Properties

Label 544.2.cc.c.175.3
Level $544$
Weight $2$
Character 544.175
Analytic conductor $4.344$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(79,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 8, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.cc (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 175.3
Character \(\chi\) \(=\) 544.175
Dual form 544.2.cc.c.143.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.921778 - 1.37954i) q^{3} +(-3.91277 - 0.778297i) q^{5} +(-1.72342 + 0.342810i) q^{7} +(0.0945986 - 0.228381i) q^{9} +(2.25700 + 1.50808i) q^{11} +(1.43844 - 1.43844i) q^{13} +(2.53301 + 6.11523i) q^{15} +(-3.43525 + 2.28014i) q^{17} +(2.12471 + 5.12951i) q^{19} +(2.06153 + 2.06153i) q^{21} +(-1.05741 - 0.706536i) q^{23} +(10.0846 + 4.17717i) q^{25} +(-5.28409 + 1.05107i) q^{27} +(-1.64434 + 8.26664i) q^{29} +(3.07326 + 4.59945i) q^{31} -4.50373i q^{33} +7.01015 q^{35} +(-3.15531 + 2.10831i) q^{37} +(-3.31031 - 0.658462i) q^{39} +(-0.810929 - 4.07682i) q^{41} +(2.93119 - 7.07653i) q^{43} +(-0.547891 + 0.819977i) q^{45} +(2.10492 - 2.10492i) q^{47} +(-3.61450 + 1.49717i) q^{49} +(6.31208 + 2.63728i) q^{51} +(5.83351 - 2.41632i) q^{53} +(-7.65738 - 7.65738i) q^{55} +(5.11785 - 7.65940i) q^{57} +(-3.89198 - 1.61211i) q^{59} +(0.411419 + 2.06835i) q^{61} +(-0.0847419 + 0.426026i) q^{63} +(-6.74782 + 4.50875i) q^{65} +0.474710i q^{67} +2.11000i q^{69} +(-9.48983 + 6.34090i) q^{71} +(-1.48381 + 7.45963i) q^{73} +(-3.53318 - 17.7625i) q^{75} +(-4.40675 - 1.82533i) q^{77} +(0.405234 - 0.606476i) q^{79} +(5.79637 + 5.79637i) q^{81} +(-14.3632 + 5.94945i) q^{83} +(15.2160 - 6.24801i) q^{85} +(12.9199 - 5.35158i) q^{87} +(-5.56406 + 5.56406i) q^{89} +(-1.98593 + 2.97215i) q^{91} +(3.51226 - 8.47935i) q^{93} +(-4.32122 - 21.7242i) q^{95} +(-2.52059 - 0.501377i) q^{97} +(0.557926 - 0.372794i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{3} - 16 q^{9} + 16 q^{11} - 16 q^{17} + 16 q^{19} - 16 q^{25} - 32 q^{27} + 32 q^{35} - 16 q^{41} + 96 q^{43} - 16 q^{49} + 16 q^{51} + 32 q^{57} + 16 q^{59} + 64 q^{65} - 96 q^{73} + 16 q^{75}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.921778 1.37954i −0.532189 0.796477i 0.463801 0.885939i \(-0.346485\pi\)
−0.995990 + 0.0894623i \(0.971485\pi\)
\(4\) 0 0
\(5\) −3.91277 0.778297i −1.74984 0.348065i −0.786757 0.617263i \(-0.788241\pi\)
−0.963085 + 0.269198i \(0.913241\pi\)
\(6\) 0 0
