Properties

Label 5445.2.a.bq.1.3
Level $5445$
Weight $2$
Character 5445.1
Self dual yes
Analytic conductor $43.479$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5445,2,Mod(1,5445)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5445.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5445, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5445.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,1,-4,0,0,-3,0,-1,0,0,-7,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4785439006\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.209057\) of defining polynomial
Character \(\chi\) \(=\) 5445.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.33826 q^{2} -0.209057 q^{4} -1.00000 q^{5} +3.78339 q^{7} -2.95630 q^{8} -1.33826 q^{10} -4.93395 q^{13} +5.06316 q^{14} -3.53818 q^{16} +3.25841 q^{17} -1.37283 q^{19} +0.209057 q^{20} +1.93395 q^{23} +1.00000 q^{25} -6.60292 q^{26} -0.790943 q^{28} -1.73968 q^{29} -5.92173 q^{31} +1.17758 q^{32} +4.36060 q^{34} -3.78339 q^{35} +4.69789 q^{37} -1.83720 q^{38} +2.95630 q^{40} +9.43757 q^{41} -11.4086 q^{43} +2.58814 q^{46} -0.805727 q^{47} +7.31401 q^{49} +1.33826 q^{50} +1.03148 q^{52} -10.6960 q^{53} -11.1848 q^{56} -2.32815 q^{58} -12.1634 q^{59} -8.59102 q^{61} -7.92482 q^{62} +8.65227 q^{64} +4.93395 q^{65} -2.77425 q^{67} -0.681193 q^{68} -5.06316 q^{70} +2.73968 q^{71} +9.37717 q^{73} +6.28700 q^{74} +0.286999 q^{76} -12.7667 q^{79} +3.53818 q^{80} +12.6299 q^{82} -3.41304 q^{83} -3.25841 q^{85} -15.2677 q^{86} +7.85817 q^{89} -18.6671 q^{91} -0.404307 q^{92} -1.07827 q^{94} +1.37283 q^{95} -13.6196 q^{97} +9.78806 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{4} - 4 q^{5} - 3 q^{8} - q^{10} - 7 q^{13} + 5 q^{14} - 9 q^{16} + 8 q^{17} - 11 q^{19} - q^{20} - 5 q^{23} + 4 q^{25} + 12 q^{26} - 5 q^{28} + 17 q^{29} - 5 q^{31} + 17 q^{34} + 15 q^{37}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33826 0.946294 0.473147 0.880984i \(-0.343118\pi\)
0.473147 + 0.880984i \(0.343118\pi\)
\(3\) 0 0
\(4\) −0.209057 −0.104528
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.78339 1.42999 0.714993 0.699132i \(-0.246430\pi\)
0.714993 + 0.699132i \(0.246430\pi\)
\(8\) −2.95630 −1.04521
\(9\) 0 0
\(10\) −1.33826 −0.423195
\(11\) 0 0
\(12\) 0 0
\(13\) −4.93395 −1.36843 −0.684216 0.729279i \(-0.739856\pi\)
−0.684216 + 0.729279i \(0.739856\pi\)
\(14\) 5.06316 1.35319
\(15\) 0 0
\(16\) −3.53818 −0.884545
\(17\) 3.25841 0.790280 0.395140 0.918621i \(-0.370696\pi\)
0.395140 + 0.918621i \(0.370696\pi\)
\(18\) 0 0
\(19\) −1.37283 −0.314949 −0.157474 0.987523i \(-0.550335\pi\)
−0.157474 + 0.987523i \(0.550335\pi\)
\(20\) 0.209057 0.0467465
\(21\) 0 0
\(22\) 0 0
\(23\) 1.93395 0.403257 0.201629 0.979462i \(-0.435377\pi\)
0.201629 + 0.979462i \(0.435377\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −6.60292 −1.29494
\(27\) 0 0
\(28\) −0.790943 −0.149474
\(29\) −1.73968 −0.323051 −0.161525 0.986869i \(-0.551641\pi\)
−0.161525 + 0.986869i \(0.551641\pi\)
\(30\) 0 0
\(31\) −5.92173 −1.06357 −0.531787 0.846878i \(-0.678479\pi\)
−0.531787 + 0.846878i \(0.678479\pi\)
\(32\) 1.17758 0.208169
\(33\) 0 0
\(34\) 4.36060 0.747837
\(35\) −3.78339 −0.639509
\(36\) 0 0
\(37\) 4.69789 0.772328 0.386164 0.922430i \(-0.373800\pi\)
0.386164 + 0.922430i \(0.373800\pi\)
\(38\) −1.83720 −0.298034
\(39\) 0 0
\(40\) 2.95630 0.467431
\(41\) 9.43757 1.47390 0.736950 0.675947i \(-0.236265\pi\)
0.736950 + 0.675947i \(0.236265\pi\)
\(42\) 0 0
\(43\) −11.4086 −1.73980 −0.869901 0.493226i \(-0.835818\pi\)
−0.869901 + 0.493226i \(0.835818\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 2.58814 0.381600
\(47\) −0.805727 −0.117527 −0.0587637 0.998272i \(-0.518716\pi\)
−0.0587637 + 0.998272i \(0.518716\pi\)
\(48\) 0 0
\(49\) 7.31401 1.04486
\(50\) 1.33826 0.189259
\(51\) 0 0
\(52\) 1.03148 0.143040
\(53\) −10.6960 −1.46921 −0.734603 0.678498i \(-0.762631\pi\)
−0.734603 + 0.678498i \(0.762631\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −11.1848 −1.49463
\(57\) 0 0
\(58\) −2.32815 −0.305701
\(59\) −12.1634 −1.58355 −0.791773 0.610816i \(-0.790842\pi\)
−0.791773 + 0.610816i \(0.790842\pi\)
\(60\) 0 0
\(61\) −8.59102 −1.09997 −0.549984 0.835175i \(-0.685366\pi\)
−0.549984 + 0.835175i \(0.685366\pi\)
\(62\) −7.92482 −1.00645
\(63\) 0 0
\(64\) 8.65227 1.08153
\(65\) 4.93395 0.611982
\(66\) 0 0
\(67\) −2.77425 −0.338928 −0.169464 0.985536i \(-0.554204\pi\)
−0.169464 + 0.985536i \(0.554204\pi\)
\(68\) −0.681193 −0.0826068
\(69\) 0 0
\(70\) −5.06316 −0.605163
