Properties

Label 546.2.bd.a.121.4
Level $546$
Weight $2$
Character 546.121
Analytic conductor $4.360$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [546,2,Mod(121,546)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("546.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(546, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 26x^{14} + 249x^{12} + 1144x^{10} + 2766x^{8} + 3554x^{6} + 2260x^{4} + 564x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 121.4
Root \(1.45057i\) of defining polynomial
Character \(\chi\) \(=\) 546.121
Dual form 546.2.bd.a.361.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} -1.00000 q^{3} +(0.500000 - 0.866025i) q^{4} +(2.34064 + 1.35137i) q^{5} +(0.866025 - 0.500000i) q^{6} +(2.61422 - 0.407273i) q^{7} +1.00000i q^{8} +1.00000 q^{9} -2.70274 q^{10} -5.09726i q^{11} +(-0.500000 + 0.866025i) q^{12} +(0.313194 + 3.59192i) q^{13} +(-2.06034 + 1.65982i) q^{14} +(-2.34064 - 1.35137i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.86664 - 4.96516i) q^{17} +(-0.866025 + 0.500000i) q^{18} +4.38458i q^{19} +(2.34064 - 1.35137i) q^{20} +(-2.61422 + 0.407273i) q^{21} +(2.54863 + 4.41435i) q^{22} +(-3.73482 - 6.46890i) q^{23} -1.00000i q^{24} +(1.15240 + 1.99602i) q^{25} +(-2.06720 - 2.95410i) q^{26} -1.00000 q^{27} +(0.954400 - 2.46761i) q^{28} +(-4.18045 + 7.24074i) q^{29} +2.70274 q^{30} +(6.21147 - 3.58619i) q^{31} +(0.866025 + 0.500000i) q^{32} +5.09726i q^{33} +5.73328i q^{34} +(6.66932 + 2.57949i) q^{35} +(0.500000 - 0.866025i) q^{36} +(5.86654 - 3.38705i) q^{37} +(-2.19229 - 3.79715i) q^{38} +(-0.313194 - 3.59192i) q^{39} +(-1.35137 + 2.34064i) q^{40} +(3.29661 + 1.90330i) q^{41} +(2.06034 - 1.65982i) q^{42} +(3.10694 + 5.38138i) q^{43} +(-4.41435 - 2.54863i) q^{44} +(2.34064 + 1.35137i) q^{45} +(6.46890 + 3.73482i) q^{46} +(7.44186 + 4.29656i) q^{47} +(0.500000 + 0.866025i) q^{48} +(6.66826 - 2.12940i) q^{49} +(-1.99602 - 1.15240i) q^{50} +(-2.86664 + 4.96516i) q^{51} +(3.26729 + 1.52473i) q^{52} +(3.60339 + 6.24125i) q^{53} +(0.866025 - 0.500000i) q^{54} +(6.88828 - 11.9308i) q^{55} +(0.407273 + 2.61422i) q^{56} -4.38458i q^{57} -8.36089i q^{58} +(-5.61147 - 3.23979i) q^{59} +(-2.34064 + 1.35137i) q^{60} -4.65046 q^{61} +(-3.58619 + 6.21147i) q^{62} +(2.61422 - 0.407273i) q^{63} -1.00000 q^{64} +(-4.12094 + 8.83064i) q^{65} +(-2.54863 - 4.41435i) q^{66} +6.06546i q^{67} +(-2.86664 - 4.96516i) q^{68} +(3.73482 + 6.46890i) q^{69} +(-7.06555 + 1.10075i) q^{70} +(0.792408 - 0.457497i) q^{71} +1.00000i q^{72} +(-5.93963 + 3.42924i) q^{73} +(-3.38705 + 5.86654i) q^{74} +(-1.15240 - 1.99602i) q^{75} +(3.79715 + 2.19229i) q^{76} +(-2.07597 - 13.3253i) q^{77} +(2.06720 + 2.95410i) q^{78} +(-3.81342 + 6.60504i) q^{79} -2.70274i q^{80} +1.00000 q^{81} -3.80659 q^{82} -15.3966i q^{83} +(-0.954400 + 2.46761i) q^{84} +(13.4195 - 7.74778i) q^{85} +(-5.38138 - 3.10694i) q^{86} +(4.18045 - 7.24074i) q^{87} +5.09726 q^{88} +(-8.99129 + 5.19112i) q^{89} -2.70274 q^{90} +(2.28165 + 9.26251i) q^{91} -7.46964 q^{92} +(-6.21147 + 3.58619i) q^{93} -8.59312 q^{94} +(-5.92518 + 10.2627i) q^{95} +(-0.866025 - 0.500000i) q^{96} +(-8.20116 + 4.73494i) q^{97} +(-4.71018 + 5.17824i) q^{98} -5.09726i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{3} + 8 q^{4} + 8 q^{7} + 16 q^{9} - 8 q^{10} - 8 q^{12} - 10 q^{13} + 4 q^{14} - 8 q^{16} - 8 q^{21} + 6 q^{22} - 16 q^{23} + 2 q^{26} - 16 q^{27} + 10 q^{28} - 4 q^{29} + 8 q^{30} + 12 q^{31}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −1.00000 −0.577350
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.34064 + 1.35137i 1.04677 + 0.604351i 0.921742 0.387803i \(-0.126766\pi\)
0.125024 + 0.992154i \(0.460099\pi\)
\(6\) 0.866025 0.500000i 0.353553 0.204124i
\(7\) 2.61422 0.407273i 0.988081 0.153935i
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) −2.70274 −0.854681
\(11\) 5.09726i 1.53688i −0.639922 0.768440i \(-0.721033\pi\)
0.639922 0.768440i \(-0.278967\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) 0.313194 + 3.59192i 0.0868644 + 0.996220i
\(14\) −2.06034 + 1.65982i −0.550649 + 0.443605i
\(15\) −2.34064 1.35137i −0.604351 0.348922i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.86664 4.96516i 0.695262 1.20423i −0.274830 0.961493i \(-0.588622\pi\)
0.970092 0.242736i \(-0.0780450\pi\)
\(18\) −0.866025 + 0.500000i −0.204124 + 0.117851i
\(19\) 4.38458i 1.00589i 0.864318 + 0.502945i \(0.167750\pi\)
−0.864318 + 0.502945i \(0.832250\pi\)
\(20\) 2.34064 1.35137i 0.523383 0.302175i
\(21\) −2.61422 + 0.407273i −0.570469 + 0.0888742i
\(22\) 2.54863 + 4.41435i 0.543369 + 0.941143i
\(23\) −3.73482 6.46890i −0.778764 1.34886i −0.932654 0.360771i \(-0.882513\pi\)
0.153890 0.988088i \(-0.450820\pi\)
\(24\) 1.00000i 0.204124i
\(25\) 1.15240 + 1.99602i 0.230480 + 0.399203i
\(26\) −2.06720 2.95410i −0.405410 0.579347i
\(27\) −1.00000 −0.192450
\(28\) 0.954400 2.46761i 0.180365 0.466335i
\(29\) −4.18045 + 7.24074i −0.776289 + 1.34457i 0.157778 + 0.987475i \(0.449567\pi\)
−0.934067 + 0.357098i \(0.883766\pi\)
\(30\) 2.70274 0.493450
\(31\) 6.21147 3.58619i 1.11561 0.644099i 0.175335 0.984509i \(-0.443899\pi\)
0.940277 + 0.340410i \(0.110566\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 5.09726i 0.887318i
\(34\) 5.73328i 0.983249i
\(35\) 6.66932 + 2.57949i 1.12732 + 0.436014i
\(36\) 0.500000 0.866025i 0.0833333 0.144338i
\(37\) 5.86654 3.38705i 0.964454 0.556828i 0.0669130 0.997759i \(-0.478685\pi\)
0.897541 + 0.440931i \(0.145352\pi\)
\(38\) −2.19229 3.79715i −0.355636 0.615980i
\(39\) −0.313194 3.59192i −0.0501512 0.575168i
\(40\) −1.35137 + 2.34064i −0.213670 + 0.370088i
\(41\) 3.29661 + 1.90330i 0.514843 + 0.297245i 0.734822 0.678260i \(-0.237266\pi\)
−0.219979 + 0.975505i \(0.570599\pi\)
\(42\) 2.06034 1.65982i 0.317918 0.256115i
\(43\) 3.10694 + 5.38138i 0.473804 + 0.820653i 0.999550 0.0299887i \(-0.00954714\pi\)
−0.525746 + 0.850642i \(0.676214\pi\)
\(44\) −4.41435 2.54863i −0.665489 0.384220i
\(45\) 2.34064 + 1.35137i 0.348922 + 0.201450i
\(46\) 6.46890 + 3.73482i 0.953788 + 0.550670i
\(47\) 7.44186 + 4.29656i 1.08551 + 0.626718i 0.932377 0.361488i \(-0.117731\pi\)
0.153130 + 0.988206i \(0.451065\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) 6.66826 2.12940i 0.952608 0.304200i
\(50\) −1.99602 1.15240i −0.282279 0.162974i
\(51\) −2.86664 + 4.96516i −0.401410 + 0.695262i
\(52\) 3.26729 + 1.52473i 0.453092 + 0.211442i
\(53\) 3.60339 + 6.24125i 0.494963 + 0.857301i 0.999983 0.00580635i \(-0.00184823\pi\)
−0.505020 + 0.863108i \(0.668515\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) 6.88828 11.9308i 0.928815 1.60875i
\(56\) 0.407273 + 2.61422i 0.0544241 + 0.349339i
\(57\) 4.38458i 0.580751i
\(58\) 8.36089i 1.09784i
\(59\) −5.61147 3.23979i −0.730552 0.421784i 0.0880722 0.996114i \(-0.471929\pi\)
−0.818624 + 0.574330i \(0.805263\pi\)
\(60\) −2.34064 + 1.35137i −0.302175 + 0.174461i
\(61\) −4.65046 −0.595430 −0.297715 0.954655i \(-0.596224\pi\)
−0.297715 + 0.954655i \(0.596224\pi\)
\(62\) −3.58619 + 6.21147i −0.455447 + 0.788857i
\(63\) 2.61422 0.407273i 0.329360 0.0513116i
\(64\) −1.00000 −0.125000
\(65\) −4.12094 + 8.83064i −0.511140 + 1.09531i
\(66\) −2.54863 4.41435i −0.313714 0.543369i
\(67\) 6.06546i 0.741013i 0.928830 + 0.370507i \(0.120816\pi\)
−0.928830 + 0.370507i \(0.879184\pi\)