\(7\) −1.72342 + 0.342810i −0.651392 + 0.129570i −0.509715 0.860343i \(-0.670249\pi\)
−0.141677 + 0.989913i \(0.545249\pi\)
\(8\) 0 0
\(9\) 0.0945986 0.228381i 0.0315329 0.0761271i
\(10\) 0 0
\(11\) 2.25700 + 1.50808i 0.680511 + 0.454703i 0.847177 0.531310i \(-0.178300\pi\)
−0.166666 + 0.986013i \(0.553300\pi\)
\(12\) 0 0
\(13\) 1.43844 1.43844i 0.398952 0.398952i −0.478911 0.877863i \(-0.658968\pi\)
0.877863 + 0.478911i \(0.158968\pi\)
\(14\) 0 0
\(15\) 2.53301 + 6.11523i 0.654021 + 1.57895i
\(16\) 0 0
\(17\) −3.43525 + 2.28014i −0.833171 + 0.553015i
\(18\) 0 0
\(19\) 2.12471 + 5.12951i 0.487443 + 1.17679i 0.956002 + 0.293359i \(0.0947732\pi\)
−0.468559 + 0.883432i \(0.655227\pi\)
\(20\) 0 0
\(21\) 2.06153 + 2.06153i 0.449863 + 0.449863i
\(22\) 0 0
\(23\) −1.05741 0.706536i −0.220484 0.147323i 0.440423 0.897790i \(-0.354828\pi\)
−0.660907 + 0.750467i \(0.729828\pi\)
\(24\) 0 0
\(25\) 10.0846 + 4.17717i 2.01692 + 0.835435i
\(26\) 0 0
\(27\) −5.28409 + 1.05107i −1.01692 + 0.202279i
\(28\) 0 0
\(29\) −1.64434 + 8.26664i −0.305346 + 1.53508i 0.457921 + 0.888993i \(0.348594\pi\)
−0.763267 + 0.646083i \(0.776406\pi\)
\(30\) 0 0
\(31\) 3.07326 + 4.59945i 0.551973 + 0.826086i 0.997608 0.0691289i \(-0.0220220\pi\)
−0.445635 + 0.895215i \(0.647022\pi\)
\(32\) 0 0
\(33\) 4.50373i 0.783999i
\(34\) 0 0
\(35\) 7.01015 1.18493
\(36\) 0 0
\(37\) −3.15531 + 2.10831i −0.518731 + 0.346605i −0.787214 0.616680i \(-0.788477\pi\)
0.268484 + 0.963284i \(0.413477\pi\)
\(38\) 0 0
\(39\) −3.31031 0.658462i −0.530074 0.105438i
\(40\) 0 0
\(41\) −0.810929 4.07682i −0.126646 0.636692i −0.991006 0.133818i \(-0.957276\pi\)
0.864360 0.502874i \(-0.167724\pi\)
\(42\) 0 0
\(43\) 2.93119 7.07653i 0.447003 1.07916i −0.526436 0.850215i \(-0.676472\pi\)
0.973439 0.228946i \(-0.0735279\pi\)
\(44\) 0 0
\(45\) −0.547891 + 0.819977i −0.0816747 + 0.122235i
\(46\) 0 0
\(47\) 2.10492 2.10492i 0.307034 0.307034i −0.536724 0.843758i \(-0.680338\pi\)
0.843758 + 0.536724i \(0.180338\pi\)
\(48\) 0 0
\(49\) −3.61450 + 1.49717i −0.516357 + 0.213882i
\(50\) 0 0
\(51\) 6.31208 + 2.63728i 0.883868 + 0.369293i
\(52\) 0 0
\(53\) 5.83351 2.41632i 0.801295 0.331907i 0.0558197 0.998441i \(-0.482223\pi\)
0.745475 + 0.666534i \(0.232223\pi\)
\(54\) 0 0
\(55\) −7.65738 7.65738i −1.03252 1.03252i
\(56\) 0 0
\(57\) 5.11785 7.65940i 0.677875 1.01451i
\(58\) 0 0
\(59\) −3.89198 1.61211i −0.506693 0.209879i 0.114668 0.993404i \(-0.463420\pi\)
−0.621360 + 0.783525i \(0.713420\pi\)
\(60\) 0 0