\(71\) 2.73968 0.325140 0.162570 0.986697i \(-0.448022\pi\)
0.162570 + 0.986697i \(0.448022\pi\)
\(72\) 0 0
\(73\) 9.37717 1.09751 0.548757 0.835982i \(-0.315101\pi\)
0.548757 + 0.835982i \(0.315101\pi\)
\(74\) 6.28700 0.730849
\(75\) 0 0
\(76\) 0.286999 0.0329211
\(77\) 0 0
\(78\) 0 0
\(79\) −12.7667 −1.43637 −0.718183 0.695855i \(-0.755026\pi\)
−0.718183 + 0.695855i \(0.755026\pi\)
\(80\) 3.53818 0.395581
\(81\) 0 0
\(82\) 12.6299 1.39474
\(83\) −3.41304 −0.374630 −0.187315 0.982300i \(-0.559979\pi\)
−0.187315 + 0.982300i \(0.559979\pi\)
\(84\) 0 0
\(85\) −3.25841 −0.353424
\(86\) −15.2677 −1.64636
\(87\) 0 0
\(88\) 0 0
\(89\) 7.85817 0.832964 0.416482 0.909144i \(-0.363263\pi\)
0.416482 + 0.909144i \(0.363263\pi\)
\(90\) 0 0
\(91\) −18.6671 −1.95684
\(92\) −0.404307 −0.0421519
\(93\) 0 0
\(94\) −1.07827 −0.111215
\(95\) 1.37283 0.140849
\(96\) 0 0
\(97\) −13.6196 −1.38286 −0.691431 0.722442i \(-0.743019\pi\)
−0.691431 + 0.722442i \(0.743019\pi\)
\(98\) 9.78806 0.988743
\(99\) 0 0
\(100\) −0.209057 −0.0209057
\(101\) 7.93842 0.789902 0.394951 0.918702i \(-0.370761\pi\)
0.394951 + 0.918702i \(0.370761\pi\)
\(102\) 0 0
\(103\) −12.2052 −1.20262 −0.601309 0.799017i \(-0.705354\pi\)
−0.601309 + 0.799017i \(0.705354\pi\)
\(104\) 14.5862 1.43030
\(105\) 0 0
\(106\) −14.3140 −1.39030
\(107\) 2.33537 0.225769 0.112885 0.993608i \(-0.463991\pi\)
0.112885 + 0.993608i \(0.463991\pi\)
\(108\) 0 0
\(109\) −6.39419 −0.612453 −0.306226 0.951959i \(-0.599066\pi\)
−0.306226 + 0.951959i \(0.599066\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −13.3863 −1.26489
\(113\) −18.1316 −1.70568 −0.852840 0.522172i \(-0.825122\pi\)
−0.852840 + 0.522172i \(0.825122\pi\)
\(114\) 0 0
\(115\) −1.93395 −0.180342
\(116\) 0.363692 0.0337680
\(117\) 0 0
\(118\) −16.2779 −1.49850
\(119\) 12.3278 1.13009
\(120\) 0 0
\(121\) 0 0
\(122\) −11.4970 −1.04089
\(123\) 0 0
\(124\) 1.23798 0.111174
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 22.3123 1.97990 0.989948 0.141429i \(-0.0451696\pi\)
0.989948 + 0.141429i \(0.0451696\pi\)
\(128\) 9.22384 0.815280
\(129\) 0 0
\(130\) 6.60292 0.579114
\(131\) −0.562102 −0.0491111 −0.0245555 0.999698i \(-0.507817\pi\)
−0.0245555 + 0.999698i \(0.507817\pi\)
\(132\) 0 0
\(133\) −5.19394 −0.450372
\(134\) −3.71267 −0.320726
\(135\) 0 0
\(136\) −9.63282 −0.826007
\(137\) 18.2719 1.56107 0.780536 0.625110i \(-0.214946\pi\)
0.780536 + 0.625110i \(0.214946\pi\)
\(138\) 0 0
\(139\) −14.2600 −1.20952 −0.604758 0.796409i \(-0.706730\pi\)
−0.604758 + 0.796409i \(0.706730\pi\)
\(140\) 0.790943 0.0668469
\(141\) 0 0
\(142\) 3.66641 0.307678
\(143\) 0 0
\(144\) 0 0
\(145\) 1.73968 0.144473
\(146\) 12.5491 1.03857
\(147\) 0 0
\(148\) −0.982126 −0.0807302
\(149\) 10.6039 0.868705 0.434353 0.900743i \(-0.356977\pi\)
0.434353 + 0.900743i \(0.356977\pi\)
\(150\) 0 0
\(151\) −12.5734 −1.02320 −0.511602 0.859222i \(-0.670948\pi\)
−0.511602 + 0.859222i \(0.670948\pi\)
\(152\) 4.05849 0.329187
\(153\) 0 0
\(154\) 0 0
\(155\) 5.92173 0.475645
\(156\) 0 0
\(157\) −12.5332 −1.00026 −0.500128 0.865951i \(-0.666714\pi\)
−0.500128 + 0.865951i \(0.666714\pi\)
\(158\) −17.0852 −1.35922
\(159\) 0 0
\(160\) −1.17758 −0.0930958
\(161\) 7.31690 0.576652
\(162\) 0 0
\(163\) −3.10317 −0.243059 −0.121530 0.992588i \(-0.538780\pi\)
−0.121530 + 0.992588i \(0.538780\pi\)
\(164\) −1.97299 −0.154065
\(165\) 0 0
\(166\) −4.56754 −0.354510
\(167\) −8.34898 −0.646063 −0.323032 0.946388i \(-0.604702\pi\)
−0.323032 + 0.946388i \(0.604702\pi\)
\(168\) 0 0
\(169\) 11.3439 0.872608
\(170\) −4.36060 −0.334443
\(171\) 0 0
\(172\) 2.38506 0.181859
\(173\) −6.84208 −0.520194 −0.260097 0.965583i \(-0.583754\pi\)
−0.260097 + 0.965583i \(0.583754\pi\)
\(174\) 0 0
\(175\) 3.78339 0.285997
\(176\) 0 0
\(177\) 0 0
\(178\) 10.5163 0.788229
\(179\) −15.5085 −1.15916 −0.579579 0.814916i \(-0.696783\pi\)
−0.579579 + 0.814916i \(0.696783\pi\)
\(180\) 0 0
\(181\) −2.26096 −0.168056 −0.0840281 0.996463i \(-0.526779\pi\)
−0.0840281 + 0.996463i \(0.526779\pi\)
\(182\) −24.9814 −1.85174
\(183\) 0 0
\(184\) −5.71734 −0.421488
\(185\) −4.69789 −0.345395
\(186\) 0 0
\(187\) 0 0
\(188\) 0.168443 0.0122850
\(189\) 0 0
\(190\) 1.83720 0.133285
\(191\) 17.7692 1.28574 0.642869 0.765976i \(-0.277744\pi\)
0.642869 + 0.765976i \(0.277744\pi\)
\(192\) 0 0
\(193\) −21.1559 −1.52283 −0.761417 0.648262i \(-0.775496\pi\)
−0.761417 + 0.648262i \(0.775496\pi\)
\(194\) −18.2266 −1.30859
\(195\) 0 0
\(196\) −1.52904 −0.109217
\(197\) −24.1034 −1.71730 −0.858650 0.512563i \(-0.828696\pi\)
