701 0.692205i \(-0.243361\pi\)
0.721701 + 0.692205i \(0.243361\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 14.1793i − 0.660396i −0.943912 0.330198i \(-0.892885\pi\)
0.943912 0.330198i \(-0.107115\pi\)
\(462\) 0 0
\(463\) − 23.9808i − 1.11448i −0.830351 0.557240i \(-0.811860\pi\)
0.830351 0.557240i \(-0.188140\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −38.2953 −1.77209 −0.886047 0.463596i \(-0.846559\pi\)
−0.886047 + 0.463596i \(0.846559\pi\)
\(468\) 0 0
\(469\) 22.0000 1.01587
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 6.72930i − 0.309413i
\(474\) 0 0
\(475\) − 4.19615i − 0.192533i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.4297 1.61882 0.809411 0.587242i \(-0.199786\pi\)
0.809411 + 0.587242i \(0.199786\pi\)
\(480\) 0 0
\(481\) 51.7128 2.35790
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 9.79796i − 0.444902i
\(486\) 0 0
\(487\) 19.8564i 0.899780i 0.893084 + 0.449890i \(0.148537\pi\)
−0.893084 + 0.449890i \(0.851463\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.79367 −0.306594 −0.153297 0.988180i \(-0.548989\pi\)
−0.153297 + 0.988180i \(0.548989\pi\)
\(492\) 0 0
\(493\) −61.1769 −2.75527
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 42.5007i − 1.90642i
\(498\) 0 0
\(499\) − 15.0000i − 0.671492i −0.941953 0.335746i \(-0.891012\pi\)
0.941953 0.335746i \(-0.108988\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.41902 0.419973 0.209987 0.977704i \(-0.432658\pi\)
0.209987 + 0.977704i \(0.432658\pi\)
\(504\) 0 0
\(505\) −14.4449 −0.642788
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 11.3137i − 0.501471i −0.968056 0.250736i \(-0.919328\pi\)
0.968056 0.250736i \(-0.0806725\pi\)
\(510\) 0 0
\(511\) − 35.3923i − 1.56566i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.4901 −0.726640
\(516\) 0 0
\(517\) −24.4641 −1.07593
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 26.2880i − 1.15170i −0.817555 0.575850i \(-0.804671\pi\)
0.817555 0.575850i \(-0.195329\pi\)
\(522\) 0 0
\(523\) − 11.4641i − 0.501290i −0.968079 0.250645i \(-0.919357\pi\)
0.968079 0.250645i \(-0.0806427\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −53.8144 −2.34419
\(528\) 0 0
\(529\) −22.8564 −0.993757
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 15.4548i − 0.669422i
\(534\) 0 0
\(535\) 6.00000i 0.259403i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 38.3596 1.65227
\(540\) 0 0
\(541\) −0.607695 −0.0261269 −0.0130634 0.999915i \(-0.504158\pi\)
−0.0130634 + 0.999915i \(0.504158\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.73118i 0.245497i
\(546\) 0 0
\(547\) − 26.5359i − 1.13459i −0.823514 0.567297i \(-0.807989\pi\)
0.823514 0.567297i \(-0.192011\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.48528 0.361485
\(552\) 0 0
\(553\) 51.1769 2.17626
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 38.9788i 1.65159i 0.563974 + 0.825793i \(0.309272\pi\)
−0.563974 + 0.825793i \(0.690728\pi\)
\(558\) 0 0
\(559\) 12.3923i 0.524139i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.34418 −0.183085 −0.0915426 0.995801i \(-0.529180\pi\)
−0.0915426 + 0.995801i \(0.529180\pi\)
\(564\) 0 0
\(565\) −1.35898 −0.0571729
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 22.4243i − 0.940077i −0.882646 0.470039i \(-0.844240\pi\)
0.882646 0.470039i \(-0.155760\pi\)
\(570\) 0 0
\(571\) 40.2487i 1.68436i 0.539199 + 0.842178i \(0.318727\pi\)
−0.539199 + 0.842178i \(0.681273\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.59008 0.0663109
\(576\) 0 0
\(577\) 17.1962 0.715885 0.357943 0.933744i \(-0.383478\pi\)
0.357943 + 0.933744i \(0.383478\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 36.1875i − 1.50131i
\(582\) 0 0
\(583\) − 22.1051i − 0.915500i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.2493 0.464310 0.232155 0.972679i \(-0.425422\pi\)
0.232155 + 0.972679i \(0.425422\pi\)
\(588\) 0 0
\(589\) 7.46410 0.307553
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 40.0512i 1.64471i 0.568976 + 0.822354i \(0.307340\pi\)
−0.568976 + 0.822354i \(0.692660\pi\)