\(68\) −2.86664 4.96516i −0.347631 0.602115i
\(69\) 3.73482 + 6.46890i 0.449620 + 0.778764i
\(70\) −7.06555 + 1.10075i −0.844494 + 0.131565i
\(71\) 0.792408 0.457497i 0.0940415 0.0542949i −0.452242 0.891895i \(-0.649376\pi\)
0.546283 + 0.837601i \(0.316042\pi\)
\(72\) 1.00000i 0.117851i
\(73\) −5.93963 + 3.42924i −0.695181 + 0.401363i −0.805550 0.592528i \(-0.798130\pi\)
0.110369 + 0.993891i \(0.464797\pi\)
\(74\) −3.38705 + 5.86654i −0.393737 + 0.681972i
\(75\) −1.15240 1.99602i −0.133068 0.230480i
\(76\) 3.79715 + 2.19229i 0.435563 + 0.251473i
\(77\) −2.07597 13.3253i −0.236579 1.51856i
\(78\) 2.06720 + 2.95410i 0.234064 + 0.334486i
\(79\) −3.81342 + 6.60504i −0.429044 + 0.743126i −0.996789 0.0800791i \(-0.974483\pi\)
0.567745 + 0.823205i \(0.307816\pi\)
\(80\) 2.70274i 0.302175i
\(81\) 1.00000 0.111111
\(82\) −3.80659 −0.420368
\(83\) 15.3966i 1.69000i −0.534769 0.844999i \(-0.679601\pi\)
0.534769 0.844999i \(-0.320399\pi\)
\(84\) −0.954400 + 2.46761i −0.104134 + 0.269239i
\(85\) 13.4195 7.74778i 1.45555 0.840365i
\(86\) −5.38138 3.10694i −0.580289 0.335030i
\(87\) 4.18045 7.24074i 0.448191 0.776289i
\(88\) 5.09726 0.543369
\(89\) −8.99129 + 5.19112i −0.953075 + 0.550258i −0.894035 0.447998i \(-0.852137\pi\)
−0.0590402 + 0.998256i \(0.518804\pi\)
\(90\) −2.70274 −0.284894
\(91\) 2.28165 + 9.26251i 0.239182 + 0.970975i
\(92\) −7.46964 −0.778764
\(93\) −6.21147 + 3.58619i −0.644099 + 0.371871i
\(94\) −8.59312 −0.886313
\(95\) −5.92518 + 10.2627i −0.607911 + 1.05293i
\(96\) −0.866025 0.500000i −0.0883883 0.0510310i
\(97\) −8.20116 + 4.73494i −0.832702 + 0.480761i −0.854777 0.518996i \(-0.826306\pi\)
0.0220749 + 0.999756i \(0.492973\pi\)
\(98\) −4.71018 + 5.17824i −0.475800 + 0.523082i
\(99\) 5.09726i 0.512293i
\(100\) 2.30480 0.230480
\(101\) −3.72210 −0.370363 −0.185182 0.982704i \(-0.559287\pi\)
−0.185182 + 0.982704i \(0.559287\pi\)
\(102\) 5.73328i 0.567679i
\(103\) 4.55465 7.88888i 0.448783 0.777314i −0.549525 0.835478i \(-0.685191\pi\)
0.998307 + 0.0581634i \(0.0185244\pi\)
\(104\) −3.59192 + 0.313194i −0.352217 + 0.0307112i
\(105\) −6.66932 2.57949i −0.650859 0.251733i
\(106\) −6.24125 3.60339i −0.606204 0.349992i
\(107\) −5.28386 9.15192i −0.510810 0.884750i −0.999922 0.0125282i \(-0.996012\pi\)
0.489111 0.872222i \(-0.337321\pi\)
\(108\) −0.500000 + 0.866025i −0.0481125 + 0.0833333i
\(109\) 3.27729 1.89214i 0.313907 0.181235i −0.334766 0.942301i \(-0.608657\pi\)
0.648674 + 0.761067i \(0.275324\pi\)
\(110\) 13.7766i 1.31354i
\(111\) −5.86654 + 3.38705i −0.556828 + 0.321485i
\(112\) −1.65982 2.06034i −0.156838 0.194684i
\(113\) 0.849593 + 1.47154i 0.0799230 + 0.138431i 0.903217 0.429185i \(-0.141199\pi\)
−0.823294 + 0.567616i \(0.807866\pi\)
\(114\) 2.19229 + 3.79715i 0.205327 + 0.355636i
\(115\) 20.1885i 1.88259i
\(116\) 4.18045 + 7.24074i 0.388145 + 0.672286i
\(117\) 0.313194 + 3.59192i 0.0289548 + 0.332073i
\(118\) 6.47957 0.596493
\(119\) 5.47184 14.1475i 0.501603 1.29690i
\(120\) 1.35137 2.34064i 0.123363 0.213670i
\(121\) −14.9820 −1.36200
\(122\) 4.02741 2.32523i 0.364625 0.210516i
\(123\) −3.29661 1.90330i −0.297245 0.171614i
\(124\) 7.17238i 0.644099i
\(125\) 7.28442i 0.651538i
\(126\) −2.06034 + 1.65982i −0.183550 + 0.147868i
\(127\) 3.11451 5.39450i 0.276368 0.478684i −0.694111 0.719868i \(-0.744202\pi\)
0.970479 + 0.241184i \(0.0775357\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −3.10694 5.38138i −0.273551 0.473804i
\(130\) −0.846482 9.70803i −0.0742414 0.851451i
\(131\) −0.358468 + 0.620884i −0.0313195 + 0.0542469i −0.881260 0.472631i \(-0.843304\pi\)
0.849941 + 0.526878i \(0.176638\pi\)
\(132\) 4.41435 + 2.54863i 0.384220 + 0.221830i
\(133\) 1.78572 + 11.4622i 0.154841 + 0.993902i
\(134\) −3.03273 5.25284i −0.261988 0.453776i
\(135\) −2.34064 1.35137i −0.201450 0.116307i
\(136\) 4.96516 + 2.86664i 0.425759 + 0.245812i
\(137\) −8.70853 5.02787i −0.744020 0.429560i 0.0795091 0.996834i \(-0.474665\pi\)
−0.823529 + 0.567274i \(0.807998\pi\)
\(138\) −6.46890 3.73482i −0.550670 0.317929i
\(139\) 8.84682 + 15.3231i 0.750377 + 1.29969i 0.947640 + 0.319341i \(0.103462\pi\)
−0.197263 + 0.980351i \(0.563205\pi\)
\(140\) 5.56857 4.48605i 0.470630 0.379141i
\(141\) −7.44186 4.29656i −0.626718 0.361836i
\(142\) −0.457497 + 0.792408i −0.0383923 + 0.0664974i
\(143\) 18.3089 1.59643i 1.53107 0.133500i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −19.5698 + 11.2987i −1.62519 + 0.938302i
\(146\) 3.42924 5.93963i 0.283806 0.491567i
\(147\) −6.66826 + 2.12940i −0.549989 + 0.175630i
\(148\) 6.77410i 0.556828i
\(149\) 23.2914i 1.90811i 0.299632 + 0.954055i \(0.403136\pi\)
−0.299632 + 0.954055i \(0.596864\pi\)
\(150\) 1.99602 + 1.15240i 0.162974 + 0.0940931i
\(151\) −15.8610 + 9.15737i −1.29075 + 0.745216i −0.978788 0.204878i \(-0.934320\pi\)
−0.311964 + 0.950094i \(0.600987\pi\)
\(152\) −4.38458 −0.355636
\(153\) 2.86664 4.96516i 0.231754 0.401410i
\(154\) 8.46051 + 10.5021i 0.681767 + 0.846282i
\(155\) 19.3851 1.55705
\(156\) −3.26729 1.52473i −0.261593 0.122076i
\(157\) −1.91775 3.32164i −0.153053 0.265096i 0.779295 0.626657i \(-0.215577\pi\)
−0.932348 + 0.361561i \(0.882244\pi\)
\(158\) 7.62685i 0.606759i
\(159\) −3.60339 6.24125i −0.285767 0.494963i
\(160\) 1.35137 + 2.34064i 0.106835 + 0.185044i
\(161\) −12.3982 15.3900i −0.977118 1.21290i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) 10.4272i 0.816720i −0.912821 0.408360i \(-0.866101\pi\)
0.912821 0.408360i \(-0.133899\pi\)
\(164\) 3.29661 1.90330i 0.257422 0.148622i
\(165\) −6.88828 + 11.9308i −0.536252 + 0.928815i
\(166\) 7.69830 + 13.3339i 0.597504 + 1.03491i
\(167\) −1.90573 1.10027i −0.147470 0.0851418i 0.424449 0.905452i \(-0.360468\pi\)
−0.571919 + 0.820310i \(0.693801\pi\)
\(168\) −0.407273 2.61422i −0.0314218 0.201691i
\(169\) −12.8038 + 2.24994i −0.984909 + 0.173072i
\(170\) −7.74778 + 13.4195i −0.594227 + 1.02923i
\(171\) 4.38458i 0.335297i
\(172\) 6.21388 0.473804
\(173\) 21.4765 1.63283 0.816415 0.577466i \(-0.195958\pi\)
0.816415 + 0.577466i \(0.195958\pi\)
\(174\) 8.36089i 0.633838i
\(175\) 3.82555 + 4.74868i 0.289184 + 0.358966i
\(176\) −4.41435 + 2.54863i −0.332744 + 0.192110i
\(177\) 5.61147 + 3.23979i 0.421784 + 0.243517i
\(178\) 5.19112 8.99129i 0.389091 0.673926i
\(179\) −18.6782 −1.39607 −0.698037 0.716062i \(-0.745943\pi\)
−0.698037 + 0.716062i \(0.745943\pi\)
\(180\) 2.34064 1.35137i 0.174461 0.100725i
\(181\) 1.97032 0.146452 0.0732262 0.997315i \(-0.476670\pi\)
0.0732262 + 0.997315i \(0.476670\pi\)
\(182\) −6.60722 6.88074i −0.489760 0.510035i
\(183\) 4.65046 0.343772
\(184\) 6.46890 3.73482i 0.476894 0.275335i
\(185\) 18.3086 1.34608
\(186\) 3.58619 6.21147i 0.262952 0.455447i
\(187\) −25.3087 14.6120i −1.85076 1.06853i
\(188\) 7.44186 4.29656i 0.542753 0.313359i
\(189\) −2.61422 + 0.407273i −0.190156 + 0.0296247i
\(190\) 11.8504i 0.859716i
\(191\) 3.70946 0.268407 0.134204 0.990954i \(-0.457152\pi\)
0.134204 + 0.990954i \(0.457152\pi\)
\(192\) 1.00000 0.0721688
\(193\) 2.98000i 0.214505i 0.994232 + 0.107253i \(0.0342053\pi\)
−0.994232 + 0.107253i \(0.965795\pi\)
\(194\) 4.73494 8.20116i 0.339949 0.588809i
\(195\) 4.12094 8.83064i 0.295107 0.632375i
\(196\) 1.49001 6.83958i 0.106430 0.488541i
\(197\) −12.8922 7.44330i −0.918529 0.530313i −0.0353634 0.999375i \(-0.511259\pi\)