−0.858650 + 0.512563i \(0.828696\pi\)
\(198\) 0 0
\(199\) 4.30369 0.305081 0.152540 0.988297i \(-0.451255\pi\)
0.152540 + 0.988297i \(0.451255\pi\)
\(200\) −2.95630 −0.209042
\(201\) 0 0
\(202\) 10.6237 0.747480
\(203\) −6.58189 −0.461958
\(204\) 0 0
\(205\) −9.43757 −0.659148
\(206\) −16.3338 −1.13803
\(207\) 0 0
\(208\) 17.4572 1.21044
\(209\) 0 0
\(210\) 0 0
\(211\) −15.2270 −1.04827 −0.524135 0.851635i \(-0.675611\pi\)
−0.524135 + 0.851635i \(0.675611\pi\)
\(212\) 2.23607 0.153574
\(213\) 0 0
\(214\) 3.12534 0.213644
\(215\) 11.4086 0.778063
\(216\) 0 0
\(217\) −22.4042 −1.52089
\(218\) −8.55710 −0.579560
\(219\) 0 0
\(220\) 0 0
\(221\) −16.0768 −1.08145
\(222\) 0 0
\(223\) 28.6450 1.91821 0.959105 0.283050i \(-0.0913463\pi\)
0.959105 + 0.283050i \(0.0913463\pi\)
\(224\) 4.45524 0.297678
\(225\) 0 0
\(226\) −24.2649 −1.61407
\(227\) 3.02608 0.200848 0.100424 0.994945i \(-0.467980\pi\)
0.100424 + 0.994945i \(0.467980\pi\)
\(228\) 0 0
\(229\) −3.05244 −0.201711 −0.100856 0.994901i \(-0.532158\pi\)
−0.100856 + 0.994901i \(0.532158\pi\)
\(230\) −2.58814 −0.170657
\(231\) 0 0
\(232\) 5.14301 0.337655
\(233\) −6.30934 −0.413339 −0.206669 0.978411i \(-0.566262\pi\)
−0.206669 + 0.978411i \(0.566262\pi\)
\(234\) 0 0
\(235\) 0.805727 0.0525598
\(236\) 2.54285 0.165526
\(237\) 0 0
\(238\) 16.4978 1.06940
\(239\) −5.71109 −0.369420 −0.184710 0.982793i \(-0.559135\pi\)
−0.184710 + 0.982793i \(0.559135\pi\)
\(240\) 0 0
\(241\) −4.81966 −0.310462 −0.155231 0.987878i \(-0.549612\pi\)
−0.155231 + 0.987878i \(0.549612\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 1.79601 0.114978
\(245\) −7.31401 −0.467275
\(246\) 0 0
\(247\) 6.77348 0.430986
\(248\) 17.5064 1.11166
\(249\) 0 0
\(250\) −1.33826 −0.0846391
\(251\) 0.883023 0.0557359 0.0278680 0.999612i \(-0.491128\pi\)
0.0278680 + 0.999612i \(0.491128\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 29.8597 1.87356
\(255\) 0 0
\(256\) −4.96064 −0.310040
\(257\) −8.63651 −0.538731 −0.269365 0.963038i \(-0.586814\pi\)
−0.269365 + 0.963038i \(0.586814\pi\)
\(258\) 0 0
\(259\) 17.7739 1.10442
\(260\) −1.03148 −0.0639695
\(261\) 0 0
\(262\) −0.752239 −0.0464735
\(263\) −4.73594 −0.292031 −0.146015 0.989282i \(-0.546645\pi\)
−0.146015 + 0.989282i \(0.546645\pi\)
\(264\) 0 0
\(265\) 10.6960 0.657049
\(266\) −6.95085 −0.426184
\(267\) 0 0
\(268\) 0.579976 0.0354277
\(269\) 14.2672 0.869887 0.434944 0.900458i \(-0.356768\pi\)
0.434944 + 0.900458i \(0.356768\pi\)
\(270\) 0 0
\(271\) −22.9367 −1.39331 −0.696653 0.717408i \(-0.745328\pi\)
−0.696653 + 0.717408i \(0.745328\pi\)
\(272\) −11.5288 −0.699039
\(273\) 0 0
\(274\) 24.4526 1.47723
\(275\) 0 0
\(276\) 0 0
\(277\) 5.82302 0.349872 0.174936 0.984580i \(-0.444028\pi\)
0.174936 + 0.984580i \(0.444028\pi\)
\(278\) −19.0836 −1.14456
\(279\) 0 0
\(280\) 11.1848 0.668420
\(281\) −0.157591 −0.00940109 −0.00470055 0.999989i \(-0.501496\pi\)
−0.00470055 + 0.999989i \(0.501496\pi\)
\(282\) 0 0
\(283\) 8.94565 0.531764 0.265882 0.964006i \(-0.414337\pi\)
0.265882 + 0.964006i \(0.414337\pi\)
\(284\) −0.572749 −0.0339864
\(285\) 0 0
\(286\) 0 0
\(287\) 35.7060 2.10766
\(288\) 0 0
\(289\) −6.38277 −0.375457
\(290\) 2.32815 0.136714
\(291\) 0 0
\(292\) −1.96036 −0.114722
\(293\) 25.9879 1.51823 0.759113 0.650959i \(-0.225633\pi\)
0.759113 + 0.650959i \(0.225633\pi\)
\(294\) 0 0
\(295\) 12.1634 0.708183
\(296\) −13.8883 −0.807243
\(297\) 0 0
\(298\) 14.1908 0.822050
\(299\) −9.54204 −0.551831
\(300\) 0 0
\(301\) −43.1633 −2.48789
\(302\) −16.8264 −0.968252
\(303\) 0 0
\(304\) 4.85732 0.278586
\(305\) 8.59102 0.491921
\(306\) 0 0
\(307\) −4.72359 −0.269590 −0.134795 0.990874i \(-0.543038\pi\)
−0.134795 + 0.990874i \(0.543038\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 7.92482 0.450099
\(311\) 19.2517 1.09166 0.545832 0.837895i \(-0.316214\pi\)
0.545832 + 0.837895i \(0.316214\pi\)
\(312\) 0 0
\(313\) 2.94346 0.166374 0.0831872 0.996534i \(-0.473490\pi\)
0.0831872 + 0.996534i \(0.473490\pi\)
\(314\) −16.7727 −0.946536
\(315\) 0 0
\(316\) 2.66897 0.150141
\(317\) −1.82705 −0.102617 −0.0513086 0.998683i \(-0.516339\pi\)
−0.0513086 + 0.998683i \(0.516339\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −8.65227 −0.483677
\(321\) 0 0
\(322\) 9.79192 0.545682
\(323\) −4.47324 −0.248898
\(324\) 0 0
\(325\) −4.93395 −0.273687
\(326\) −4.15285 −0.230005
\(327\) 0 0
\(328\) −27.9002 −1.54053
\(329\) −3.04838 −0.168062
\(330\) 0 0
\(331\) 17.3017 0.950985 0.475493 0.879720i \(-0.342270\pi\)
0.475493 + 0.879720i \(0.342270\pi\)