\(61\) 0.411419 + 2.06835i 0.0526769 + 0.264824i 0.998144 0.0608920i \(-0.0193945\pi\)
−0.945468 + 0.325716i \(0.894395\pi\)
\(62\) 0 0
\(63\) −0.0847419 + 0.426026i −0.0106765 + 0.0536743i
\(64\) 0 0
\(65\) −6.74782 + 4.50875i −0.836964 + 0.559242i
\(66\) 0 0
\(67\) 0.474710i 0.0579951i 0.999579 + 0.0289975i \(0.00923149\pi\)
−0.999579 + 0.0289975i \(0.990769\pi\)
\(68\) 0 0
\(69\) 2.11000i 0.254014i
\(70\) 0 0
\(71\) −9.48983 + 6.34090i −1.12624 + 0.752526i −0.971877 0.235489i \(-0.924331\pi\)
−0.154358 + 0.988015i \(0.549331\pi\)
\(72\) 0 0
\(73\) −1.48381 + 7.45963i −0.173667 + 0.873084i 0.791444 + 0.611242i \(0.209330\pi\)
−0.965111 + 0.261842i \(0.915670\pi\)
\(74\) 0 0
\(75\) −3.53318 17.7625i −0.407977 2.05104i
\(76\) 0 0
\(77\) −4.40675 1.82533i −0.502195 0.208016i
\(78\) 0 0
\(79\) 0.405234 0.606476i 0.0455924 0.0682339i −0.807973 0.589219i \(-0.799435\pi\)
0.853566 + 0.520985i \(0.174435\pi\)
\(80\) 0 0
\(81\) 5.79637 + 5.79637i 0.644041 + 0.644041i
\(82\) 0 0
\(83\) −14.3632 + 5.94945i −1.57657 + 0.653037i −0.987866 0.155311i \(-0.950362\pi\)
−0.588705 + 0.808348i \(0.700362\pi\)
\(84\) 0 0
\(85\) 15.2160 6.24801i 1.65040 0.677692i
\(86\) 0 0
\(87\) 12.9199 5.35158i 1.38515 0.573750i
\(88\) 0 0
\(89\) −5.56406 + 5.56406i −0.589789 + 0.589789i −0.937574 0.347785i \(-0.886934\pi\)
0.347785 + 0.937574i \(0.386934\pi\)
\(90\) 0 0
\(91\) −1.98593 + 2.97215i −0.208182 + 0.311566i
\(92\) 0 0
\(93\) 3.51226 8.47935i 0.364205 0.879268i
\(94\) 0 0
\(95\) −4.32122 21.7242i −0.443348 2.22886i
\(96\) 0 0
\(97\) −2.52059 0.501377i −0.255927 0.0509071i 0.0654591 0.997855i \(-0.479149\pi\)
−0.321386 + 0.946948i \(0.604149\pi\)
\(98\) 0 0
\(99\) 0.557926 0.372794i 0.0560737 0.0374672i
\(100\) 0 0
\(101\) −12.5095 −1.24474 −0.622370 0.782724i \(-0.713830\pi\)
−0.622370 + 0.782724i \(0.713830\pi\)
\(102\) 0 0
\(103\) 0.883647i 0.0870683i 0.999052 + 0.0435341i \(0.0138617\pi\)
−0.999052 + 0.0435341i \(0.986138\pi\)
\(104\) 0 0
\(105\) −6.46180 9.67077i −0.630607 0.943771i
\(106\) 0 0
\(107\) −3.40001 + 17.0930i −0.328691 + 1.65244i 0.364142 + 0.931343i \(0.381362\pi\)
−0.692833 + 0.721098i \(0.743638\pi\)
\(108\) 0 0
\(109\) 16.2497 3.23227i 1.55644 0.309596i 0.659486 0.751716i \(-0.270774\pi\)
0.896955 + 0.442121i \(0.145774\pi\)
\(110\) 0 0
\(111\) 5.81700 + 2.40948i 0.552125 + 0.228698i
\(112\) 0 0
\(113\) −3.17941 2.12441i −0.299093 0.199848i 0.396964 0.917834i \(-0.370064\pi\)
−0.696057 + 0.717986i \(0.745064\pi\)
