Properties

Label 546.2.bd
Level $546$
Weight $2$
Character orbit 546.bd
Rep. character $\chi_{546}(121,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $2$
Sturm bound $224$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.bd (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 91 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(224\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).

Total New Old
Modular forms 240 36 204
Cusp forms 208 36 172
Eisenstein series 32 0 32

Trace form

\( 36q + 4q^{3} + 18q^{4} + 2q^{7} + 36q^{9} + O(q^{10}) \) \( 36q + 4q^{3} + 18q^{4} + 2q^{7} + 36q^{9} - 16q^{10} + 2q^{12} - 2q^{13} + 8q^{14} - 18q^{16} + 4q^{17} - 14q^{21} - 4q^{22} - 8q^{23} + 6q^{25} + 4q^{26} + 4q^{27} + 4q^{28} + 4q^{29} + 20q^{35} + 18q^{36} + 30q^{37} + 4q^{38} + 18q^{39} - 8q^{40} - 36q^{41} - 14q^{43} + 12q^{44} - 12q^{46} + 72q^{47} - 2q^{48} + 2q^{49} + 48q^{50} + 4q^{51} + 2q^{52} + 20q^{53} + 4q^{55} + 4q^{56} + 4q^{61} + 4q^{62} + 2q^{63} - 36q^{64} - 28q^{65} - 16q^{66} - 4q^{68} + 24q^{69} - 48q^{70} - 36q^{71} - 42q^{73} - 12q^{74} + 6q^{75} - 6q^{76} - 68q^{77} - 24q^{79} + 36q^{81} - 48q^{82} - 16q^{84} + 72q^{85} + 36q^{86} + 12q^{87} - 8q^{88} - 24q^{89} - 16q^{90} - 112q^{91} - 16q^{92} - 24q^{93} + 80q^{94} - 102q^{97} - 24q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
546.2.bd.a \(16\) \(4.360\) \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None \(0\) \(-16\) \(0\) \(8\) \(q+\beta _{13}q^{2}-q^{3}+\beta _{3}q^{4}+(-\beta _{2}+\beta _{5}+\cdots)q^{5}+\cdots\)
546.2.bd.b \(20\) \(4.360\) \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None \(0\) \(20\) \(0\) \(-6\) \(q-\beta _{10}q^{2}+q^{3}-\beta _{12}q^{4}+\beta _{4}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(546, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)