−0.883165 + 0.469062i \(0.844592\pi\)
\(198\) 2.54863 + 4.41435i 0.181123 + 0.313714i
\(199\) 1.33214 2.30733i 0.0944327 0.163562i −0.814939 0.579547i \(-0.803230\pi\)
0.909372 + 0.415985i \(0.136563\pi\)
\(200\) −1.99602 + 1.15240i −0.141140 + 0.0814870i
\(201\) 6.06546i 0.427824i
\(202\) 3.22344 1.86105i 0.226800 0.130943i
\(203\) −7.97963 + 20.6315i −0.560060 + 1.44804i
\(204\) 2.86664 + 4.96516i 0.200705 + 0.347631i
\(205\) 5.14411 + 8.90987i 0.359280 + 0.622292i
\(206\) 9.10929i 0.634674i
\(207\) −3.73482 6.46890i −0.259588 0.449620i
\(208\) 2.95410 2.06720i 0.204830 0.143334i
\(209\) 22.3493 1.54593
\(210\) 7.06555 1.10075i 0.487569 0.0759591i
\(211\) −3.24329 + 5.61754i −0.223277 + 0.386728i −0.955801 0.294014i \(-0.905009\pi\)
0.732524 + 0.680741i \(0.238342\pi\)
\(212\) 7.20677 0.494963
\(213\) −0.792408 + 0.457497i −0.0542949 + 0.0313472i
\(214\) 9.15192 + 5.28386i 0.625612 + 0.361198i
\(215\) 16.7945i 1.14538i
\(216\) 1.00000i 0.0680414i
\(217\) 14.7776 11.9048i 1.00317 0.808154i
\(218\) −1.89214 + 3.27729i −0.128152 + 0.221966i
\(219\) 5.93963 3.42924i 0.401363 0.231727i
\(220\) −6.88828 11.9308i −0.464408 0.804377i
\(221\) 18.7323 + 8.74168i 1.26007 + 0.588029i
\(222\) 3.38705 5.86654i 0.227324 0.393737i
\(223\) −22.5859 13.0400i −1.51247 0.873223i −0.999894 0.0145787i \(-0.995359\pi\)
−0.512572 0.858644i \(-0.671307\pi\)
\(224\) 2.46761 + 0.954400i 0.164874 + 0.0637685i
\(225\) 1.15240 + 1.99602i 0.0768267 + 0.133068i
\(226\) −1.47154 0.849593i −0.0978852 0.0565141i
\(227\) −10.1088 5.83634i −0.670947 0.387372i 0.125488 0.992095i \(-0.459950\pi\)
−0.796436 + 0.604723i \(0.793284\pi\)
\(228\) −3.79715 2.19229i −0.251473 0.145188i
\(229\) 10.4614 + 6.03988i 0.691307 + 0.399126i 0.804102 0.594492i \(-0.202647\pi\)
−0.112794 + 0.993618i \(0.535980\pi\)
\(230\) 10.0943 + 17.4838i 0.665595 + 1.15284i
\(231\) 2.07597 + 13.3253i 0.136589 + 0.876742i
\(232\) −7.24074 4.18045i −0.475378 0.274460i
\(233\) −4.65865 + 8.06902i −0.305199 + 0.528619i −0.977306 0.211835i \(-0.932056\pi\)
0.672107 + 0.740454i \(0.265389\pi\)
\(234\) −2.06720 2.95410i −0.135137 0.193116i
\(235\) 11.6125 + 20.1134i 0.757515 + 1.31205i
\(236\) −5.61147 + 3.23979i −0.365276 + 0.210892i
\(237\) 3.81342 6.60504i 0.247709 0.429044i
\(238\) 2.33501 + 14.9880i 0.151356 + 0.971530i
\(239\) 16.8139i 1.08760i 0.839215 + 0.543799i \(0.183015\pi\)
−0.839215 + 0.543799i \(0.816985\pi\)
\(240\) 2.70274i 0.174461i
\(241\) −19.3566 11.1756i −1.24687 0.719881i −0.276386 0.961047i \(-0.589137\pi\)
−0.970484 + 0.241166i \(0.922470\pi\)
\(242\) 12.9748 7.49101i 0.834052 0.481540i
\(243\) −1.00000 −0.0641500
\(244\) −2.32523 + 4.02741i −0.148857 + 0.257829i
\(245\) 18.4856 + 4.02712i 1.18100 + 0.257283i
\(246\) 3.80659 0.242699
\(247\) −15.7491 + 1.37322i −1.00209 + 0.0873761i
\(248\) 3.58619 + 6.21147i 0.227723 + 0.394429i
\(249\) 15.3966i 0.975720i
\(250\) 3.64221 + 6.30849i 0.230354 + 0.398984i
\(251\) 3.75155 + 6.49788i 0.236796 + 0.410143i 0.959793 0.280708i \(-0.0905694\pi\)
−0.722997 + 0.690851i \(0.757236\pi\)
\(252\) 0.954400 2.46761i 0.0601215 0.155445i
\(253\) −32.9736 + 19.0373i −2.07304 + 1.19687i
\(254\) 6.22903i 0.390844i
\(255\) −13.4195 + 7.74778i −0.840365 + 0.485185i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.51876 + 6.09468i 0.219494 + 0.380175i 0.954654 0.297719i \(-0.0962259\pi\)
−0.735159 + 0.677895i \(0.762893\pi\)
\(258\) 5.38138 + 3.10694i 0.335030 + 0.193430i
\(259\) 13.9570 11.2438i 0.867244 0.698654i
\(260\) 5.58709 + 7.98416i 0.346497 + 0.495157i
\(261\) −4.18045 + 7.24074i −0.258763 + 0.448191i
\(262\) 0.716935i 0.0442924i
\(263\) −23.9286 −1.47550 −0.737750 0.675074i \(-0.764112\pi\)
−0.737750 + 0.675074i \(0.764112\pi\)
\(264\) −5.09726 −0.313714
\(265\) 19.4780i 1.19653i
\(266\) −7.27759 9.03372i −0.446218 0.553893i
\(267\) 8.99129 5.19112i 0.550258 0.317692i
\(268\) 5.25284 + 3.03273i 0.320868 + 0.185253i
\(269\) 0.799815 1.38532i 0.0487656 0.0844645i −0.840612 0.541637i \(-0.817805\pi\)
0.889378 + 0.457173i \(0.151138\pi\)
\(270\) 2.70274 0.164483
\(271\) 17.3215 10.0006i 1.05221 0.607492i 0.128941 0.991652i \(-0.458842\pi\)
0.923267 + 0.384160i \(0.125509\pi\)
\(272\) −5.73328 −0.347631
\(273\) −2.28165 9.26251i −0.138092 0.560593i
\(274\) 10.0557 0.607490
\(275\) 10.1742 5.87408i 0.613528 0.354220i
\(276\) 7.46964 0.449620
\(277\) 9.05583 15.6852i 0.544112 0.942430i −0.454550 0.890721i \(-0.650200\pi\)
0.998662 0.0517090i \(-0.0164668\pi\)
\(278\) −15.3231 8.84682i −0.919021 0.530597i
\(279\) 6.21147 3.58619i 0.371871 0.214700i
\(280\) −2.57949 + 6.66932i −0.154154 + 0.398568i
\(281\) 11.0176i 0.657253i −0.944460 0.328626i \(-0.893414\pi\)
0.944460 0.328626i \(-0.106586\pi\)
\(282\) 8.59312 0.511713
\(283\) −13.4936 −0.802114 −0.401057 0.916053i \(-0.631357\pi\)
−0.401057 + 0.916053i \(0.631357\pi\)
\(284\) 0.914994i 0.0542949i
\(285\) 5.92518 10.2627i 0.350978 0.607911i
\(286\) −15.0578 + 10.5370i −0.890386 + 0.623067i
\(287\) 9.39320 + 3.63301i 0.554463 + 0.214450i
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) −7.93524 13.7442i −0.466779 0.808484i
\(290\) 11.2987 19.5698i 0.663480 1.14918i
\(291\) 8.20116 4.73494i 0.480761 0.277567i
\(292\) 6.85849i 0.401363i
\(293\) 4.13569 2.38774i 0.241610 0.139494i −0.374307 0.927305i \(-0.622119\pi\)
0.615916 + 0.787811i \(0.288786\pi\)
\(294\) 4.71018 5.17824i 0.274703 0.302001i
\(295\) −8.75630 15.1664i −0.509811 0.883019i
\(296\) 3.38705 + 5.86654i 0.196868 + 0.340986i
\(297\) 5.09726i 0.295773i
\(298\) −11.6457 20.1710i −0.674619 1.16847i
\(299\) 22.0661 15.4412i 1.27611 0.892989i
\(300\) −2.30480 −0.133068
\(301\) 10.3139 + 12.8027i 0.594484 + 0.737937i
\(302\) 9.15737 15.8610i 0.526947 0.912699i
\(303\) 3.72210 0.213829
\(304\) 3.79715 2.19229i 0.217782 0.125736i
\(305\) −10.8850 6.28449i −0.623276 0.359849i
\(306\) 5.73328i 0.327750i
\(307\) 6.26422i 0.357518i 0.983893 + 0.178759i \(0.0572082\pi\)
−0.983893 + 0.178759i \(0.942792\pi\)
\(308\) −12.5781 4.86482i −0.716702 0.277199i
\(309\) −4.55465 + 7.88888i −0.259105 + 0.448783i
\(310\) −16.7880 + 9.69254i −0.953493 + 0.550499i
\(311\) 2.99213 + 5.18252i 0.169668 + 0.293874i 0.938303 0.345814i \(-0.112397\pi\)
−0.768635 + 0.639688i \(0.779064\pi\)
\(312\) 3.59192 0.313194i 0.203353 0.0177311i
\(313\) 14.3286 24.8179i 0.809902 1.40279i −0.103030 0.994678i \(-0.532854\pi\)
0.912931 0.408113i \(-0.133813\pi\)
\(314\) 3.32164 + 1.91775i 0.187451 + 0.108225i
\(315\) 6.66932 + 2.57949i 0.375774 + 0.145338i
\(316\) 3.81342 + 6.60504i 0.214522 + 0.371563i
\(317\) −22.2694 12.8572i −1.25077 0.722134i −0.279509 0.960143i \(-0.590172\pi\)
−0.971263 + 0.238009i \(0.923505\pi\)
\(318\) 6.24125 + 3.60339i 0.349992 + 0.202068i
\(319\) 36.9079 + 21.3088i 2.06645 + 1.19306i
\(320\) −2.34064 1.35137i −0.130846 0.0755439i
\(321\) 5.28386 + 9.15192i 0.294917 + 0.510810i
\(322\) 18.4322 + 7.12903i 1.02719 + 0.397285i
\(323\) 21.7701 + 12.5690i 1.21132 + 0.699358i
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) −6.80861 + 4.76447i −0.377674 + 0.264285i
\(326\) 5.21359 + 9.03020i 0.288754 + 0.500137i
\(327\) −3.27729 + 1.89214i −0.181235 + 0.104636i
\(328\) −1.90330 + 3.29661i −0.105092 + 0.182025i
\(329\) 21.2045 + 8.20127i 1.16904 + 0.452151i
\(330\) 13.7766i 0.758374i
\(331\) 0.880100i 0.0483747i 0.999707 + 0.0241873i \(0.00769982\pi\)