\(114\) 0 0
\(115\) 3.58748 + 3.58748i 0.334535 + 0.334535i
\(116\) 0 0
\(117\) −0.192439 0.464588i −0.0177910 0.0429512i
\(118\) 0 0
\(119\) 5.13873 5.10728i 0.471067 0.468184i
\(120\) 0 0
\(121\) −1.38977 3.35521i −0.126343 0.305019i
\(122\) 0 0
\(123\) −4.87663 + 4.87663i −0.439711 + 0.439711i
\(124\) 0 0
\(125\) −19.6221 13.1111i −1.75506 1.17269i
\(126\) 0 0
\(127\) −4.56457 + 11.0198i −0.405040 + 0.977852i 0.581384 + 0.813630i \(0.302512\pi\)
−0.986423 + 0.164223i \(0.947488\pi\)
\(128\) 0 0
\(129\) −12.4643 + 2.47929i −1.09742 + 0.218290i
\(130\) 0 0
\(131\) 8.64991 + 1.72057i 0.755746 + 0.150327i 0.557903 0.829906i \(-0.311606\pi\)
0.197843 + 0.980234i \(0.436606\pi\)
\(132\) 0 0
\(133\) −5.42022 8.11194i −0.469993 0.703394i
\(134\) 0 0
\(135\) 21.4934 1.84986
\(136\) 0 0
\(137\) 2.20919 0.188744 0.0943718 0.995537i \(-0.469916\pi\)
0.0943718 + 0.995537i \(0.469916\pi\)
\(138\) 0 0
\(139\) −10.7069 16.0240i −0.908147 1.35914i −0.933164 0.359452i \(-0.882964\pi\)
0.0250163 0.999687i \(-0.492036\pi\)
\(140\) 0 0
\(141\) −4.84408 0.963548i −0.407946 0.0811454i
\(142\) 0 0
\(143\) 5.41585 1.07728i 0.452896 0.0900866i
\(144\) 0 0
\(145\) 12.8678 31.0656i 1.06861 2.57986i
\(146\) 0 0
\(147\) 5.39717 + 3.60627i 0.445151 + 0.297441i
\(148\) 0 0
\(149\) −0.306372 + 0.306372i −0.0250990 + 0.0250990i −0.719545 0.694446i \(-0.755650\pi\)
0.694446 + 0.719545i \(0.255650\pi\)
\(150\) 0 0
\(151\) 7.80521 + 18.8434i 0.635179 + 1.53346i 0.833032 + 0.553225i \(0.186603\pi\)
−0.197853 + 0.980232i \(0.563397\pi\)
\(152\) 0 0
\(153\) 0.195771 + 1.00025i 0.0158272 + 0.0808651i
\(154\) 0 0
\(155\) −8.44519 20.3885i −0.678334 1.63764i
\(156\) 0 0
\(157\) 1.99680 + 1.99680i 0.159362 + 0.159362i 0.782284 0.622922i \(-0.214055\pi\)
−0.622922 + 0.782284i \(0.714055\pi\)
\(158\) 0 0
\(159\) −8.71061 5.82024i −0.690796 0.461575i
\(160\) 0 0
\(161\) 2.06456 + 0.855170i 0.162710 + 0.0673968i
\(162\) 0 0
\(163\) 11.6113 2.30962i 0.909464 0.180904i 0.281878 0.959450i \(-0.409043\pi\)
0.627587 + 0.778547i \(0.284043\pi\)
\(164\) 0 0
\(165\) −3.50524 + 17.6221i −0.272883 + 1.37187i
\(166\) 0 0
\(167\) −4.20835 6.29824i −0.325652 0.487373i 0.632132 0.774860i \(-0.282180\pi\)
−0.957784 + 0.287488i \(0.907180\pi\)
\(168\) 0 0
\(169\) 8.86177i 0.681675i
\(170\) 0 0
\(171\) 1.37248 0.104956
\(172\) 0 0
\(173\) 9.61075 6.42170i 0.730692 0.488233i −0.133719 0.991019i \(-0.542692\pi\)
0.864410 + 0.502787i \(0.167692\pi\)