\(332\) 0.713521 0.0391595
\(333\) 0 0
\(334\) −11.1731 −0.611366
\(335\) 2.77425 0.151573
\(336\) 0 0
\(337\) 10.8095 0.588829 0.294414 0.955678i \(-0.404875\pi\)
0.294414 + 0.955678i \(0.404875\pi\)
\(338\) 15.1811 0.825744
\(339\) 0 0
\(340\) 0.681193 0.0369429
\(341\) 0 0
\(342\) 0 0
\(343\) 1.18802 0.0641472
\(344\) 33.7273 1.81846
\(345\) 0 0
\(346\) −9.15649 −0.492256
\(347\) −15.1883 −0.815350 −0.407675 0.913127i \(-0.633660\pi\)
−0.407675 + 0.913127i \(0.633660\pi\)
\(348\) 0 0
\(349\) −3.79541 −0.203164 −0.101582 0.994827i \(-0.532390\pi\)
−0.101582 + 0.994827i \(0.532390\pi\)
\(350\) 5.06316 0.270637
\(351\) 0 0
\(352\) 0 0
\(353\) −0.519577 −0.0276543 −0.0138272 0.999904i \(-0.504401\pi\)
−0.0138272 + 0.999904i \(0.504401\pi\)
\(354\) 0 0
\(355\) −2.73968 −0.145407
\(356\) −1.64280 −0.0870685
\(357\) 0 0
\(358\) −20.7544 −1.09690
\(359\) −13.8374 −0.730310 −0.365155 0.930947i \(-0.618984\pi\)
−0.365155 + 0.930947i \(0.618984\pi\)
\(360\) 0 0
\(361\) −17.1153 −0.900807
\(362\) −3.02576 −0.159030
\(363\) 0 0
\(364\) 3.90248 0.204545
\(365\) −9.37717 −0.490823
\(366\) 0 0
\(367\) −20.6220 −1.07646 −0.538229 0.842799i \(-0.680907\pi\)
−0.538229 + 0.842799i \(0.680907\pi\)
\(368\) −6.84268 −0.356699
\(369\) 0 0
\(370\) −6.28700 −0.326846
\(371\) −40.4670 −2.10094
\(372\) 0 0
\(373\) −8.17818 −0.423450 −0.211725 0.977329i \(-0.567908\pi\)
−0.211725 + 0.977329i \(0.567908\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 2.38197 0.122841
\(377\) 8.58351 0.442073
\(378\) 0 0
\(379\) 26.5982 1.36626 0.683128 0.730299i \(-0.260619\pi\)
0.683128 + 0.730299i \(0.260619\pi\)
\(380\) −0.286999 −0.0147228
\(381\) 0 0
\(382\) 23.7799 1.21669
\(383\) 14.5607 0.744018 0.372009 0.928229i \(-0.378669\pi\)
0.372009 + 0.928229i \(0.378669\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −28.3121 −1.44105
\(387\) 0 0
\(388\) 2.84727 0.144548
\(389\) 3.94911 0.200228 0.100114 0.994976i \(-0.468079\pi\)
0.100114 + 0.994976i \(0.468079\pi\)
\(390\) 0 0
\(391\) 6.30161 0.318686
\(392\) −21.6224 −1.09209
\(393\) 0 0
\(394\) −32.2567 −1.62507
\(395\) 12.7667 0.642362
\(396\) 0 0
\(397\) −18.0162 −0.904209 −0.452105 0.891965i \(-0.649327\pi\)
−0.452105 + 0.891965i \(0.649327\pi\)
\(398\) 5.75947 0.288696
\(399\) 0 0
\(400\) −3.53818 −0.176909
\(401\) 26.7798 1.33732 0.668659 0.743569i \(-0.266869\pi\)
0.668659 + 0.743569i \(0.266869\pi\)
\(402\) 0 0
\(403\) 29.2175 1.45543
\(404\) −1.65958 −0.0825673
\(405\) 0 0
\(406\) −8.80828 −0.437148
\(407\) 0 0
\(408\) 0 0
\(409\) −28.5313 −1.41078 −0.705390 0.708819i \(-0.749228\pi\)
−0.705390 + 0.708819i \(0.749228\pi\)
\(410\) −12.6299 −0.623748
\(411\) 0 0
\(412\) 2.55159 0.125708
\(413\) −46.0190 −2.26445
\(414\) 0 0
\(415\) 3.41304 0.167540
\(416\) −5.81012 −0.284865
\(417\) 0 0
\(418\) 0 0
\(419\) −14.7459 −0.720386 −0.360193 0.932878i \(-0.617289\pi\)
−0.360193 + 0.932878i \(0.617289\pi\)
\(420\) 0 0
\(421\) 19.3034 0.940788 0.470394 0.882456i \(-0.344112\pi\)
0.470394 + 0.882456i \(0.344112\pi\)
\(422\) −20.3777 −0.991971
\(423\) 0 0
\(424\) 31.6205 1.53563
\(425\) 3.25841 0.158056
\(426\) 0 0
\(427\) −32.5032 −1.57294
\(428\) −0.488226 −0.0235993
\(429\) 0 0
\(430\) 15.2677 0.736276
\(431\) −10.4970 −0.505622 −0.252811 0.967516i \(-0.581355\pi\)
−0.252811 + 0.967516i \(0.581355\pi\)
\(432\) 0 0
\(433\) 23.1357 1.11183 0.555915 0.831239i \(-0.312368\pi\)
0.555915 + 0.831239i \(0.312368\pi\)
\(434\) −29.9826 −1.43921
\(435\) 0 0
\(436\) 1.33675 0.0640187
\(437\) −2.65499 −0.127005
\(438\) 0 0
\(439\) 25.2313 1.20422 0.602111 0.798412i \(-0.294326\pi\)
0.602111 + 0.798412i \(0.294326\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −21.5150 −1.02336
\(443\) −6.68546 −0.317636 −0.158818 0.987308i \(-0.550768\pi\)
−0.158818 + 0.987308i \(0.550768\pi\)
\(444\) 0 0
\(445\) −7.85817 −0.372513
\(446\) 38.3345 1.81519
\(447\) 0 0
\(448\) 32.7349 1.54658
\(449\) 13.1159 0.618976 0.309488 0.950903i \(-0.399842\pi\)
0.309488 + 0.950903i \(0.399842\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.79054 0.178292
\(453\) 0 0
\(454\) 4.04968 0.190061
\(455\) 18.6671 0.875125
\(456\) 0 0
\(457\) −35.1276 −1.64320 −0.821599 0.570066i \(-0.806918\pi\)
−0.821599 + 0.570066i \(0.806918\pi\)
\(458\) −4.08497 −0.190878
\(459\) 0 0
\(460\) 0.404307 0.0188509
\(461\) 30.4370 1.41759 0.708797 0.705413i \(-0.249238\pi\)
0.708797 + 0.705413i \(0.249238\pi\)
\(462\) 0 0
\(463\) −10.0870 −0.468783 −0.234392 0.972142i \(-0.575310\pi\)
−0.234392 + 0.972142i \(0.575310\pi\)