−0.999707 + 0.0241873i \(0.992300\pi\)
\(332\) −13.3339 7.69830i −0.731790 0.422499i
\(333\) 5.86654 3.38705i 0.321485 0.185609i
\(334\) 2.20055 0.120409
\(335\) −8.19667 + 14.1971i −0.447832 + 0.775668i
\(336\) 1.65982 + 2.06034i 0.0905504 + 0.112401i
\(337\) 16.4964 0.898617 0.449308 0.893377i \(-0.351670\pi\)
0.449308 + 0.893377i \(0.351670\pi\)
\(338\) 9.96346 8.35041i 0.541941 0.454203i
\(339\) −0.849593 1.47154i −0.0461435 0.0799230i
\(340\) 15.4956i 0.840365i
\(341\) −18.2797 31.6614i −0.989903 1.71456i
\(342\) −2.19229 3.79715i −0.118545 0.205327i
\(343\) 16.5650 8.28251i 0.894427 0.447214i
\(344\) −5.38138 + 3.10694i −0.290145 + 0.167515i
\(345\) 20.1885i 1.08691i
\(346\) −18.5992 + 10.7383i −0.999900 + 0.577292i
\(347\) 2.79575 4.84237i 0.150084 0.259952i −0.781174 0.624313i \(-0.785379\pi\)
0.931258 + 0.364361i \(0.118712\pi\)
\(348\) −4.18045 7.24074i −0.224095 0.388145i
\(349\) −11.1268 6.42408i −0.595606 0.343873i 0.171705 0.985148i \(-0.445072\pi\)
−0.767311 + 0.641275i \(0.778406\pi\)
\(350\) −5.68736 2.19970i −0.304002 0.117579i
\(351\) −0.313194 3.59192i −0.0167171 0.191723i
\(352\) 2.54863 4.41435i 0.135842 0.235286i
\(353\) 18.4469i 0.981829i 0.871208 + 0.490915i \(0.163337\pi\)
−0.871208 + 0.490915i \(0.836663\pi\)
\(354\) −6.47957 −0.344385
\(355\) 2.47299 0.131253
\(356\) 10.3822i 0.550258i
\(357\) −5.47184 + 14.1475i −0.289600 + 0.748766i
\(358\) 16.1758 9.33910i 0.854917 0.493587i
\(359\) −9.96875 5.75546i −0.526130 0.303761i 0.213309 0.976985i \(-0.431576\pi\)
−0.739439 + 0.673223i \(0.764909\pi\)
\(360\) −1.35137 + 2.34064i −0.0712234 + 0.123363i
\(361\) −0.224508 −0.0118162
\(362\) −1.70634 + 0.985158i −0.0896834 + 0.0517787i
\(363\) 14.9820 0.786352
\(364\) 9.16239 + 2.65529i 0.480240 + 0.139175i
\(365\) −18.5367 −0.970256
\(366\) −4.02741 + 2.32523i −0.210516 + 0.121542i
\(367\) 6.01361 0.313908 0.156954 0.987606i \(-0.449833\pi\)
0.156954 + 0.987606i \(0.449833\pi\)
\(368\) −3.73482 + 6.46890i −0.194691 + 0.337215i
\(369\) 3.29661 + 1.90330i 0.171614 + 0.0990816i
\(370\) −15.8557 + 9.15432i −0.824301 + 0.475910i
\(371\) 11.9619 + 14.8484i 0.621032 + 0.770891i
\(372\) 7.17238i 0.371871i
\(373\) 9.58372 0.496226 0.248113 0.968731i \(-0.420190\pi\)
0.248113 + 0.968731i \(0.420190\pi\)
\(374\) 29.2240 1.51114
\(375\) 7.28442i 0.376166i
\(376\) −4.29656 + 7.44186i −0.221578 + 0.383785i
\(377\) −27.3175 12.7481i −1.40692 0.656559i
\(378\) 2.06034 1.65982i 0.105973 0.0853718i
\(379\) −21.9503 12.6730i −1.12751 0.650969i −0.184203 0.982888i \(-0.558971\pi\)
−0.943308 + 0.331919i \(0.892304\pi\)
\(380\) 5.92518 + 10.2627i 0.303956 + 0.526466i
\(381\) −3.11451 + 5.39450i −0.159561 + 0.276368i
\(382\) −3.21249 + 1.85473i −0.164365 + 0.0948964i
\(383\) 0.285882i 0.0146079i 0.999973 + 0.00730394i \(0.00232494\pi\)
−0.999973 + 0.00730394i \(0.997675\pi\)
\(384\) −0.866025 + 0.500000i −0.0441942 + 0.0255155i
\(385\) 13.1483 33.9952i 0.670101 1.73256i
\(386\) −1.49000 2.58076i −0.0758390 0.131357i
\(387\) 3.10694 + 5.38138i 0.157935 + 0.273551i
\(388\) 9.46989i 0.480761i
\(389\) −1.66201 2.87869i −0.0842674 0.145955i 0.820811 0.571199i \(-0.193522\pi\)
−0.905079 + 0.425244i \(0.860188\pi\)
\(390\) 0.846482 + 9.70803i 0.0428633 + 0.491585i
\(391\) −42.8255 −2.16578
\(392\) 2.12940 + 6.66826i 0.107551 + 0.336798i
\(393\) 0.358468 0.620884i 0.0180823 0.0313195i
\(394\) 14.8866 0.749976
\(395\) −17.8517 + 10.3067i −0.898217 + 0.518586i
\(396\) −4.41435 2.54863i −0.221830 0.128073i
\(397\) 30.4819i 1.52984i 0.644125 + 0.764921i \(0.277222\pi\)
−0.644125 + 0.764921i \(0.722778\pi\)
\(398\) 2.66427i 0.133548i
\(399\) −1.78572 11.4622i −0.0893978 0.573829i
\(400\) 1.15240 1.99602i 0.0576200 0.0998008i
\(401\) 16.9395 9.78003i 0.845919 0.488392i −0.0133528 0.999911i \(-0.504250\pi\)
0.859272 + 0.511519i \(0.170917\pi\)
\(402\) 3.03273 + 5.25284i 0.151259 + 0.261988i
\(403\) 14.8267 + 21.1879i 0.738572 + 1.05545i
\(404\) −1.86105 + 3.22344i −0.0925908 + 0.160372i
\(405\) 2.34064 + 1.35137i 0.116307 + 0.0671501i
\(406\) −3.40516 21.8572i −0.168995 1.08475i
\(407\) −17.2647 29.9033i −0.855778 1.48225i
\(408\) −4.96516 2.86664i −0.245812 0.141920i
\(409\) −14.7635 8.52372i −0.730009 0.421471i 0.0884163 0.996084i \(-0.471819\pi\)
−0.818426 + 0.574613i \(0.805153\pi\)
\(410\) −8.90987 5.14411i −0.440027 0.254050i
\(411\) 8.70853 + 5.02787i 0.429560 + 0.248007i
\(412\) −4.55465 7.88888i −0.224391 0.388657i
\(413\) −15.9891 6.18410i −0.786772 0.304300i
\(414\) 6.46890 + 3.73482i 0.317929 + 0.183557i
\(415\) 20.8065 36.0379i 1.02135 1.76903i
\(416\) −1.52473 + 3.26729i −0.0747559 + 0.160192i
\(417\) −8.84682 15.3231i −0.433231 0.750377i
\(418\) −19.3551 + 11.1747i −0.946687 + 0.546570i
\(419\) 4.16216 7.20908i 0.203335 0.352186i −0.746266 0.665648i \(-0.768155\pi\)
0.949601 + 0.313461i \(0.101489\pi\)
\(420\) −5.56857 + 4.48605i −0.271718 + 0.218897i
\(421\) 35.9805i 1.75358i 0.480873 + 0.876790i \(0.340320\pi\)
−0.480873 + 0.876790i \(0.659680\pi\)
\(422\) 6.48658i 0.315762i
\(423\) 7.44186 + 4.29656i 0.361836 + 0.208906i
\(424\) −6.24125 + 3.60339i −0.303102 + 0.174996i
\(425\) 13.2141 0.640976
\(426\) 0.457497 0.792408i 0.0221658 0.0383923i
\(427\) −12.1573 + 1.89400i −0.588333 + 0.0916573i
\(428\) −10.5677 −0.510810
\(429\) −18.3089 + 1.59643i −0.883964 + 0.0770764i
\(430\) −8.39725 14.5445i −0.404951 0.701397i
\(431\) 6.20922i 0.299088i −0.988755 0.149544i \(-0.952219\pi\)
0.988755 0.149544i \(-0.0477805\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −3.98578 6.90357i −0.191544 0.331764i 0.754218 0.656624i \(-0.228016\pi\)
−0.945762 + 0.324860i \(0.894683\pi\)
\(434\) −6.84532 + 17.6987i −0.328586 + 0.849564i
\(435\) 19.5698 11.2987i 0.938302 0.541729i
\(436\) 3.78429i 0.181235i
\(437\) 28.3634 16.3756i 1.35681 0.783352i
\(438\) −3.42924 + 5.93963i −0.163856 + 0.283806i
\(439\) −7.08113 12.2649i −0.337964 0.585371i 0.646086 0.763265i \(-0.276405\pi\)
−0.984050 + 0.177894i \(0.943072\pi\)
\(440\) 11.9308 + 6.88828i 0.568781 + 0.328386i
\(441\) 6.66826 2.12940i 0.317536 0.101400i
\(442\) −20.5935 + 1.79563i −0.979532 + 0.0854094i
\(443\) −13.7918 + 23.8880i −0.655267 + 1.13495i 0.326560 + 0.945176i \(0.394110\pi\)
−0.981827 + 0.189779i \(0.939223\pi\)
\(444\) 6.77410i 0.321485i
\(445\) −28.0605 −1.33020
\(446\) 26.0800 1.23492
\(447\) 23.2914i 1.10165i
\(448\) −2.61422 + 0.407273i −0.123510 + 0.0192418i
\(449\) 2.53224 1.46199i 0.119504 0.0689957i −0.439056 0.898459i \(-0.644687\pi\)
0.558560 + 0.829464i \(0.311354\pi\)
\(450\) −1.99602 1.15240i −0.0940931 0.0543247i
\(451\) 9.70159 16.8036i 0.456830 0.791253i
\(452\) 1.69919 0.0799230
\(453\) 15.8610 9.15737i 0.745216 0.430251i
\(454\) 11.6727 0.547826
\(455\) −7.17655 + 24.7636i −0.336442 + 1.16093i
\(456\) 4.38458 0.205327
\(457\) −18.1377 + 10.4718i −0.848447 + 0.489851i −0.860126 0.510081i \(-0.829615\pi\)
0.0116798 + 0.999932i \(0.496282\pi\)
\(458\) −12.0798 −0.564450
\(459\) −2.86664 + 4.96516i −0.133803 + 0.231754i
\(460\) −17.4838 10.0943i −0.815184 0.470647i
\(461\) 15.9388 9.20229i 0.742346 0.428593i −0.0805759 0.996748i \(-0.525676\pi\)
0.822922 + 0.568155i \(0.192343\pi\)
\(462\) −8.46051 10.5021i −0.393619 0.488601i
\(463\) 28.8633i 1.34139i −0.741732 0.670697i \(-0.765995\pi\)
0.741732 0.670697i \(-0.234005\pi\)