\(174\) 0 0
\(175\) −18.8120 3.74193i −1.42205 0.282864i
\(176\) 0 0
\(177\) 1.36357 + 6.85514i 0.102492 + 0.515264i
\(178\) 0 0
\(179\) −3.08040 + 7.43674i −0.230240 + 0.555848i −0.996205 0.0870337i \(-0.972261\pi\)
0.765966 + 0.642881i \(0.222261\pi\)
\(180\) 0 0
\(181\) 0.209700 0.313838i 0.0155869 0.0233274i −0.823594 0.567179i \(-0.808035\pi\)
0.839181 + 0.543852i \(0.183035\pi\)
\(182\) 0 0
\(183\) 2.47412 2.47412i 0.182893 0.182893i
\(184\) 0 0
\(185\) 13.9869 5.79356i 1.02834 0.425951i
\(186\) 0 0
\(187\) −11.1920 0.0343542i −0.818440 0.00251223i
\(188\) 0 0
\(189\) 8.74639 3.62287i 0.636207 0.263525i
\(190\) 0 0
\(191\) 9.71409 + 9.71409i 0.702887 + 0.702887i 0.965029 0.262142i \(-0.0844290\pi\)
−0.262142 + 0.965029i \(0.584429\pi\)
\(192\) 0 0
\(193\) −5.42709 + 8.12221i −0.390650 + 0.584650i −0.973713 0.227777i \(-0.926854\pi\)
0.583063 + 0.812427i \(0.301854\pi\)
\(194\) 0 0
\(195\) 12.4400 + 5.15281i 0.890846 + 0.369001i
\(196\) 0 0
\(197\) −3.67141 18.4574i −0.261577 1.31504i −0.858532 0.512761i \(-0.828623\pi\)
0.596955 0.802275i \(-0.296377\pi\)
\(198\) 0 0
\(199\) 1.48032 7.44206i 0.104937 0.527553i −0.892180 0.451679i \(-0.850825\pi\)
0.997117 0.0758743i \(-0.0241748\pi\)
\(200\) 0 0
\(201\) 0.654881 0.437577i 0.0461917 0.0308643i
\(202\) 0 0
\(203\) 14.8106i 1.03950i
\(204\) 0 0
\(205\) 16.5828i 1.15819i
\(206\) 0 0
\(207\) −0.261389 + 0.174654i −0.0181678 + 0.0121393i
\(208\) 0 0
\(209\) −2.94023 + 14.7816i −0.203380 + 1.02246i
\(210\) 0 0
\(211\) 0.296827 + 1.49225i 0.0204344 + 0.102731i 0.989657 0.143457i \(-0.0458220\pi\)
−0.969222 + 0.246188i \(0.920822\pi\)
\(212\) 0 0
\(213\) 17.4950 + 7.24668i 1.19874 + 0.496534i
\(214\) 0 0
\(215\) −16.9767 + 25.4075i −1.15780 + 1.73277i
\(216\) 0 0
\(217\) −6.87325 6.87325i −0.466587 0.466587i
\(218\) 0 0
\(219\) 11.6586 4.82915i 0.787815 0.326324i
\(220\) 0 0
\(221\) −1.66156 + 8.22126i −0.111769 + 0.553022i
\(222\) 0 0
\(223\) −5.90153 + 2.44449i −0.395195 + 0.163695i −0.571426 0.820654i \(-0.693610\pi\)
0.176231 + 0.984349i \(0.443610\pi\)
\(224\) 0 0
\(225\) 1.90798 1.90798i 0.127198 0.127198i
\(226\) 0 0
\(227\) −7.11025 + 10.6412i −0.471924 + 0.706284i −0.988712 0.149829i \(-0.952128\pi\)
0.516788 + 0.856113i \(0.327128\pi\)
\(228\) 0 0
\(229\) −9.46723 + 22.8559i −0.625612 + 1.51036i 0.219412 + 0.975632i \(0.429586\pi\)
−0.845024 + 0.534729i \(0.820414\pi\)
\(230\) 0 0
\(231\) 1.54392 + 7.76183i 0.101583 + 0.510691i