\(464\) 6.15531 0.285753
\(465\) 0 0
\(466\) −8.44355 −0.391140
\(467\) −17.0520 −0.789072 −0.394536 0.918881i \(-0.629095\pi\)
−0.394536 + 0.918881i \(0.629095\pi\)
\(468\) 0 0
\(469\) −10.4961 −0.484663
\(470\) 1.07827 0.0497370
\(471\) 0 0
\(472\) 35.9587 1.65513
\(473\) 0 0
\(474\) 0 0
\(475\) −1.37283 −0.0629897
\(476\) −2.57722 −0.118126
\(477\) 0 0
\(478\) −7.64293 −0.349580
\(479\) 8.92831 0.407945 0.203972 0.978977i \(-0.434615\pi\)
0.203972 + 0.978977i \(0.434615\pi\)
\(480\) 0 0
\(481\) −23.1792 −1.05688
\(482\) −6.44996 −0.293788
\(483\) 0 0
\(484\) 0 0
\(485\) 13.6196 0.618435
\(486\) 0 0
\(487\) 33.4638 1.51639 0.758196 0.652027i \(-0.226081\pi\)
0.758196 + 0.652027i \(0.226081\pi\)
\(488\) 25.3976 1.14970
\(489\) 0 0
\(490\) −9.78806 −0.442179
\(491\) 9.07217 0.409421 0.204711 0.978823i \(-0.434375\pi\)
0.204711 + 0.978823i \(0.434375\pi\)
\(492\) 0 0
\(493\) −5.66859 −0.255301
\(494\) 9.06468 0.407839
\(495\) 0 0
\(496\) 20.9521 0.940779
\(497\) 10.3653 0.464946
\(498\) 0 0
\(499\) 39.0776 1.74935 0.874677 0.484706i \(-0.161073\pi\)
0.874677 + 0.484706i \(0.161073\pi\)
\(500\) 0.209057 0.00934931
\(501\) 0 0
\(502\) 1.18172 0.0527425
\(503\) 22.9483 1.02322 0.511608 0.859219i \(-0.329050\pi\)
0.511608 + 0.859219i \(0.329050\pi\)
\(504\) 0 0
\(505\) −7.93842 −0.353255
\(506\) 0 0
\(507\) 0 0
\(508\) −4.66454 −0.206956
\(509\) −40.0637 −1.77579 −0.887896 0.460045i \(-0.847833\pi\)
−0.887896 + 0.460045i \(0.847833\pi\)
\(510\) 0 0
\(511\) 35.4775 1.56943
\(512\) −25.0863 −1.10867
\(513\) 0 0
\(514\) −11.5579 −0.509797
\(515\) 12.2052 0.537827
\(516\) 0 0
\(517\) 0 0
\(518\) 23.7861 1.04510
\(519\) 0 0
\(520\) −14.5862 −0.639648
\(521\) 30.3711 1.33058 0.665292 0.746583i \(-0.268307\pi\)
0.665292 + 0.746583i \(0.268307\pi\)
\(522\) 0 0
\(523\) −19.0349 −0.832337 −0.416169 0.909287i \(-0.636627\pi\)
−0.416169 + 0.909287i \(0.636627\pi\)
\(524\) 0.117511 0.00513350
\(525\) 0 0
\(526\) −6.33793 −0.276347
\(527\) −19.2954 −0.840521
\(528\) 0 0
\(529\) −19.2598 −0.837383
\(530\) 14.3140 0.621761
\(531\) 0 0
\(532\) 1.08583 0.0470767
\(533\) −46.5645 −2.01693
\(534\) 0 0
\(535\) −2.33537 −0.100967
\(536\) 8.20150 0.354251
\(537\) 0 0
\(538\) 19.0933 0.823169
\(539\) 0 0
\(540\) 0 0
\(541\) 11.6232 0.499721 0.249861 0.968282i \(-0.419615\pi\)
0.249861 + 0.968282i \(0.419615\pi\)
\(542\) −30.6953 −1.31848
\(543\) 0 0
\(544\) 3.83704 0.164512
\(545\) 6.39419 0.273897
\(546\) 0 0
\(547\) −13.6517 −0.583703 −0.291852 0.956464i \(-0.594271\pi\)
−0.291852 + 0.956464i \(0.594271\pi\)
\(548\) −3.81986 −0.163177
\(549\) 0 0
\(550\) 0 0
\(551\) 2.38829 0.101744
\(552\) 0 0
\(553\) −48.3013 −2.05398
\(554\) 7.79273 0.331081
\(555\) 0 0
\(556\) 2.98115 0.126429
\(557\) 5.62173 0.238200 0.119100 0.992882i \(-0.461999\pi\)
0.119100 + 0.992882i \(0.461999\pi\)
\(558\) 0 0
\(559\) 56.2897 2.38080
\(560\) 13.3863 0.565675
\(561\) 0 0
\(562\) −0.210898 −0.00889619
\(563\) −26.0494 −1.09785 −0.548926 0.835871i \(-0.684963\pi\)
−0.548926 + 0.835871i \(0.684963\pi\)
\(564\) 0 0
\(565\) 18.1316 0.762804
\(566\) 11.9716 0.503204
\(567\) 0 0
\(568\) −8.09931 −0.339839
\(569\) −28.7427 −1.20496 −0.602478 0.798135i \(-0.705820\pi\)
−0.602478 + 0.798135i \(0.705820\pi\)
\(570\) 0 0
\(571\) −17.8096 −0.745310 −0.372655 0.927970i \(-0.621552\pi\)
−0.372655 + 0.927970i \(0.621552\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 47.7839 1.99446
\(575\) 1.93395 0.0806515
\(576\) 0 0
\(577\) −16.3416 −0.680308 −0.340154 0.940370i \(-0.610479\pi\)
−0.340154 + 0.940370i \(0.610479\pi\)
\(578\) −8.54182 −0.355293
\(579\) 0 0
\(580\) −0.363692 −0.0151015
\(581\) −12.9129 −0.535716
\(582\) 0 0
\(583\) 0 0
\(584\) −27.7217 −1.14713
\(585\) 0 0
\(586\) 34.7785 1.43669
\(587\) −12.0714 −0.498238 −0.249119 0.968473i \(-0.580141\pi\)
−0.249119 + 0.968473i \(0.580141\pi\)
\(588\) 0 0
\(589\) 8.12952 0.334971
\(590\) 16.2779 0.670149
\(591\) 0 0
\(592\) −16.6220 −0.683159
\(593\) 28.5085 1.17071 0.585353 0.810779i \(-0.300956\pi\)
0.585353 + 0.810779i \(0.300956\pi\)
\(594\) 0 0
\(595\) −12.3278 −0.505391
\(596\) −2.21682 −0.0908044
\(597\) 0 0
\(598\) −12.7697 −0.522194
\(599\) 1.66060 0.0678503 0.0339252 0.999424i \(-0.489199\pi\)
0.0339252 + 0.999424i \(0.489199\pi\)
\(600\) 0 0
\(601\) 11.5218 0.469982 0.234991 0.971997i \(-0.424494\pi\)
0.234991 + 0.971997i \(0.424494\pi\)
\(602\) −57.7638 −2.35428
\(603\) 0 0
\(604\) 2.62855 0.106954
\(605\) 0 0
\(606\) 0 0
\(607\) 8.37099 0.339768 0.169884 0.985464i \(-0.445661\pi\)