\(464\) 8.36089 0.388145
\(465\) −19.3851 −0.898962
\(466\) 9.31731i 0.431616i
\(467\) −16.8772 + 29.2322i −0.780983 + 1.35270i 0.150386 + 0.988627i \(0.451948\pi\)
−0.931369 + 0.364075i \(0.881385\pi\)
\(468\) 3.26729 + 1.52473i 0.151031 + 0.0704805i
\(469\) 2.47030 + 15.8564i 0.114068 + 0.732181i
\(470\) −20.1134 11.6125i −0.927762 0.535644i
\(471\) 1.91775 + 3.32164i 0.0883653 + 0.153053i
\(472\) 3.23979 5.61147i 0.149123 0.258289i
\(473\) 27.4303 15.8369i 1.26125 0.728180i
\(474\) 7.62685i 0.350313i
\(475\) −8.75168 + 5.05279i −0.401555 + 0.231838i
\(476\) −9.51619 11.8125i −0.436174 0.541426i
\(477\) 3.60339 + 6.24125i 0.164988 + 0.285767i
\(478\) −8.40693 14.5612i −0.384524 0.666015i
\(479\) 17.4214i 0.796004i 0.917384 + 0.398002i \(0.130296\pi\)
−0.917384 + 0.398002i \(0.869704\pi\)
\(480\) −1.35137 2.34064i −0.0616813 0.106835i
\(481\) 14.0034 + 20.0114i 0.638500 + 0.912440i
\(482\) 22.3511 1.01807
\(483\) 12.3982 + 15.3900i 0.564140 + 0.700270i
\(484\) −7.49101 + 12.9748i −0.340500 + 0.589764i
\(485\) −25.5946 −1.16219
\(486\) 0.866025 0.500000i 0.0392837 0.0226805i
\(487\) −33.1393 19.1330i −1.50168 0.866998i −0.999998 0.00194838i \(-0.999380\pi\)
−0.501686 0.865050i \(-0.667287\pi\)
\(488\) 4.65046i 0.210516i
\(489\) 10.4272i 0.471533i
\(490\) −18.0226 + 5.75521i −0.814176 + 0.259994i
\(491\) −18.3883 + 31.8494i −0.829851 + 1.43734i 0.0683042 + 0.997665i \(0.478241\pi\)
−0.898155 + 0.439679i \(0.855092\pi\)
\(492\) −3.29661 + 1.90330i −0.148622 + 0.0858072i
\(493\) 23.9677 + 41.5132i 1.07945 + 1.86966i
\(494\) 12.9525 9.06378i 0.582759 0.407799i
\(495\) 6.88828 11.9308i 0.309605 0.536252i
\(496\) −6.21147 3.58619i −0.278903 0.161025i
\(497\) 1.88520 1.51872i 0.0845628 0.0681240i
\(498\) −7.69830 13.3339i −0.344969 0.597504i
\(499\) −26.0698 15.0514i −1.16704 0.673793i −0.214062 0.976820i \(-0.568669\pi\)
−0.952982 + 0.303027i \(0.902003\pi\)
\(500\) −6.30849 3.64221i −0.282124 0.162885i
\(501\) 1.90573 + 1.10027i 0.0851418 + 0.0491566i
\(502\) −6.49788 3.75155i −0.290015 0.167440i
\(503\) 3.90097 + 6.75668i 0.173936 + 0.301265i 0.939792 0.341746i \(-0.111018\pi\)
−0.765857 + 0.643011i \(0.777685\pi\)
\(504\) 0.407273 + 2.61422i 0.0181414 + 0.116446i
\(505\) −8.71211 5.02994i −0.387684 0.223829i
\(506\) 19.0373 32.9736i 0.846313 1.46586i
\(507\) 12.8038 2.24994i 0.568638 0.0999233i
\(508\) −3.11451 5.39450i −0.138184 0.239342i
\(509\) −19.0523 + 10.9999i −0.844480 + 0.487561i −0.858784 0.512337i \(-0.828780\pi\)
0.0143047 + 0.999898i \(0.495447\pi\)
\(510\) 7.74778 13.4195i 0.343077 0.594227i
\(511\) −14.1308 + 11.3838i −0.625111 + 0.503591i
\(512\) 1.00000i 0.0441942i
\(513\) 4.38458i 0.193584i
\(514\) −6.09468 3.51876i −0.268825 0.155206i
\(515\) 21.3216 12.3100i 0.939541 0.542444i
\(516\) −6.21388 −0.273551
\(517\) 21.9007 37.9331i 0.963190 1.66829i
\(518\) −6.46520 + 16.7159i −0.284065 + 0.734453i
\(519\) −21.4765 −0.942714
\(520\) −8.83064 4.12094i −0.387249 0.180715i
\(521\) 13.9174 + 24.1056i 0.609732 + 1.05609i 0.991284 + 0.131740i \(0.0420563\pi\)
−0.381552 + 0.924347i \(0.624610\pi\)
\(522\) 8.36089i 0.365946i
\(523\) 4.84276 + 8.38790i 0.211759 + 0.366777i 0.952265 0.305272i \(-0.0987475\pi\)
−0.740506 + 0.672050i \(0.765414\pi\)
\(524\) 0.358468 + 0.620884i 0.0156597 + 0.0271234i
\(525\) −3.82555 4.74868i −0.166961 0.207249i
\(526\) 20.7228 11.9643i 0.903555 0.521668i
\(527\) 41.1213i 1.79127i
\(528\) 4.41435 2.54863i 0.192110 0.110915i
\(529\) −16.3978 + 28.4018i −0.712948 + 1.23486i
\(530\) −9.73901 16.8685i −0.423036 0.732719i
\(531\) −5.61147 3.23979i −0.243517 0.140595i
\(532\) 10.8194 + 4.18464i 0.469082 + 0.181427i
\(533\) −5.80402 + 12.4373i −0.251400 + 0.538717i
\(534\) −5.19112 + 8.99129i −0.224642 + 0.389091i
\(535\) 28.5618i 1.23484i
\(536\) −6.06546 −0.261988
\(537\) 18.6782 0.806024
\(538\) 1.59963i 0.0689649i
\(539\) −10.8541 33.9898i −0.467519 1.46404i
\(540\) −2.34064 + 1.35137i −0.100725 + 0.0581537i
\(541\) −0.964894 0.557082i −0.0414840 0.0239508i 0.479115 0.877752i \(-0.340958\pi\)
−0.520599 + 0.853802i \(0.674291\pi\)
\(542\) −10.0006 + 17.3215i −0.429562 + 0.744023i
\(543\) −1.97032 −0.0845543
\(544\) 4.96516 2.86664i 0.212880 0.122906i
\(545\) 10.2279 0.438117
\(546\) 6.60722 + 6.88074i 0.282763 + 0.294469i
\(547\) −18.4164 −0.787430 −0.393715 0.919233i \(-0.628810\pi\)
−0.393715 + 0.919233i \(0.628810\pi\)
\(548\) −8.70853 + 5.02787i −0.372010 + 0.214780i
\(549\) −4.65046 −0.198477
\(550\) −5.87408 + 10.1742i −0.250472 + 0.433830i
\(551\) −31.7476 18.3295i −1.35249 0.780862i
\(552\) −6.46890 + 3.73482i −0.275335 + 0.158965i
\(553\) −7.27906 + 18.8201i −0.309537 + 0.800313i
\(554\) 18.1117i 0.769491i
\(555\) −18.3086 −0.777158
\(556\) 17.6936 0.750377
\(557\) 33.6405i 1.42539i −0.701473 0.712696i \(-0.747474\pi\)
0.701473 0.712696i \(-0.252526\pi\)
\(558\) −3.58619 + 6.21147i −0.151816 + 0.262952i
\(559\) −18.3564 + 12.8453i −0.776394 + 0.543299i
\(560\) −1.10075 7.06555i −0.0465153 0.298574i
\(561\) 25.3087 + 14.6120i 1.06853 + 0.616919i
\(562\) 5.50878 + 9.54149i 0.232374 + 0.402483i
\(563\) 0.779481 1.35010i 0.0328512 0.0568999i −0.849132 0.528180i \(-0.822875\pi\)
0.881984 + 0.471280i \(0.156208\pi\)
\(564\) −7.44186 + 4.29656i −0.313359 + 0.180918i
\(565\) 4.59246i 0.193206i
\(566\) 11.6858 6.74682i 0.491193 0.283590i
\(567\) 2.61422 0.407273i 0.109787 0.0171039i
\(568\) 0.457497 + 0.792408i 0.0191961 + 0.0332487i
\(569\) 2.60329 + 4.50904i 0.109136 + 0.189029i 0.915420 0.402499i \(-0.131858\pi\)
−0.806285 + 0.591528i \(0.798525\pi\)
\(570\) 11.8504i 0.496357i
\(571\) 5.99348 + 10.3810i 0.250819 + 0.434432i 0.963752 0.266801i \(-0.0859666\pi\)
−0.712932 + 0.701233i \(0.752633\pi\)
\(572\) 7.77192 16.6542i 0.324960 0.696348i
\(573\) −3.70946 −0.154965
\(574\) −9.95126 + 1.55032i −0.415357 + 0.0647092i
\(575\) 8.60802 14.9095i 0.358979 0.621770i
\(576\) −1.00000 −0.0416667
\(577\) −0.299900 + 0.173147i −0.0124850 + 0.00720821i −0.506230 0.862399i \(-0.668961\pi\)
0.493745 + 0.869607i \(0.335628\pi\)
\(578\) 13.7442 + 7.93524i 0.571685 + 0.330062i
\(579\) 2.98000i 0.123845i
\(580\) 22.5973i 0.938302i
\(581\) −6.27062 40.2501i −0.260149 1.66985i
\(582\) −4.73494 + 8.20116i −0.196270 + 0.339949i
\(583\) 31.8132 18.3674i 1.31757 0.760699i
\(584\) −3.42924 5.93963i −0.141903 0.245783i
\(585\) −4.12094 + 8.83064i −0.170380 + 0.365102i
\(586\) −2.38774 + 4.13569i −0.0986368 + 0.170844i
\(587\) 25.5443 + 14.7480i 1.05433 + 0.608715i 0.923857 0.382738i \(-0.125019\pi\)
0.130468 + 0.991453i \(0.458352\pi\)
\(588\) −1.49001 + 6.83958i −0.0614472 + 0.282060i
\(589\) 15.7239 + 27.2347i 0.647893 + 1.12218i
\(590\) 15.1664 + 8.75630i 0.624389 + 0.360491i
\(591\) 12.8922 + 7.44330i 0.530313 + 0.306176i
\(592\) −5.86654 3.38705i −0.241113 0.139207i
\(593\) 2.79980 + 1.61647i 0.114974 + 0.0663803i 0.556384 0.830925i \(-0.312188\pi\)
−0.441410 + 0.897305i \(0.645522\pi\)
\(594\) −2.54863 4.41435i −0.104571 0.181123i
\(595\) 31.9261 25.7198i 1.30884 1.05441i
\(596\) 20.1710 + 11.6457i 0.826236 + 0.477027i
\(597\) −1.33214 + 2.30733i −0.0545207 + 0.0944327i
\(598\) −11.3892 + 24.4055i −0.465738 + 0.998016i
\(599\) −6.64023 11.5012i −0.271312 0.469927i 0.697886 0.716209i \(-0.254124\pi\)
−0.969198 + 0.246282i \(0.920791\pi\)
\(600\) 1.99602 1.15240i 0.0814870 0.0470465i