\(232\) 0 0
\(233\) −1.74882 0.347862i −0.114569 0.0227892i 0.137473 0.990506i \(-0.456102\pi\)
−0.252042 + 0.967716i \(0.581102\pi\)
\(234\) 0 0
\(235\) −9.87431 + 6.59780i −0.644129 + 0.430393i
\(236\) 0 0
\(237\) −1.21019 −0.0786105
\(238\) 0 0
\(239\) 25.4829i 1.64835i −0.566335 0.824175i \(-0.691639\pi\)
0.566335 0.824175i \(-0.308361\pi\)
\(240\) 0 0
\(241\) 10.4034 + 15.5698i 0.670141 + 1.00294i 0.998298 + 0.0583139i \(0.0185724\pi\)
−0.328157 + 0.944623i \(0.606428\pi\)
\(242\) 0 0
\(243\) −0.499866 + 2.51300i −0.0320664 + 0.161209i
\(244\) 0 0
\(245\) 15.3079 3.04493i 0.977987 0.194534i
\(246\) 0 0
\(247\) 10.4348 + 4.32223i 0.663950 + 0.275017i
\(248\) 0 0
\(249\) 21.4472 + 14.3306i 1.35916 + 0.908163i
\(250\) 0 0
\(251\) 4.97402 + 4.97402i 0.313957 + 0.313957i 0.846440 0.532483i \(-0.178741\pi\)
−0.532483 + 0.846440i \(0.678741\pi\)
\(252\) 0 0
\(253\) −1.32105 3.18930i −0.0830539 0.200510i
\(254\) 0 0
\(255\) −22.6451 15.2317i −1.41809 0.953848i
\(256\) 0 0
\(257\) −2.37545 5.73484i −0.148176 0.357729i 0.832312 0.554308i \(-0.187017\pi\)
−0.980488 + 0.196578i \(0.937017\pi\)
\(258\) 0 0
\(259\) 4.71518 4.71518i 0.292987 0.292987i
\(260\) 0 0
\(261\) 1.73239 + 1.15755i 0.107232 + 0.0716505i
\(262\) 0 0
\(263\) 2.91136 7.02865i 0.179522 0.433405i −0.808344 0.588710i \(-0.799636\pi\)
0.987867 + 0.155305i \(0.0496360\pi\)
\(264\) 0 0
\(265\) −24.7058 + 4.91429i −1.51766 + 0.301882i
\(266\) 0 0
\(267\) 12.8047 + 2.54701i 0.783633 + 0.155874i
\(268\) 0 0
\(269\) 0.468100 + 0.700560i 0.0285405 + 0.0427139i 0.845466 0.534030i \(-0.179323\pi\)
−0.816925 + 0.576744i \(0.804323\pi\)
\(270\) 0 0
\(271\) −0.495347 −0.0300902 −0.0150451 0.999887i \(-0.504789\pi\)
−0.0150451 + 0.999887i \(0.504789\pi\)
\(272\) 0 0
\(273\) 5.93079 0.358947
\(274\) 0 0
\(275\) 16.4614 + 24.6362i 0.992660 + 1.48562i
\(276\) 0 0
\(277\) −7.81295 1.55409i −0.469434 0.0933763i −0.0452959 0.998974i \(-0.514423\pi\)
−0.424139 + 0.905597i \(0.639423\pi\)
\(278\) 0 0
\(279\) 1.34115 0.266772i 0.0802928 0.0159712i
\(280\) 0 0
\(281\) −7.93869 + 19.1657i −0.473583 + 1.14333i 0.488986 + 0.872292i \(0.337367\pi\)
−0.962569 + 0.271038i \(0.912633\pi\)
\(282\) 0 0
\(283\) −3.88907 2.59860i −0.231181 0.154470i 0.434585 0.900631i \(-0.356895\pi\)
−0.665766 + 0.746160i \(0.731895\pi\)
\(284\) 0 0
\(285\) −25.9862 + 25.9862i −1.53929 + 1.53929i
\(286\) 0 0
\(287\) 2.79514 + 6.74808i 0.164992 + 0.398326i
\(288\) 0 0