0.169884 + 0.985464i \(0.445661\pi\)
\(608\) −1.61662 −0.0655624
\(609\) 0 0
\(610\) 11.4970 0.465501
\(611\) 3.97542 0.160828
\(612\) 0 0
\(613\) 21.2085 0.856604 0.428302 0.903636i \(-0.359112\pi\)
0.428302 + 0.903636i \(0.359112\pi\)
\(614\) −6.32140 −0.255111
\(615\) 0 0
\(616\) 0 0
\(617\) −19.6085 −0.789408 −0.394704 0.918808i \(-0.629153\pi\)
−0.394704 + 0.918808i \(0.629153\pi\)
\(618\) 0 0
\(619\) 26.7786 1.07632 0.538162 0.842841i \(-0.319119\pi\)
0.538162 + 0.842841i \(0.319119\pi\)
\(620\) −1.23798 −0.0497184
\(621\) 0 0
\(622\) 25.7638 1.03303
\(623\) 29.7305 1.19113
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 3.93912 0.157439
\(627\) 0 0
\(628\) 2.62015 0.104555
\(629\) 15.3076 0.610355
\(630\) 0 0
\(631\) 38.1370 1.51821 0.759106 0.650967i \(-0.225637\pi\)
0.759106 + 0.650967i \(0.225637\pi\)
\(632\) 37.7421 1.50130
\(633\) 0 0
\(634\) −2.44507 −0.0971060
\(635\) −22.3123 −0.885437
\(636\) 0 0
\(637\) −36.0870 −1.42982
\(638\) 0 0
\(639\) 0 0
\(640\) −9.22384 −0.364604
\(641\) 30.6279 1.20973 0.604865 0.796328i \(-0.293227\pi\)
0.604865 + 0.796328i \(0.293227\pi\)
\(642\) 0 0
\(643\) −3.35053 −0.132132 −0.0660660 0.997815i \(-0.521045\pi\)
−0.0660660 + 0.997815i \(0.521045\pi\)
\(644\) −1.52965 −0.0602766
\(645\) 0 0
\(646\) −5.98636 −0.235530
\(647\) 24.5143 0.963755 0.481878 0.876239i \(-0.339955\pi\)
0.481878 + 0.876239i \(0.339955\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −6.60292 −0.258988
\(651\) 0 0
\(652\) 0.648739 0.0254066
\(653\) 46.1663 1.80663 0.903313 0.428982i \(-0.141128\pi\)
0.903313 + 0.428982i \(0.141128\pi\)
\(654\) 0 0
\(655\) 0.562102 0.0219631
\(656\) −33.3918 −1.30373
\(657\) 0 0
\(658\) −4.07952 −0.159036
\(659\) −11.4010 −0.444122 −0.222061 0.975033i \(-0.571278\pi\)
−0.222061 + 0.975033i \(0.571278\pi\)
\(660\) 0 0
\(661\) 34.7413 1.35128 0.675641 0.737231i \(-0.263867\pi\)
0.675641 + 0.737231i \(0.263867\pi\)
\(662\) 23.1541 0.899911
\(663\) 0 0
\(664\) 10.0900 0.391567
\(665\) 5.19394 0.201412
\(666\) 0 0
\(667\) −3.36446 −0.130273
\(668\) 1.74541 0.0675320
\(669\) 0 0
\(670\) 3.71267 0.143433
\(671\) 0 0
\(672\) 0 0
\(673\) 15.0160 0.578823 0.289411 0.957205i \(-0.406540\pi\)
0.289411 + 0.957205i \(0.406540\pi\)
\(674\) 14.4659 0.557205
\(675\) 0 0
\(676\) −2.37152 −0.0912124
\(677\) 24.6817 0.948594 0.474297 0.880365i \(-0.342702\pi\)
0.474297 + 0.880365i \(0.342702\pi\)
\(678\) 0 0
\(679\) −51.5283 −1.97747
\(680\) 9.63282 0.369402
\(681\) 0 0
\(682\) 0 0
\(683\) 48.9656 1.87361 0.936807 0.349846i \(-0.113766\pi\)
0.936807 + 0.349846i \(0.113766\pi\)
\(684\) 0 0
\(685\) −18.2719 −0.698133
\(686\) 1.58989 0.0607021
\(687\) 0 0
\(688\) 40.3659 1.53893
\(689\) 52.7735 2.01051
\(690\) 0 0
\(691\) 45.6987 1.73846 0.869230 0.494408i \(-0.164615\pi\)
0.869230 + 0.494408i \(0.164615\pi\)
\(692\) 1.43038 0.0543750
\(693\) 0 0
\(694\) −20.3259 −0.771561
\(695\) 14.2600 0.540912
\(696\) 0 0
\(697\) 30.7515 1.16479
\(698\) −5.07925 −0.192252
\(699\) 0 0
\(700\) −0.790943 −0.0298948
\(701\) 6.87571 0.259692 0.129846 0.991534i \(-0.458552\pi\)
0.129846 + 0.991534i \(0.458552\pi\)
\(702\) 0 0
\(703\) −6.44940 −0.243244
\(704\) 0 0
\(705\) 0 0
\(706\) −0.695330 −0.0261691
\(707\) 30.0341 1.12955
\(708\) 0 0
\(709\) 13.7735 0.517275 0.258638 0.965974i \(-0.416726\pi\)
0.258638 + 0.965974i \(0.416726\pi\)
\(710\) −3.66641 −0.137598
\(711\) 0 0
\(712\) −23.2311 −0.870621
\(713\) −11.4524 −0.428894
\(714\) 0 0
\(715\) 0 0
\(716\) 3.24216 0.121165
\(717\) 0 0
\(718\) −18.5181 −0.691088
\(719\) 2.09938 0.0782935 0.0391468 0.999233i \(-0.487536\pi\)
0.0391468 + 0.999233i \(0.487536\pi\)
\(720\) 0 0
\(721\) −46.1771 −1.71973
\(722\) −22.9048 −0.852428
\(723\) 0 0
\(724\) 0.472670 0.0175667
\(725\) −1.73968 −0.0646101
\(726\) 0 0
\(727\) −14.9925 −0.556042 −0.278021 0.960575i \(-0.589678\pi\)
−0.278021 + 0.960575i \(0.589678\pi\)
\(728\) 55.1853 2.04530
\(729\) 0 0
\(730\) −12.5491 −0.464463
\(731\) −37.1740 −1.37493
\(732\) 0 0
\(733\) −16.5017 −0.609506 −0.304753 0.952431i \(-0.598574\pi\)
−0.304753 + 0.952431i \(0.598574\pi\)
\(734\) −27.5976 −1.01865
\(735\) 0 0
\(736\) 2.27739 0.0839455
\(737\) 0 0
\(738\) 0 0
\(739\) −7.28575 −0.268011 −0.134005 0.990981i \(-0.542784\pi\)
−0.134005 + 0.990981i \(0.542784\pi\)
\(740\) 0.982126 0.0361037
\(741\) 0 0
\(742\) −54.1554 −1.98811
\(743\) −27.6106 −1.01293 −0.506467 0.862259i \(-0.669049\pi\)
−0.506467 + 0.862259i \(0.669049\pi\)
\(744\) 0 0
\(745\) −10.6039 −0.388497
\(746\) −10.9445 −0.400708
\(747\) 0 0
\(748\) 0 0