\(601\) 3.58901 6.21634i 0.146399 0.253570i −0.783495 0.621398i \(-0.786565\pi\)
0.929894 + 0.367828i \(0.119898\pi\)
\(602\) −15.3335 5.93053i −0.624945 0.241710i
\(603\) 6.06546i 0.247004i
\(604\) 18.3147i 0.745216i
\(605\) −35.0675 20.2462i −1.42570 0.823127i
\(606\) −3.22344 + 1.86105i −0.130943 + 0.0756001i
\(607\) 40.4139 1.64035 0.820174 0.572114i \(-0.193877\pi\)
0.820174 + 0.572114i \(0.193877\pi\)
\(608\) −2.19229 + 3.79715i −0.0889090 + 0.153995i
\(609\) 7.97963 20.6315i 0.323351 0.836029i
\(610\) 12.5690 0.508903
\(611\) −13.1022 + 28.0762i −0.530057 + 1.13584i
\(612\) −2.86664 4.96516i −0.115877 0.200705i
\(613\) 8.59059i 0.346971i −0.984836 0.173485i \(-0.944497\pi\)
0.984836 0.173485i \(-0.0555029\pi\)
\(614\) −3.13211 5.42497i −0.126402 0.218934i
\(615\) −5.14411 8.90987i −0.207431 0.359280i
\(616\) 13.3253 2.07597i 0.536893 0.0836434i
\(617\) 31.7545 18.3335i 1.27839 0.738079i 0.301838 0.953359i \(-0.402400\pi\)
0.976552 + 0.215281i \(0.0690666\pi\)
\(618\) 9.10929i 0.366429i
\(619\) −4.95870 + 2.86291i −0.199307 + 0.115070i −0.596332 0.802738i \(-0.703376\pi\)
0.397025 + 0.917808i \(0.370043\pi\)
\(620\) 9.69254 16.7880i 0.389262 0.674221i
\(621\) 3.73482 + 6.46890i 0.149873 + 0.259588i
\(622\) −5.18252 2.99213i −0.207800 0.119974i
\(623\) −21.3910 + 17.2326i −0.857011 + 0.690411i
\(624\) −2.95410 + 2.06720i −0.118259 + 0.0827541i
\(625\) 15.6059 27.0303i 0.624238 1.08121i
\(626\) 28.6573i 1.14537i
\(627\) −22.3493 −0.892545
\(628\) −3.83550 −0.153053
\(629\) 38.8378i 1.54856i
\(630\) −7.06555 + 1.10075i −0.281498 + 0.0438550i
\(631\) −15.3218 + 8.84605i −0.609952 + 0.352156i −0.772947 0.634471i \(-0.781218\pi\)
0.162995 + 0.986627i \(0.447885\pi\)
\(632\) −6.60504 3.81342i −0.262735 0.151690i
\(633\) 3.24329 5.61754i 0.128909 0.223277i
\(634\) 25.7145 1.02125
\(635\) 14.5799 8.41772i 0.578586 0.334047i
\(636\) −7.20677 −0.285767
\(637\) 9.73710 + 23.2850i 0.385798 + 0.922583i
\(638\) −42.6176 −1.68725
\(639\) 0.792408 0.457497i 0.0313472 0.0180983i
\(640\) 2.70274 0.106835
\(641\) −11.8476 + 20.5206i −0.467950 + 0.810514i −0.999329 0.0366205i \(-0.988341\pi\)
0.531379 + 0.847134i \(0.321674\pi\)
\(642\) −9.15192 5.28386i −0.361198 0.208537i
\(643\) −11.0433 + 6.37588i −0.435507 + 0.251440i −0.701690 0.712482i \(-0.747571\pi\)
0.266183 + 0.963923i \(0.414237\pi\)
\(644\) −19.5273 + 3.04218i −0.769482 + 0.119879i
\(645\) 16.7945i 0.661283i
\(646\) −25.1380 −0.989041
\(647\) 7.40684 0.291193 0.145597 0.989344i \(-0.453490\pi\)
0.145597 + 0.989344i \(0.453490\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −16.5140 + 28.6031i −0.648232 + 1.12277i
\(650\) 3.51419 7.53046i 0.137838 0.295369i
\(651\) −14.7776 + 11.9048i −0.579178 + 0.466588i
\(652\) −9.03020 5.21359i −0.353650 0.204180i
\(653\) 20.0753 + 34.7714i 0.785606 + 1.36071i 0.928636 + 0.370992i \(0.120982\pi\)
−0.143030 + 0.989718i \(0.545684\pi\)
\(654\) 1.89214 3.27729i 0.0739887 0.128152i
\(655\) −1.67809 + 0.968844i −0.0655683 + 0.0378559i
\(656\) 3.80659i 0.148622i
\(657\) −5.93963 + 3.42924i −0.231727 + 0.133788i
\(658\) −22.4643 + 3.49975i −0.875749 + 0.136434i
\(659\) 17.0035 + 29.4509i 0.662361 + 1.14724i 0.979994 + 0.199029i \(0.0637788\pi\)
−0.317633 + 0.948214i \(0.602888\pi\)
\(660\) 6.88828 + 11.9308i 0.268126 + 0.464408i
\(661\) 11.6080i 0.451499i −0.974185 0.225750i \(-0.927517\pi\)
0.974185 0.225750i \(-0.0724831\pi\)
\(662\) −0.440050 0.762189i −0.0171030 0.0296233i
\(663\) −18.7323 8.74168i −0.727502 0.339499i
\(664\) 15.3966 0.597504
\(665\) −11.3100 + 29.2421i −0.438582 + 1.13396i
\(666\) −3.38705 + 5.86654i −0.131246 + 0.227324i
\(667\) 62.4529 2.41819
\(668\) −1.90573 + 1.10027i −0.0737350 + 0.0425709i
\(669\) 22.5859 + 13.0400i 0.873223 + 0.504155i
\(670\) 16.3933i 0.633330i
\(671\) 23.7046i 0.915104i
\(672\) −2.46761 0.954400i −0.0951903 0.0368168i
\(673\) −5.22869 + 9.05635i −0.201551 + 0.349097i −0.949028 0.315191i \(-0.897932\pi\)
0.747477 + 0.664287i \(0.231265\pi\)
\(674\) −14.2863 + 8.24820i −0.550288 + 0.317709i
\(675\) −1.15240 1.99602i −0.0443559 0.0768267i
\(676\) −4.45341 + 12.2134i −0.171285 + 0.469746i
\(677\) 2.49022 4.31318i 0.0957068 0.165769i −0.814197 0.580589i \(-0.802822\pi\)
0.909903 + 0.414820i \(0.136156\pi\)
\(678\) 1.47154 + 0.849593i 0.0565141 + 0.0326284i
\(679\) −19.5112 + 15.7183i −0.748771 + 0.603212i
\(680\) 7.74778 + 13.4195i 0.297114 + 0.514616i
\(681\) 10.1088 + 5.83634i 0.387372 + 0.223649i
\(682\) 31.6614 + 18.2797i 1.21238 + 0.699967i
\(683\) 13.8849 + 8.01644i 0.531290 + 0.306741i 0.741542 0.670907i \(-0.234095\pi\)
−0.210251 + 0.977647i \(0.567428\pi\)
\(684\) 3.79715 + 2.19229i 0.145188 + 0.0838242i
\(685\) −13.5890 23.5369i −0.519210 0.899298i
\(686\) −10.2045 + 15.4554i −0.389609 + 0.590089i
\(687\) −10.4614 6.03988i −0.399126 0.230436i
\(688\) 3.10694 5.38138i 0.118451 0.205163i
\(689\) −21.2895 + 14.8978i −0.811066 + 0.567561i
\(690\) −10.0943 17.4838i −0.384282 0.665595i
\(691\) 31.5756 18.2302i 1.20119 0.693510i 0.240373 0.970681i \(-0.422730\pi\)
0.960821 + 0.277171i \(0.0893968\pi\)
\(692\) 10.7383 18.5992i 0.408207 0.707036i
\(693\) −2.07597 13.3253i −0.0788597 0.506187i
\(694\) 5.59149i 0.212250i
\(695\) 47.8213i 1.81396i
\(696\) 7.24074 + 4.18045i 0.274460 + 0.158459i
\(697\) 18.9004 10.9121i 0.715902 0.413326i
\(698\) 12.8482 0.486310
\(699\) 4.65865 8.06902i 0.176206 0.305199i
\(700\) 6.02525 0.938683i 0.227733 0.0354789i
\(701\) 11.4738 0.433360 0.216680 0.976243i \(-0.430477\pi\)
0.216680 + 0.976243i \(0.430477\pi\)
\(702\) 2.06720 + 2.95410i 0.0780213 + 0.111495i
\(703\) 14.8508 + 25.7223i 0.560108 + 0.970135i
\(704\) 5.09726i 0.192110i
\(705\) −11.6125 20.1134i −0.437351 0.757515i
\(706\) −9.22345 15.9755i −0.347129 0.601245i
\(707\) −9.73039 + 1.51591i −0.365949 + 0.0570117i
\(708\) 5.61147 3.23979i 0.210892 0.121759i
\(709\) 41.9126i 1.57406i −0.616915 0.787030i \(-0.711618\pi\)
0.616915 0.787030i \(-0.288382\pi\)
\(710\) −2.14167 + 1.23649i −0.0803755 + 0.0464048i
\(711\) −3.81342 + 6.60504i −0.143015 + 0.247709i
\(712\) −5.19112 8.99129i −0.194546 0.336963i
\(713\) −46.3975 26.7876i −1.73760 1.00320i
\(714\) −2.33501 14.9880i −0.0873855 0.560913i
\(715\) 45.0120 + 21.0055i 1.68336 + 0.785561i
\(716\) −9.33910 + 16.1758i −0.349019 + 0.604518i
\(717\) 16.8139i 0.627925i
\(718\) 11.5109 0.429584
\(719\) −36.2429 −1.35163 −0.675817 0.737070i \(-0.736209\pi\)
−0.675817 + 0.737070i \(0.736209\pi\)
\(720\) 2.70274i 0.100725i
\(721\) 8.69390 22.4782i 0.323778 0.837133i
\(722\) 0.194430 0.112254i 0.00723593 0.00417766i
\(723\) 19.3566 + 11.1756i 0.719881 + 0.415623i
\(724\) 0.985158 1.70634i 0.0366131 0.0634157i
\(725\) −19.2702 −0.715677
\(726\) −12.9748 + 7.49101i −0.481540 + 0.278017i
\(727\) −6.41054 −0.237754 −0.118877 0.992909i \(-0.537929\pi\)
−0.118877 + 0.992909i \(0.537929\pi\)
\(728\) −9.26251 + 2.28165i −0.343291 + 0.0845636i
\(729\) 1.00000 0.0370370
\(730\) 16.0533 9.26836i 0.594158 0.343037i
\(731\) 35.6259 1.31767
\(732\) 2.32523 4.02741i 0.0859429 0.148857i
\(733\) 23.5129 + 13.5752i 0.868469 + 0.501411i 0.866839 0.498588i \(-0.166148\pi\)
0.00162955 + 0.999999i \(0.499481\pi\)
\(734\) −5.20794 + 3.00680i −0.192228 + 0.110983i
\(735\) −18.4856 4.02712i −0.681852 0.148543i
\(736\) 7.46964i 0.275335i
\(737\) 30.9172 1.13885