\(289\) 6.60191 15.6657i 0.388348 0.921513i
\(290\) 0 0
\(291\) 1.63176 + 3.93941i 0.0956553 + 0.230932i
\(292\) 0 0
\(293\) −14.3466 14.3466i −0.838135 0.838135i 0.150478 0.988613i \(-0.451919\pi\)
−0.988613 + 0.150478i \(0.951919\pi\)
\(294\) 0 0
\(295\) 13.9737 + 9.33693i 0.813580 + 0.543617i
\(296\) 0 0
\(297\) −13.5113 5.59656i −0.784005 0.324745i
\(298\) 0 0
\(299\) −2.53733 + 0.504706i −0.146737 + 0.0291879i
\(300\) 0 0
\(301\) −2.62578 + 13.2007i −0.151347 + 0.760875i
\(302\) 0 0
\(303\) 11.5310 + 17.2573i 0.662436 + 0.991406i
\(304\) 0 0
\(305\) 8.41316i 0.481736i
\(306\) 0 0
\(307\) 10.3982 0.593455 0.296727 0.954962i \(-0.404105\pi\)
0.296727 + 0.954962i \(0.404105\pi\)
\(308\) 0 0
\(309\) 1.21902 0.814526i 0.0693479 0.0463368i
\(310\) 0 0
\(311\) −32.5176 6.46816i −1.84391 0.366776i −0.855401 0.517967i \(-0.826689\pi\)
−0.988505 + 0.151191i \(0.951689\pi\)
\(312\) 0 0
\(313\) −4.09832 20.6037i −0.231651 1.16459i −0.905049 0.425307i \(-0.860166\pi\)
0.673398 0.739280i \(-0.264834\pi\)
\(314\) 0 0
\(315\) 0.663151 1.60099i 0.0373643 0.0902054i
\(316\) 0 0
\(317\) −4.02641 + 6.02595i −0.226146 + 0.338451i −0.927139 0.374716i \(-0.877740\pi\)
0.700994 + 0.713167i \(0.252740\pi\)
\(318\) 0 0
\(319\) −16.1780 + 16.1780i −0.905795 + 0.905795i
\(320\) 0 0
\(321\) 26.7145 11.0655i 1.49106 0.617616i
\(322\) 0 0
\(323\) −18.9949 12.7765i −1.05691 0.710905i
\(324\) 0 0
\(325\) 20.5147 8.49747i 1.13795 0.471355i
\(326\) 0 0
\(327\) −19.4377 19.4377i −1.07491 1.07491i
\(328\) 0 0
\(329\) −2.90607 + 4.34925i −0.160217 + 0.239782i
\(330\) 0 0
\(331\) −13.2900 5.50492i −0.730487 0.302578i −0.0137350 0.999906i \(-0.504372\pi\)
−0.716752 + 0.697328i \(0.754372\pi\)
\(332\) 0 0
\(333\) 0.183011 + 0.920059i 0.0100289 + 0.0504189i
\(334\) 0 0
\(335\) 0.369466 1.85743i 0.0201861 0.101482i
\(336\) 0 0
\(337\) 4.56567 3.05068i 0.248708 0.166181i −0.424968 0.905208i \(-0.639715\pi\)
0.673675 + 0.739027i \(0.264715\pi\)
\(338\) 0 0
\(339\) 6.34435i 0.344578i
\(340\) 0 0
\(341\) 15.0157i 0.813145i
\(342\) 0 0
\(343\) 15.9434 10.6530i 0.860861 0.575209i
\(344\) 0 0
\(345\) 1.64221 8.25594i 0.0884135 0.444485i
\(346\) 0 0
\(347\) −0.457262 2.29881i −0.0245471 0.123407i 0.966569 0.256407i \(-0.0825388\pi\)
−0.991116 + 0.133000i \(0.957539\pi\)
\(348\) 0 0
\(349\) −2.99685 1.24134i −0.160418 0.0664472i 0.301030 0.953615i \(-0.402670\pi\)
−0.461447 + 0.887168i \(0.652670\pi\)
\(350\) 0 0
\(351\) −6.08895 + 9.11276i −0.325004 + 0.486403i