\(749\) 8.83562 0.322847
\(750\) 0 0
\(751\) −2.24849 −0.0820486 −0.0410243 0.999158i \(-0.513062\pi\)
−0.0410243 + 0.999158i \(0.513062\pi\)
\(752\) 2.85081 0.103958
\(753\) 0 0
\(754\) 11.4870 0.418331
\(755\) 12.5734 0.457591
\(756\) 0 0
\(757\) 33.9846 1.23519 0.617596 0.786495i \(-0.288107\pi\)
0.617596 + 0.786495i \(0.288107\pi\)
\(758\) 35.5953 1.29288
\(759\) 0 0
\(760\) −4.05849 −0.147217
\(761\) −27.7004 −1.00414 −0.502069 0.864828i \(-0.667428\pi\)
−0.502069 + 0.864828i \(0.667428\pi\)
\(762\) 0 0
\(763\) −24.1917 −0.875798
\(764\) −3.71478 −0.134396
\(765\) 0 0
\(766\) 19.4861 0.704060
\(767\) 60.0139 2.16698
\(768\) 0 0
\(769\) −2.29270 −0.0826770 −0.0413385 0.999145i \(-0.513162\pi\)
−0.0413385 + 0.999145i \(0.513162\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 4.42278 0.159179
\(773\) 30.9947 1.11480 0.557400 0.830244i \(-0.311799\pi\)
0.557400 + 0.830244i \(0.311799\pi\)
\(774\) 0 0
\(775\) −5.92173 −0.212715
\(776\) 40.2636 1.44538
\(777\) 0 0
\(778\) 5.28494 0.189474
\(779\) −12.9562 −0.464203
\(780\) 0 0
\(781\) 0 0
\(782\) 8.43321 0.301571
\(783\) 0 0
\(784\) −25.8783 −0.924225
\(785\) 12.5332 0.447328
\(786\) 0 0
\(787\) 49.1385 1.75160 0.875798 0.482677i \(-0.160335\pi\)
0.875798 + 0.482677i \(0.160335\pi\)
\(788\) 5.03899 0.179507
\(789\) 0 0
\(790\) 17.0852 0.607863
\(791\) −68.5990 −2.43910
\(792\) 0 0
\(793\) 42.3877 1.50523
\(794\) −24.1104 −0.855647
\(795\) 0 0
\(796\) −0.899717 −0.0318896
\(797\) −2.77965 −0.0984602 −0.0492301 0.998787i \(-0.515677\pi\)
−0.0492301 + 0.998787i \(0.515677\pi\)
\(798\) 0 0
\(799\) −2.62539 −0.0928795
\(800\) 1.17758 0.0416337
\(801\) 0 0
\(802\) 35.8383 1.26550
\(803\) 0 0
\(804\) 0 0
\(805\) −7.31690 −0.257887
\(806\) 39.1007 1.37726
\(807\) 0 0
\(808\) −23.4683 −0.825612
\(809\) −44.0336 −1.54814 −0.774069 0.633101i \(-0.781782\pi\)
−0.774069 + 0.633101i \(0.781782\pi\)
\(810\) 0 0
\(811\) 17.9977 0.631985 0.315993 0.948762i \(-0.397662\pi\)
0.315993 + 0.948762i \(0.397662\pi\)
\(812\) 1.37599 0.0482877
\(813\) 0 0
\(814\) 0 0
\(815\) 3.10317 0.108699
\(816\) 0 0
\(817\) 15.6621 0.547948
\(818\) −38.1823 −1.33501
\(819\) 0 0
\(820\) 1.97299 0.0688998
\(821\) −13.6645 −0.476894 −0.238447 0.971155i \(-0.576638\pi\)
−0.238447 + 0.971155i \(0.576638\pi\)
\(822\) 0 0
\(823\) −9.55474 −0.333057 −0.166529 0.986037i \(-0.553256\pi\)
−0.166529 + 0.986037i \(0.553256\pi\)
\(824\) 36.0823 1.25699
\(825\) 0 0
\(826\) −61.5854 −2.14283
\(827\) 2.86560 0.0996467 0.0498233 0.998758i \(-0.484134\pi\)
0.0498233 + 0.998758i \(0.484134\pi\)
\(828\) 0 0
\(829\) −21.2099 −0.736649 −0.368325 0.929697i \(-0.620068\pi\)
−0.368325 + 0.929697i \(0.620068\pi\)
\(830\) 4.56754 0.158542
\(831\) 0 0
\(832\) −42.6899 −1.48001
\(833\) 23.8320 0.825731
\(834\) 0 0
\(835\) 8.34898 0.288928
\(836\) 0 0
\(837\) 0 0
\(838\) −19.7339 −0.681697
\(839\) −1.40998 −0.0486779 −0.0243390 0.999704i \(-0.507748\pi\)
−0.0243390 + 0.999704i \(0.507748\pi\)
\(840\) 0 0
\(841\) −25.9735 −0.895638
\(842\) 25.8329 0.890262
\(843\) 0 0
\(844\) 3.18331 0.109574
\(845\) −11.3439 −0.390242
\(846\) 0 0
\(847\) 0 0
\(848\) 37.8443 1.29958
\(849\) 0 0
\(850\) 4.36060 0.149567
\(851\) 9.08550 0.311447
\(852\) 0 0
\(853\) 13.4716 0.461257 0.230629 0.973042i \(-0.425922\pi\)
0.230629 + 0.973042i \(0.425922\pi\)
\(854\) −43.4977 −1.48846
\(855\) 0 0
\(856\) −6.90406 −0.235976
\(857\) 25.5677 0.873376 0.436688 0.899613i \(-0.356151\pi\)
0.436688 + 0.899613i \(0.356151\pi\)
\(858\) 0 0
\(859\) 21.7766 0.743008 0.371504 0.928431i \(-0.378842\pi\)
0.371504 + 0.928431i \(0.378842\pi\)
\(860\) −2.38506 −0.0813298
\(861\) 0 0
\(862\) −14.0477 −0.478467
\(863\) 51.9088 1.76700 0.883499 0.468434i \(-0.155181\pi\)
0.883499 + 0.468434i \(0.155181\pi\)
\(864\) 0 0
\(865\) 6.84208 0.232638
\(866\) 30.9616 1.05212
\(867\) 0 0
\(868\) 4.68375 0.158977
\(869\) 0 0
\(870\) 0 0
\(871\) 13.6880 0.463801
\(872\) 18.9031 0.640141
\(873\) 0 0
\(874\) −3.55307 −0.120184
\(875\) −3.78339 −0.127902
\(876\) 0 0
\(877\) 10.9745 0.370584 0.185292 0.982684i \(-0.440677\pi\)
0.185292 + 0.982684i \(0.440677\pi\)
\(878\) 33.7660 1.13955
\(879\) 0 0
\(880\) 0 0
\(881\) 8.42384 0.283806 0.141903 0.989881i \(-0.454678\pi\)
0.141903 + 0.989881i \(0.454678\pi\)
\(882\) 0 0
\(883\) −13.9067 −0.467997 −0.233998 0.972237i \(-0.575181\pi\)
−0.233998 + 0.972237i \(0.575181\pi\)
\(884\) 3.36097 0.113042
\(885\) 0 0
\(886\) −8.94690 −0.300577
\(887\) −27.7955 −0.933283 −0.466641 0.884447i \(-0.654536\pi\)
−0.466641 + 0.884447i \(0.654536\pi\)