\(594\) 0 0
\(595\) − 28.8564i − 1.18300i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.4195 0.589166 0.294583 0.955626i \(-0.404819\pi\)
0.294583 + 0.955626i \(0.404819\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.96902i 0.0800519i
\(606\) 0 0
\(607\) 29.4641i 1.19591i 0.801529 + 0.597955i \(0.204020\pi\)
−0.801529 + 0.597955i \(0.795980\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 45.0518 1.82260
\(612\) 0 0
\(613\) −20.2679 −0.818615 −0.409307 0.912397i \(-0.634230\pi\)
−0.409307 + 0.912397i \(0.634230\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 19.4572i − 0.783318i −0.920110 0.391659i \(-0.871901\pi\)
0.920110 0.391659i \(-0.128099\pi\)
\(618\) 0 0
\(619\) 33.0718i 1.32927i 0.747169 + 0.664634i \(0.231412\pi\)
−0.747169 + 0.664634i \(0.768588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 26.4911 1.06134
\(624\) 0 0
\(625\) 13.5885 0.543538
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 68.2340i 2.72067i
\(630\) 0 0
\(631\) 7.24871i 0.288567i 0.989536 + 0.144283i \(0.0460877\pi\)
−0.989536 + 0.144283i \(0.953912\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −9.79796 −0.388820
\(636\) 0 0
\(637\) −70.6410 −2.79890
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.10205i 0.201519i 0.994911 + 0.100759i \(0.0321273\pi\)
−0.994911 + 0.100759i \(0.967873\pi\)
\(642\) 0 0
\(643\) − 27.5885i − 1.08798i −0.839091 0.543991i \(-0.816912\pi\)
0.839091 0.543991i \(-0.183088\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.8319 0.661729 0.330864 0.943678i \(-0.392660\pi\)
0.330864 + 0.943678i \(0.392660\pi\)
\(648\) 0 0
\(649\) 9.21539 0.361736
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 34.4316i − 1.34741i −0.739000 0.673705i \(-0.764702\pi\)
0.739000 0.673705i \(-0.235298\pi\)
\(654\) 0 0
\(655\) 6.21539i 0.242855i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.41851 −0.172121 −0.0860603 0.996290i \(-0.527428\pi\)
−0.0860603 + 0.996290i \(0.527428\pi\)
\(660\) 0 0
\(661\) 3.32051 0.129153 0.0645764 0.997913i \(-0.479430\pi\)
0.0645764 + 0.997913i \(0.479430\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4.00240i 0.155207i
\(666\) 0 0
\(667\) 3.21539i 0.124500i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 21.3519 0.824281
\(672\) 0 0
\(673\) 16.2487 0.626342 0.313171 0.949697i \(-0.398609\pi\)
0.313171 + 0.949697i \(0.398609\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.45378i 0.209606i 0.994493 + 0.104803i \(0.0334212\pi\)
−0.994493 + 0.104803i \(0.966579\pi\)
\(678\) 0 0
\(679\) − 48.7846i − 1.87218i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.0726 0.844585 0.422293 0.906460i \(-0.361225\pi\)
0.422293 + 0.906460i \(0.361225\pi\)
\(684\) 0 0
\(685\) −12.3731 −0.472751
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.7076i 1.55084i
\(690\) 0 0
\(691\) − 35.8372i − 1.36331i −0.731674 0.681655i \(-0.761260\pi\)
0.731674 0.681655i \(-0.238740\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.65067 0.138478
\(696\) 0 0
\(697\) 20.3923 0.772414
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.2838i 0.879415i 0.898141 + 0.439708i \(0.144918\pi\)
−0.898141 + 0.439708i \(0.855082\pi\)
\(702\) 0 0
\(703\) − 9.46410i − 0.356945i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −71.9218 −2.70490
\(708\) 0 0
\(709\) −31.8564 −1.19639 −0.598196 0.801350i \(-0.704116\pi\)
−0.598196 + 0.801350i \(0.704116\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.82843i 0.105925i
\(714\) 0 0
\(715\) 14.5359i 0.543612i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.9463 0.967633 0.483816 0.875170i \(-0.339250\pi\)
0.483816 + 0.875170i \(0.339250\pi\)
\(720\) 0 0
\(721\) −82.1051 −3.05775
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 35.6055i 1.32236i
\(726\) 0 0
\(727\) 7.19615i 0.266891i 0.991056 + 0.133445i \(0.0426040\pi\)
−0.991056 + 0.133445i \(0.957396\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.3514 −0.604778
\(732\) 0 0
\(733\) −27.8564 −1.02890 −0.514450 0.857520i \(-0.672004\pi\)