\(738\) −3.80659 −0.140123
\(739\) 19.8339i 0.729601i 0.931086 + 0.364800i \(0.118863\pi\)
−0.931086 + 0.364800i \(0.881137\pi\)
\(740\) 9.15432 15.8557i 0.336519 0.582869i
\(741\) 15.7491 1.37322i 0.578556 0.0504466i
\(742\) −17.7835 6.87814i −0.652854 0.252504i
\(743\) 31.4762 + 18.1728i 1.15475 + 0.666696i 0.950040 0.312127i \(-0.101041\pi\)
0.204710 + 0.978823i \(0.434375\pi\)
\(744\) −3.58619 6.21147i −0.131476 0.227723i
\(745\) −31.4754 + 54.5169i −1.15317 + 1.99735i
\(746\) −8.29975 + 4.79186i −0.303875 + 0.175442i
\(747\) 15.3966i 0.563332i
\(748\) −25.3087 + 14.6120i −0.925378 + 0.534267i
\(749\) −17.5405 21.7731i −0.640916 0.795573i
\(750\) −3.64221 6.30849i −0.132995 0.230354i
\(751\) −0.461810 0.799878i −0.0168517 0.0291880i 0.857477 0.514523i \(-0.172031\pi\)
−0.874328 + 0.485335i \(0.838698\pi\)
\(752\) 8.59312i 0.313359i
\(753\) −3.75155 6.49788i −0.136714 0.236796i
\(754\) 30.0317 2.61858i 1.09369 0.0953632i
\(755\) −49.4999 −1.80149
\(756\) −0.954400 + 2.46761i −0.0347112 + 0.0897463i
\(757\) 1.33975 2.32051i 0.0486940 0.0843405i −0.840651 0.541577i \(-0.817827\pi\)
0.889345 + 0.457237i \(0.151161\pi\)
\(758\) 25.3460 0.920609
\(759\) 32.9736 19.0373i 1.19687 0.691012i
\(760\) −10.2627 5.92518i −0.372268 0.214929i
\(761\) 15.0861i 0.546872i 0.961890 + 0.273436i \(0.0881602\pi\)
−0.961890 + 0.273436i \(0.911840\pi\)
\(762\) 6.22903i 0.225654i
\(763\) 7.79693 6.28123i 0.282268 0.227396i
\(764\) 1.85473 3.21249i 0.0671019 0.116224i
\(765\) 13.4195 7.74778i 0.485185 0.280122i
\(766\) −0.142941 0.247581i −0.00516466 0.00894546i
\(767\) 9.87958 21.1707i 0.356731 0.764428i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 17.7838 + 10.2675i 0.641301 + 0.370256i 0.785116 0.619349i \(-0.212603\pi\)
−0.143814 + 0.989605i \(0.545937\pi\)
\(770\) 5.61082 + 36.0149i 0.202200 + 1.29789i
\(771\) −3.51876 6.09468i −0.126725 0.219494i
\(772\) 2.58076 + 1.49000i 0.0928834 + 0.0536263i
\(773\) 15.6635 + 9.04334i 0.563378 + 0.325266i 0.754500 0.656300i \(-0.227879\pi\)
−0.191122 + 0.981566i \(0.561213\pi\)
\(774\) −5.38138 3.10694i −0.193430 0.111677i
\(775\) 14.3162 + 8.26546i 0.514253 + 0.296904i
\(776\) −4.73494 8.20116i −0.169975 0.294405i
\(777\) −13.9570 + 11.2438i −0.500703 + 0.403368i
\(778\) 2.87869 + 1.66201i 0.103206 + 0.0595860i
\(779\) −8.34515 + 14.4542i −0.298996 + 0.517876i
\(780\) −5.58709 7.98416i −0.200050 0.285879i
\(781\) −2.33198 4.03911i −0.0834448 0.144531i
\(782\) 37.0880 21.4128i 1.32626 0.765719i
\(783\) 4.18045 7.24074i 0.149397 0.258763i
\(784\) −5.17824 4.71018i −0.184937 0.168221i
\(785\) 10.3664i 0.369991i
\(786\) 0.716935i 0.0255722i
\(787\) 30.3608 + 17.5288i 1.08225 + 0.624835i 0.931501 0.363738i \(-0.118499\pi\)
0.150745 + 0.988573i \(0.451833\pi\)
\(788\) −12.8922 + 7.44330i −0.459264 + 0.265156i
\(789\) 23.9286 0.851880
\(790\) 10.3067 17.8517i 0.366696 0.635135i
\(791\) 2.82034 + 3.50090i 0.100280 + 0.124478i
\(792\) 5.09726 0.181123
\(793\) −1.45650 16.7041i −0.0517217 0.593179i
\(794\) −15.2409 26.3981i −0.540881 0.936833i
\(795\) 19.4780i 0.690814i
\(796\) −1.33214 2.30733i −0.0472163 0.0817811i
\(797\) −8.96425 15.5265i −0.317530 0.549978i 0.662442 0.749113i \(-0.269520\pi\)
−0.979972 + 0.199135i \(0.936187\pi\)
\(798\) 7.27759 + 9.03372i 0.257624 + 0.319790i
\(799\) 42.6663 24.6334i 1.50942 0.871466i
\(800\) 2.30480i 0.0814870i
\(801\) −8.99129 + 5.19112i −0.317692 + 0.183419i
\(802\) −9.78003 + 16.9395i −0.345345 + 0.598155i
\(803\) 17.4797 + 30.2758i 0.616847 + 1.06841i
\(804\) −5.25284 3.03273i −0.185253 0.106956i
\(805\) −8.22223 52.7771i −0.289796 1.86015i
\(806\) −23.4343 10.9359i −0.825437 0.385202i
\(807\) −0.799815 + 1.38532i −0.0281548 + 0.0487656i
\(808\) 3.72210i 0.130943i
\(809\) 20.6825 0.727160 0.363580 0.931563i \(-0.381554\pi\)
0.363580 + 0.931563i \(0.381554\pi\)
\(810\) −2.70274 −0.0949646
\(811\) 16.2377i 0.570182i 0.958500 + 0.285091i \(0.0920239\pi\)
−0.958500 + 0.285091i \(0.907976\pi\)
\(812\) 13.8775 + 17.2263i 0.487007 + 0.604524i
\(813\) −17.3215 + 10.0006i −0.607492 + 0.350736i
\(814\) 29.9033 + 17.2647i 1.04811 + 0.605126i
\(815\) 14.0910 24.4063i 0.493585 0.854915i
\(816\) 5.73328 0.200705
\(817\) −23.5951 + 13.6226i −0.825487 + 0.476595i
\(818\) 17.0474 0.596050
\(819\) 2.28165 + 9.26251i 0.0797273 + 0.323658i
\(820\) 10.2882 0.359280
\(821\) 35.9538 20.7579i 1.25480 0.724457i 0.282738 0.959197i \(-0.408757\pi\)
0.972058 + 0.234740i \(0.0754240\pi\)
\(822\) −10.0557 −0.350734
\(823\) 8.97477 15.5448i 0.312841 0.541856i −0.666135 0.745831i \(-0.732053\pi\)
0.978976 + 0.203975i \(0.0653860\pi\)
\(824\) 7.88888 + 4.55465i 0.274822 + 0.158669i
\(825\) −10.1742 + 5.87408i −0.354220 + 0.204509i
\(826\) 16.9390 2.63895i 0.589383 0.0918210i
\(827\) 0.0414259i 0.00144052i 1.00000 0.000720261i \(0.000229266\pi\)
−1.00000 0.000720261i \(0.999771\pi\)
\(828\) −7.46964 −0.259588
\(829\) −3.51493 −0.122079 −0.0610393 0.998135i \(-0.519441\pi\)
−0.0610393 + 0.998135i \(0.519441\pi\)
\(830\) 41.6130i 1.44441i
\(831\) −9.05583 + 15.6852i −0.314143 + 0.544112i
\(832\) −0.313194 3.59192i −0.0108581 0.124528i
\(833\) 8.54267 39.2132i 0.295986 1.35866i
\(834\) 15.3231 + 8.84682i 0.530597 + 0.306340i
\(835\) −2.97376 5.15070i −0.102911 0.178247i
\(836\) 11.1747 19.3551i 0.386483 0.669409i
\(837\) −6.21147 + 3.58619i −0.214700 + 0.123957i
\(838\) 8.32432i 0.287559i
\(839\) −1.59236 + 0.919352i −0.0549745 + 0.0317395i −0.527235 0.849719i \(-0.676771\pi\)
0.472261 + 0.881459i \(0.343438\pi\)
\(840\) 2.57949 6.66932i 0.0890010 0.230113i
\(841\) −20.4523 35.4243i −0.705250 1.22153i
\(842\) −17.9902 31.1600i −0.619984 1.07384i
\(843\) 11.0176i 0.379465i
\(844\) 3.24329 + 5.61754i 0.111639 + 0.193364i
\(845\) −33.0096 12.0364i −1.13557 0.414065i
\(846\) −8.59312 −0.295438
\(847\) −39.1662 + 6.10177i −1.34577 + 0.209659i
\(848\) 3.60339 6.24125i 0.123741 0.214325i
\(849\) 13.4936 0.463101
\(850\) −11.4437 + 6.60703i −0.392516 + 0.226619i
\(851\) −43.8210 25.3001i −1.50216 0.867275i
\(852\) 0.914994i 0.0313472i
\(853\) 3.88953i 0.133175i 0.997781 + 0.0665875i \(0.0212111\pi\)
−0.997781 + 0.0665875i \(0.978789\pi\)
\(854\) 9.58153 7.71891i 0.327873 0.264136i
\(855\) −5.92518 + 10.2627i −0.202637 + 0.350978i
\(856\) 9.15192 5.28386i 0.312806 0.180599i
\(857\) 3.14373 + 5.44510i 0.107388 + 0.186001i 0.914711 0.404108i \(-0.132418\pi\)
−0.807323 + 0.590109i \(0.799085\pi\)
\(858\) 15.0578 10.5370i 0.514065 0.359728i
\(859\) −3.28045 + 5.68190i −0.111927 + 0.193864i −0.916547 0.399926i \(-0.869036\pi\)
0.804620 + 0.593790i \(0.202369\pi\)
\(860\) 14.5445 + 8.39725i 0.495962 + 0.286344i
\(861\) −9.39320 3.63301i −0.320119 0.123813i
\(862\) 3.10461 + 5.37734i 0.105743 + 0.183153i
\(863\) 11.3137 + 6.53197i 0.385123 + 0.222351i 0.680045 0.733170i \(-0.261960\pi\)
−0.294922 + 0.955521i \(0.595294\pi\)
\(864\) −0.866025 0.500000i −0.0294628 0.0170103i
\(865\) 50.2688 + 29.0227i 1.70919 + 0.986802i
\(866\) 6.90357 + 3.98578i 0.234593 + 0.135442i
\(867\) 7.93524 + 13.7442i 0.269495 + 0.466779i
\(868\) −2.92112 18.7502i −0.0991492 0.636422i
\(869\) 33.6676 + 19.4380i 1.14210 + 0.659389i
\(870\) −11.2987 + 19.5698i −0.383060 + 0.663480i
\(871\) −21.7867 + 1.89967i −0.738213 + 0.0643677i
\(872\) 1.89214 + 3.27729i 0.0640761 + 0.110983i
\(873\) −8.20116 + 4.73494i −0.277567 + 0.160254i
