L(s) = 1 | − 0.896i·5-s − 4.46i·7-s − 2.96·11-s + 5.46·13-s + 7.20i·17-s − i·19-s + 0.378·23-s + 4.19·25-s + 8.48i·29-s + 7.46i·31-s − 4.00·35-s + 9.46·37-s − 2.82i·41-s + 2.26i·43-s + 8.24·47-s + ⋯ |
L(s) = 1 | − 0.400i·5-s − 1.68i·7-s − 0.894·11-s + 1.51·13-s + 1.74i·17-s − 0.229i·19-s + 0.0790·23-s + 0.839·25-s + 1.57i·29-s + 1.34i·31-s − 0.676·35-s + 1.55·37-s − 0.441i·41-s + 0.345i·43-s + 1.20·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.006641802\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.006641802\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 5 | \( 1 + 0.896iT - 5T^{2} \) |
| 7 | \( 1 + 4.46iT - 7T^{2} \) |
| 11 | \( 1 + 2.96T + 11T^{2} \) |
| 13 | \( 1 - 5.46T + 13T^{2} \) |
| 17 | \( 1 - 7.20iT - 17T^{2} \) |
| 23 | \( 1 - 0.378T + 23T^{2} \) |
| 29 | \( 1 - 8.48iT - 29T^{2} \) |
| 31 | \( 1 - 7.46iT - 31T^{2} \) |
| 37 | \( 1 - 9.46T + 37T^{2} \) |
| 41 | \( 1 + 2.82iT - 41T^{2} \) |
| 43 | \( 1 - 2.26iT - 43T^{2} \) |
| 47 | \( 1 - 8.24T + 47T^{2} \) |
| 53 | \( 1 - 7.45iT - 53T^{2} \) |
| 59 | \( 1 + 3.10T + 59T^{2} \) |
| 61 | \( 1 + 7.19T + 61T^{2} \) |
| 67 | \( 1 - 4.92iT - 67T^{2} \) |
| 71 | \( 1 - 9.52T + 71T^{2} \) |
| 73 | \( 1 - 7.92T + 73T^{2} \) |
| 79 | \( 1 - 11.4iT - 79T^{2} \) |
| 83 | \( 1 - 8.10T + 83T^{2} \) |
| 89 | \( 1 - 5.93iT - 89T^{2} \) |
| 97 | \( 1 - 10.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.226667414844473953460546629934, −7.44135938812025581287712483492, −6.75781209477520582941334079372, −6.06412728912751012345538338416, −5.18853424081665001450676125034, −4.34430214313415384523364714080, −3.77751508740939711624390340243, −2.99624588879715569989980724635, −1.49054974118274847998084371216, −0.928979000101356252700590317226,
0.68510350966381951889653496718, 2.28216750662206468359274768315, 2.63125654288602632839344457085, 3.54355567371487407755740311178, 4.66753138548580644082650051625, 5.38619654448860573874193055479, 6.06551354535882498466479113980, 6.50586856323444401345810221215, 7.77667502960119432259904808252, 7.989767274227990756186107319826