\(888\) 0 0
\(889\) 84.4161 2.83122
\(890\) −10.5163 −0.352507
\(891\) 0 0
\(892\) −5.98843 −0.200508
\(893\) 1.10613 0.0370151
\(894\) 0 0
\(895\) 15.5085 0.518392
\(896\) 34.8974 1.16584
\(897\) 0 0
\(898\) 17.5525 0.585733
\(899\) 10.3019 0.343588
\(900\) 0 0
\(901\) −34.8519 −1.16108
\(902\) 0 0
\(903\) 0 0
\(904\) 53.6025 1.78279
\(905\) 2.26096 0.0751570
\(906\) 0 0
\(907\) 10.1506 0.337046 0.168523 0.985698i \(-0.446100\pi\)
0.168523 + 0.985698i \(0.446100\pi\)
\(908\) −0.632622 −0.0209943
\(909\) 0 0
\(910\) 24.9814 0.828125
\(911\) −45.0748 −1.49339 −0.746697 0.665164i \(-0.768362\pi\)
−0.746697 + 0.665164i \(0.768362\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −47.0099 −1.55495
\(915\) 0 0
\(916\) 0.638134 0.0210845
\(917\) −2.12665 −0.0702281
\(918\) 0 0
\(919\) −5.79094 −0.191026 −0.0955128 0.995428i \(-0.530449\pi\)
−0.0955128 + 0.995428i \(0.530449\pi\)
\(920\) 5.71734 0.188495
\(921\) 0 0
\(922\) 40.7327 1.34146
\(923\) −13.5175 −0.444933
\(924\) 0 0
\(925\) 4.69789 0.154466
\(926\) −13.4991 −0.443606
\(927\) 0 0
\(928\) −2.04861 −0.0672490
\(929\) 42.8241 1.40501 0.702506 0.711678i \(-0.252064\pi\)
0.702506 + 0.711678i \(0.252064\pi\)
\(930\) 0 0
\(931\) −10.0409 −0.329077
\(932\) 1.31901 0.0432056
\(933\) 0 0
\(934\) −22.8200 −0.746694
\(935\) 0 0
\(936\) 0 0
\(937\) 11.8861 0.388302 0.194151 0.980972i \(-0.437805\pi\)
0.194151 + 0.980972i \(0.437805\pi\)
\(938\) −14.0465 −0.458633
\(939\) 0 0
\(940\) −0.168443 −0.00549400
\(941\) 40.3081 1.31401 0.657003 0.753888i \(-0.271824\pi\)
0.657003 + 0.753888i \(0.271824\pi\)
\(942\) 0 0
\(943\) 18.2518 0.594361
\(944\) 43.0365 1.40072
\(945\) 0 0
\(946\) 0 0
\(947\) −53.3167 −1.73256 −0.866280 0.499560i \(-0.833495\pi\)
−0.866280 + 0.499560i \(0.833495\pi\)
\(948\) 0 0
\(949\) −46.2665 −1.50188
\(950\) −1.83720 −0.0596068
\(951\) 0 0
\(952\) −36.4447 −1.18118
\(953\) 23.1339 0.749379 0.374690 0.927150i \(-0.377749\pi\)
0.374690 + 0.927150i \(0.377749\pi\)
\(954\) 0 0
\(955\) −17.7692 −0.574999
\(956\) 1.19394 0.0386149
\(957\) 0 0
\(958\) 11.9484 0.386036
\(959\) 69.1296 2.23231
\(960\) 0 0
\(961\) 4.06685 0.131189
\(962\) −31.0198 −1.00012
\(963\) 0 0
\(964\) 1.00758 0.0324521
\(965\) 21.1559 0.681032
\(966\) 0 0
\(967\) −32.8910 −1.05770 −0.528851 0.848715i \(-0.677377\pi\)
−0.528851 + 0.848715i \(0.677377\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 18.2266 0.585221
\(971\) −22.5974 −0.725185 −0.362592 0.931948i \(-0.618108\pi\)
−0.362592 + 0.931948i \(0.618108\pi\)
\(972\) 0 0
\(973\) −53.9510 −1.72959
\(974\) 44.7834 1.43495
\(975\) 0 0
\(976\) 30.3966 0.972971
\(977\) −30.7844 −0.984882 −0.492441 0.870346i \(-0.663895\pi\)
−0.492441 + 0.870346i \(0.663895\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.52904 0.0488435
\(981\) 0 0
\(982\) 12.1409 0.387433
\(983\) −34.8963 −1.11302 −0.556509 0.830841i \(-0.687860\pi\)
−0.556509 + 0.830841i \(0.687860\pi\)
\(984\) 0 0
\(985\) 24.1034 0.768000
\(986\) −7.58606 −0.241589
\(987\) 0 0
\(988\) −1.41604 −0.0450503
\(989\) −22.0638 −0.701588
\(990\) 0 0
\(991\) −41.7439 −1.32604 −0.663019 0.748602i \(-0.730725\pi\)
−0.663019 + 0.748602i \(0.730725\pi\)
\(992\) −6.97330 −0.221403
\(993\) 0 0
\(994\) 13.8714 0.439975
\(995\) −4.30369 −0.136436
\(996\) 0 0
\(997\) 33.7340 1.06836 0.534182 0.845369i \(-0.320620\pi\)
0.534182 + 0.845369i \(0.320620\pi\)
\(998\) 52.2961 1.65540
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5445.2.a.bq.1.3 4
3.2 odd 2 1815.2.a.q.1.2 4
11.2 odd 10 495.2.n.c.136.2 8
11.6 odd 10 495.2.n.c.91.2 8
11.10 odd 2 5445.2.a.bj.1.2 4
15.14 odd 2 9075.2.a.df.1.3 4
33.2 even 10 165.2.m.c.136.1 yes 8
33.17 even 10 165.2.m.c.91.1 8
33.32 even 2 1815.2.a.u.1.3 4
165.2 odd 20 825.2.bx.e.499.3 16
165.17 odd 20 825.2.bx.e.124.2 16
165.68 odd 20 825.2.bx.e.499.2 16
165.83 odd 20 825.2.bx.e.124.3 16
165.134 even 10 825.2.n.j.301.2 8
165.149 even 10 825.2.n.j.751.2 8
165.164 even 2 9075.2.a.co.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.2.m.c.91.1 8 33.17 even 10
165.2.m.c.136.1 yes 8 33.2 even 10
495.2.n.c.91.2 8 11.6 odd 10
495.2.n.c.136.2 8 11.2 odd 10
825.2.n.j.301.2 8 165.134 even 10
825.2.n.j.751.2 8 165.149 even 10
825.2.bx.e.124.2 16 165.17 odd 20
825.2.bx.e.124.3 16 165.83 odd 20
825.2.bx.e.499.2 16 165.68 odd 20
825.2.bx.e.499.3 16 165.2 odd 20
1815.2.a.q.1.2 4 3.2 odd 2
1815.2.a.u.1.3 4 33.32 even 2
5445.2.a.bj.1.2 4 11.10 odd 2
5445.2.a.bq.1.3 4 1.1 even 1 trivial
9075.2.a.co.1.2 4 165.164 even 2
9075.2.a.df.1.3 4 15.14 odd 2