\(874\) −16.3756 + 28.3634i −0.553913 + 0.959406i
\(875\) −2.96675 19.0431i −0.100294 0.643773i
\(876\) 6.85849i 0.231727i
\(877\) 4.94827i 0.167091i 0.996504 + 0.0835456i \(0.0266244\pi\)
−0.996504 + 0.0835456i \(0.973376\pi\)
\(878\) 12.2649 + 7.08113i 0.413920 + 0.238977i
\(879\) −4.13569 + 2.38774i −0.139494 + 0.0805366i
\(880\) −13.7766 −0.464408
\(881\) −5.49446 + 9.51669i −0.185113 + 0.320625i −0.943615 0.331046i \(-0.892599\pi\)
0.758501 + 0.651671i \(0.225932\pi\)
\(882\) −4.71018 + 5.17824i −0.158600 + 0.174361i
\(883\) 43.0985 1.45038 0.725190 0.688549i \(-0.241752\pi\)
0.725190 + 0.688549i \(0.241752\pi\)
\(884\) 16.9367 11.8518i 0.569642 0.398619i
\(885\) 8.75630 + 15.1664i 0.294340 + 0.509811i
\(886\) 27.5835i 0.926687i
\(887\) 21.1488 + 36.6307i 0.710106 + 1.22994i 0.964817 + 0.262923i \(0.0846864\pi\)
−0.254711 + 0.967017i \(0.581980\pi\)
\(888\) −3.38705 5.86654i −0.113662 0.196868i
\(889\) 5.94498 15.3708i 0.199388 0.515521i
\(890\) 24.3011 14.0303i 0.814575 0.470295i
\(891\) 5.09726i 0.170764i
\(892\) −22.5859 + 13.0400i −0.756233 + 0.436611i
\(893\) −18.8386 + 32.6294i −0.630410 + 1.09190i
\(894\) 11.6457 + 20.1710i 0.389491 + 0.674619i
\(895\) −43.7190 25.2412i −1.46136 0.843719i
\(896\) 2.06034 1.65982i 0.0688312 0.0554506i
\(897\) −22.0661 + 15.4412i −0.736765 + 0.515567i
\(898\) −1.46199 + 2.53224i −0.0487873 + 0.0845021i
\(899\) 59.9675i 2.00003i
\(900\) 2.30480 0.0768267
\(901\) 41.3184 1.37652
\(902\) 19.4032i 0.646055i
\(903\) −10.3139 12.8027i −0.343225 0.426048i
\(904\) −1.47154 + 0.849593i −0.0489426 + 0.0282570i
\(905\) 4.61180 + 2.66262i 0.153301 + 0.0885086i
\(906\) −9.15737 + 15.8610i −0.304233 + 0.526947i
\(907\) 33.1378 1.10032 0.550162 0.835058i \(-0.314566\pi\)
0.550162 + 0.835058i \(0.314566\pi\)
\(908\) −10.1088 + 5.83634i −0.335474 + 0.193686i
\(909\) −3.72210 −0.123454
\(910\) −6.16671 25.0341i −0.204424 0.829874i
\(911\) −26.0908 −0.864426 −0.432213 0.901772i \(-0.642267\pi\)
−0.432213 + 0.901772i \(0.642267\pi\)
\(912\) −3.79715 + 2.19229i −0.125736 + 0.0725939i
\(913\) −78.4804 −2.59732
\(914\) 10.4718 18.1377i 0.346377 0.599942i
\(915\) 10.8850 + 6.28449i 0.359849 + 0.207759i
\(916\) 10.4614 6.03988i 0.345654 0.199563i
\(917\) −0.684243 + 1.76912i −0.0225957 + 0.0584215i
\(918\) 5.73328i 0.189226i
\(919\) −46.2008 −1.52403 −0.762013 0.647562i \(-0.775789\pi\)
−0.762013 + 0.647562i \(0.775789\pi\)
\(920\) 20.1885 0.665595
\(921\) 6.26422i 0.206413i
\(922\) −9.20229 + 15.9388i −0.303061 + 0.524918i
\(923\) 1.89147 + 2.70298i 0.0622585 + 0.0889698i
\(924\) 12.5781 + 4.86482i 0.413788 + 0.160041i
\(925\) 13.5212 + 7.80648i 0.444575 + 0.256675i
\(926\) 14.4317 + 24.9964i 0.474254 + 0.821432i
\(927\) 4.55465 7.88888i 0.149594 0.259105i
\(928\) −7.24074 + 4.18045i −0.237689 + 0.137230i
\(929\) 3.17315i 0.104108i −0.998644 0.0520539i \(-0.983423\pi\)
0.998644 0.0520539i \(-0.0165768\pi\)
\(930\) 16.7880 9.69254i 0.550499 0.317831i
\(931\) 9.33651 + 29.2375i 0.305992 + 0.958220i
\(932\) 4.65865 + 8.06902i 0.152599 + 0.264310i
\(933\) −2.99213 5.18252i −0.0979580 0.169668i
\(934\) 33.7544i 1.10448i
\(935\) −39.4924 68.4029i −1.29154 2.23701i
\(936\) −3.59192 + 0.313194i −0.117406 + 0.0102371i
\(937\) 36.3959 1.18900 0.594501 0.804095i \(-0.297350\pi\)
0.594501 + 0.804095i \(0.297350\pi\)
\(938\) −10.0675 12.4969i −0.328717 0.408039i
\(939\) −14.3286 + 24.8179i −0.467597 + 0.809902i
\(940\) 23.2250 0.757515
\(941\) −25.2928 + 14.6028i −0.824521 + 0.476037i −0.851973 0.523586i \(-0.824594\pi\)
0.0274523 + 0.999623i \(0.491261\pi\)
\(942\) −3.32164 1.91775i −0.108225 0.0624837i
\(943\) 28.4339i 0.925935i
\(944\) 6.47957i 0.210892i
\(945\) −6.66932 2.57949i −0.216953 0.0839109i
\(946\) −15.8369 + 27.4303i −0.514901 + 0.891835i
\(947\) −7.10843 + 4.10406i −0.230993 + 0.133364i −0.611030 0.791607i \(-0.709245\pi\)
0.380037 + 0.924971i \(0.375911\pi\)
\(948\) −3.81342 6.60504i −0.123854 0.214522i
\(949\) −14.1778 20.2607i −0.460232 0.657689i
\(950\) 5.05279 8.75168i 0.163934 0.283942i
\(951\) 22.2694 + 12.8572i 0.722134 + 0.416924i
\(952\) 14.1475 + 5.47184i 0.458524 + 0.177343i
\(953\) −22.9551 39.7595i −0.743590 1.28794i −0.950851 0.309649i \(-0.899788\pi\)
0.207261 0.978286i \(-0.433545\pi\)
\(954\) −6.24125 3.60339i −0.202068 0.116664i
\(955\) 8.68253 + 5.01286i 0.280960 + 0.162212i
\(956\) 14.5612 + 8.40693i 0.470944 + 0.271900i
\(957\) −36.9079 21.3088i −1.19306 0.688816i
\(958\) −8.71070 15.0874i −0.281430 0.487451i
\(959\) −24.8137 9.59720i −0.801276 0.309910i
\(960\) 2.34064 + 1.35137i 0.0755439 + 0.0436153i
\(961\) 10.2215 17.7042i 0.329727 0.571105i
\(962\) −22.1330 10.3287i −0.713596 0.333009i
\(963\) −5.28386 9.15192i −0.170270 0.294917i
\(964\) −19.3566 + 11.1756i −0.623435 + 0.359940i
\(965\) −4.02708 + 6.97511i −0.129636 + 0.224537i
\(966\) −18.4322 7.12903i −0.593046 0.229373i
\(967\) 27.1219i 0.872182i 0.899903 + 0.436091i \(0.143637\pi\)
−0.899903 + 0.436091i \(0.856363\pi\)
\(968\) 14.9820i 0.481540i
\(969\) −21.7701 12.5690i −0.699358 0.403774i
\(970\) 22.1656 12.7973i 0.711695 0.410897i
\(971\) −45.4545 −1.45871 −0.729353 0.684138i \(-0.760179\pi\)
−0.729353 + 0.684138i \(0.760179\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) 29.3682 + 36.4549i 0.941501 + 1.16869i
\(974\) 38.2660 1.22612
\(975\) 6.80861 4.76447i 0.218050 0.152585i
\(976\) 2.32523 + 4.02741i 0.0744287 + 0.128914i
\(977\) 20.5624i 0.657849i −0.944356 0.328924i \(-0.893314\pi\)
0.944356 0.328924i \(-0.106686\pi\)
\(978\) −5.21359 9.03020i −0.166712 0.288754i
\(979\) 26.4605 + 45.8309i 0.845681 + 1.46476i
\(980\) 12.7304 13.9954i 0.406657 0.447068i
\(981\) 3.27729 1.89214i 0.104636 0.0604115i
\(982\) 36.7765i 1.17359i
\(983\) −13.1471 + 7.59050i −0.419329 + 0.242099i −0.694790 0.719213i \(-0.744503\pi\)
0.275461 + 0.961312i \(0.411169\pi\)
\(984\) 1.90330 3.29661i 0.0606749 0.105092i
\(985\) −20.1173 34.8442i −0.640990 1.11023i
\(986\) −41.5132 23.9677i −1.32205 0.763286i
\(987\) −21.2045 8.20127i −0.674947 0.261049i
\(988\) −6.68528 + 14.3257i −0.212687 + 0.455761i
\(989\) 23.2077 40.1970i 0.737963 1.27819i
\(990\) 13.7766i 0.437848i
\(991\) 4.00946 0.127365 0.0636824 0.997970i \(-0.479716\pi\)
0.0636824 + 0.997970i \(0.479716\pi\)
\(992\) 7.17238 0.227723
\(993\) 0.880100i 0.0279291i
\(994\) −0.873270 + 2.25785i −0.0276984 + 0.0716147i
\(995\) 6.23611 3.60042i 0.197698 0.114141i
\(996\) 13.3339 + 7.69830i 0.422499 + 0.243930i
\(997\) 17.1948 29.7823i 0.544565 0.943214i −0.454070 0.890966i \(-0.650028\pi\)
0.998634 0.0522474i \(-0.0166384\pi\)
\(998\) 30.1028 0.952887
\(999\) −5.86654 + 3.38705i −0.185609 + 0.107162i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 546.2.bd.a.121.4 16
3.2 odd 2 1638.2.cr.a.667.5 16
7.4 even 3 546.2.bm.a.277.1 yes 16
13.10 even 6 546.2.bm.a.205.5 yes 16
21.11 odd 6 1638.2.dt.a.1369.8 16
39.23 odd 6 1638.2.dt.a.1297.4 16
91.88 even 6 inner 546.2.bd.a.361.4 yes 16
273.179 odd 6 1638.2.cr.a.361.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.bd.a.121.4 16 1.1 even 1 trivial
546.2.bd.a.361.4 yes 16 91.88 even 6 inner
546.2.bm.a.205.5 yes 16 13.10 even 6
546.2.bm.a.277.1 yes 16 7.4 even 3
1638.2.cr.a.361.5 16 273.179 odd 6
1638.2.cr.a.667.5 16 3.2 odd 2
1638.2.dt.a.1297.4 16 39.23 odd 6
1638.2.dt.a.1369.8 16 21.11 odd 6