−0.514450 + 0.857520i \(0.672004\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 14.6226i − 0.538631i
\(738\) 0 0
\(739\) − 46.5692i − 1.71308i −0.516084 0.856538i \(-0.672611\pi\)
0.516084 0.856538i \(-0.327389\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 50.7829 1.86305 0.931523 0.363683i \(-0.118481\pi\)
0.931523 + 0.363683i \(0.118481\pi\)
\(744\) 0 0
\(745\) 6.21539 0.227714
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 29.8744i 1.09159i
\(750\) 0 0
\(751\) 5.85641i 0.213703i 0.994275 + 0.106852i \(0.0340770\pi\)
−0.994275 + 0.106852i \(0.965923\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.4901 0.600136
\(756\) 0 0
\(757\) 17.5885 0.639263 0.319632 0.947542i \(-0.396441\pi\)
0.319632 + 0.947542i \(0.396441\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 46.3273i − 1.67936i −0.543080 0.839681i \(-0.682742\pi\)
0.543080 0.839681i \(-0.317258\pi\)
\(762\) 0 0
\(763\) 28.5359i 1.03307i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −16.9706 −0.612772
\(768\) 0 0
\(769\) 16.6603 0.600784 0.300392 0.953816i \(-0.402882\pi\)
0.300392 + 0.953816i \(0.402882\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14.6226i 0.525939i 0.964804 + 0.262969i \(0.0847018\pi\)
−0.964804 + 0.262969i \(0.915298\pi\)
\(774\) 0 0
\(775\) 31.3205i 1.12507i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.82843 −0.101339
\(780\) 0 0
\(781\) −28.2487 −1.01082
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 3.58630i − 0.128001i
\(786\) 0 0
\(787\) − 44.3923i − 1.58241i −0.611548 0.791207i \(-0.709453\pi\)
0.611548 0.791207i \(-0.290547\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.76646 −0.240588
\(792\) 0 0
\(793\) −39.3205 −1.39631
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.2870i 0.576916i 0.957493 + 0.288458i \(0.0931425\pi\)
−0.957493 + 0.288458i \(0.906857\pi\)
\(798\) 0 0
\(799\) 59.4449i 2.10301i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −23.5240 −0.830144
\(804\) 0 0
\(805\) −1.51666 −0.0534553
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 35.4940i − 1.24790i −0.781463 0.623952i \(-0.785526\pi\)
0.781463 0.623952i \(-0.214474\pi\)
\(810\) 0 0
\(811\) − 18.6410i − 0.654575i −0.944925 0.327287i \(-0.893866\pi\)
0.944925 0.327287i \(-0.106134\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10.7589 −0.376868
\(816\) 0 0
\(817\) 2.26795 0.0793455
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 23.1178i − 0.806818i −0.915020 0.403409i \(-0.867825\pi\)
0.915020 0.403409i \(-0.132175\pi\)
\(822\) 0 0
\(823\) 14.4641i 0.504187i 0.967703 + 0.252093i \(0.0811190\pi\)
−0.967703 + 0.252093i \(0.918881\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.7028 −1.13719 −0.568593 0.822619i \(-0.692512\pi\)
−0.568593 + 0.822619i \(0.692512\pi\)
\(828\) 0 0
\(829\) 38.5359 1.33841 0.669204 0.743079i \(-0.266635\pi\)
0.669204 + 0.743079i \(0.266635\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 93.2094i − 3.22951i
\(834\) 0 0
\(835\) − 2.53590i − 0.0877584i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.99622 0.0689173 0.0344586 0.999406i \(-0.489029\pi\)
0.0344586 + 0.999406i \(0.489029\pi\)
\(840\) 0 0
\(841\) −43.0000 −1.48276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 15.1130i − 0.519904i
\(846\) 0 0
\(847\) 9.80385i 0.336864i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.58630 0.122937
\(852\) 0 0
\(853\) −39.8564 −1.36466 −0.682329 0.731046i \(-0.739033\pi\)
−0.682329 + 0.731046i \(0.739033\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 41.7429i − 1.42591i −0.701210 0.712954i \(-0.747357\pi\)
0.701210 0.712954i \(-0.252643\pi\)
\(858\) 0 0
\(859\) 14.8564i 0.506894i 0.967349 + 0.253447i \(0.0815644\pi\)
−0.967349 + 0.253447i \(0.918436\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.93803 0.134052 0.0670261 0.997751i \(-0.478649\pi\)
0.0670261 + 0.997751i \(0.478649\pi\)
\(864\) 0 0
\(865\) 16.6410 0.565812
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 34.0155i − 1.15390i
\(870\) 0 0
\(871\) 26.9282i 0.912427i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −36.8067 −1.24429
\(876\) 0 0
\(877\) −19.8564 −0.670503 −0.335252 0.942129i \(-0.608821\pi\)
−0.335252 + 0.942129i \(0.608821\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.35036i 0.213949i 0.994262 + 0.106974i \(0.0341163\pi\)
−0.994262 + 0.106974i \(0.965884\pi\)
\(882\) 0 0
\(883\) 17.6410i 0.593667i 0.954929 + 0.296834i \(0.0959307\pi\)
−0.954929 + 0.296834i \(0.904069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.34795 0.0788366 0.0394183 0.999223i \(-0.487450\pi\)
0.0394183 + 0.999223i \(0.487450\pi\)
\(888\) 0 0
\(889\) −48.7846 −1.63618
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 8.24504i − 0.275910i
\(894\) 0 0
\(895\) − 10.1436i − 0.339063i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −63.3350 −2.11234
\(900\) 0 0
\(901\) −53.7128 −1.78943
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.41851i 0.146876i
\(906\) 0 0
\(907\) 20.9282i 0.694910i 0.937697 + 0.347455i \(0.112954\pi\)
−0.937697 + 0.347455i \(0.887046\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −53.2596 −1.76457 −0.882285 0.470715i \(-0.843996\pi\)
−0.882285 + 0.470715i \(0.843996\pi\)
\(912\) 0 0
\(913\) −24.0526 −0.796024
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30.9468i 1.02195i
\(918\) 0 0
\(919\) 27.7128i 0.914161i 0.889425 + 0.457081i \(0.151105\pi\)
−0.889425 + 0.457081i \(0.848895\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 52.0213 1.71230
\(924\) 0 0
\(925\) 39.7128 1.30575
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 41.5670i − 1.36377i −0.731460 0.681884i \(-0.761161\pi\)
0.731460 0.681884i \(-0.238839\pi\)
\(930\) 0 0
\(931\) 12.9282i 0.423705i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −19.1798 −0.627247
\(936\) 0 0
\(937\) −29.1436 −0.952080 −0.476040 0.879424i \(-0.657928\pi\)
−0.476040 + 0.879424i \(0.657928\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 43.8134i − 1.42828i −0.700005 0.714138i \(-0.746819\pi\)
0.700005 0.714138i \(-0.253181\pi\)
\(942\) 0 0
\(943\) − 1.07180i − 0.0349025i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.52004 0.146882 0.0734408 0.997300i \(-0.476602\pi\)
0.0734408 + 0.997300i \(0.476602\pi\)
\(948\) 0 0
\(949\) 43.3205 1.40624
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 23.1079i − 0.748538i −0.927320 0.374269i \(-0.877894\pi\)
0.927320 0.374269i \(-0.122106\pi\)
\(954\) 0 0
\(955\) 18.4641i 0.597484i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −61.6062 −1.98937
\(960\) 0 0
\(961\) −24.7128 −0.797188
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 7.65308i − 0.246361i
\(966\) 0 0
\(967\) − 7.21539i − 0.232031i −0.993247 0.116016i \(-0.962988\pi\)
0.993247 0.116016i \(-0.0370123\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.72741 −0.247984 −0.123992 0.992283i \(-0.539570\pi\)
−0.123992 + 0.992283i \(0.539570\pi\)
\(972\) 0 0
\(973\) 18.1769 0.582725
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 44.0165i − 1.40821i −0.710095 0.704106i \(-0.751348\pi\)
0.710095 0.704106i \(-0.248652\pi\)
\(978\) 0 0
\(979\) − 17.6077i − 0.562744i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −19.7990 −0.631490 −0.315745 0.948844i \(-0.602254\pi\)
−0.315745 + 0.948844i \(0.602254\pi\)
\(984\) 0 0
\(985\) −9.37307 −0.298651
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.859411i 0.0273277i
\(990\) 0 0
\(991\) − 10.9282i − 0.347146i −0.984821 0.173573i \(-0.944469\pi\)
0.984821 0.173573i \(-0.0555312\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −18.1717 −0.576083
\(996\) 0 0
\(997\) 27.9808 0.886160 0.443080 0.896482i \(-0.353886\pi\)
0.443080 + 0.896482i \(0.353886\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.d.e.2015.3 8
3.2 odd 2 inner 5472.2.d.e.2015.5 yes 8
4.3 odd 2 inner 5472.2.d.e.2015.4 yes 8
12.11 even 2 inner 5472.2.d.e.2015.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5472.2.d.e.2015.3 8 1.1 even 1 trivial
5472.2.d.e.2015.4 yes 8 4.3 odd 2 inner
5472.2.d.e.2015.5 yes 8 3.2 odd 2 inner
5472.2.d.e.2015.6 yes 8 12.11 even 2 inner