\(352\) 0 0
\(353\) 9.74006 + 9.74006i 0.518411 + 0.518411i 0.917090 0.398679i \(-0.130531\pi\)
−0.398679 + 0.917090i \(0.630531\pi\)
\(354\) 0 0
\(355\) 42.0666 17.4245i 2.23266 0.924799i
\(356\) 0 0
\(357\) −11.7825 2.38130i −0.623594 0.126032i
\(358\) 0 0
\(359\) 0.00216710 0.000897642i 0.000114375 4.73758e-5i −0.382626 0.923903i \(-0.624980\pi\)
0.382741 + 0.923856i \(0.374980\pi\)
\(360\) 0 0
\(361\) −8.36248 + 8.36248i −0.440130 + 0.440130i
\(362\) 0 0
\(363\) −3.34757 + 5.01000i −0.175702 + 0.262957i
\(364\) 0 0
\(365\) 11.6116 28.0329i 0.607780 1.46731i
\(366\) 0 0
\(367\) −0.489357 2.46017i −0.0255442 0.128420i 0.965909 0.258882i \(-0.0833539\pi\)
−0.991453 + 0.130462i \(0.958354\pi\)
\(368\) 0 0
\(369\) −1.00778 0.200460i −0.0524630 0.0104355i
\(370\) 0 0
\(371\) −9.22526 + 6.16412i −0.478952 + 0.320025i
\(372\) 0 0
\(373\) −14.0865 −0.729370 −0.364685 0.931131i \(-0.618823\pi\)
−0.364685 + 0.931131i \(0.618823\pi\)
\(374\) 0 0
\(375\) 39.1550i 2.02196i
\(376\) 0 0
\(377\) 9.52580 + 14.2564i 0.490603 + 0.734240i
\(378\) 0 0
\(379\) 2.62326 13.1880i 0.134748 0.677424i −0.853068 0.521799i \(-0.825261\pi\)
0.987816 0.155625i \(-0.0497390\pi\)
\(380\) 0 0
\(381\) 19.4098 3.86085i 0.994394 0.197797i
\(382\) 0 0
\(383\) 32.2120 + 13.3426i 1.64595 + 0.681777i 0.996879 0.0789472i \(-0.0251559\pi\)
0.649076 + 0.760724i \(0.275156\pi\)
\(384\) 0 0
\(385\) 15.8219 + 10.5719i 0.806359 + 0.538792i
\(386\) 0 0
\(387\) −1.33886 1.33886i −0.0680581 0.0680581i
\(388\) 0 0
\(389\) 7.40045 + 17.8663i 0.375218 + 0.905856i 0.992848 + 0.119387i \(0.0380929\pi\)
−0.617630 + 0.786469i \(0.711907\pi\)
\(390\) 0 0
\(391\) 5.24346 + 0.0160949i 0.265173 + 0.000813956i
\(392\) 0 0
\(393\) −5.59970 13.5189i −0.282467 0.681937i
\(394\) 0 0
\(395\) −2.05760 + 2.05760i −0.103529 + 0.103529i
\(396\) 0 0
\(397\) 11.2307 + 7.50410i 0.563652 + 0.376620i 0.804509 0.593940i \(-0.202429\pi\)
−0.240857 + 0.970561i \(0.577429\pi\)
\(398\) 0 0
\(399\) −6.19449 + 14.9548i −0.310112 + 0.748677i
\(400\) 0 0
\(401\) 38.5529 7.66865i 1.92524 0.382954i 0.925247 0.379366i \(-0.123858\pi\)
0.999994 0.00358817i \(-0.00114215\pi\)
\(402\) 0 0
\(403\) 11.0367 + 2.19535i 0.549779 + 0.109358i
\(404\) 0 0
\(405\) −18.1685 27.1911i −0.902801 1.35114i
\(406\) 0 0
\(407\) −10.3010 −0.510604
\(408\) 0 0
\(409\) 11.9403 0.590408 0.295204 0.955434i \(-0.404612\pi\)
0.295204 + 0.955434i \(0.404612\pi\)
\(410\) 0 0
\(411\) −2.03638 3.04766i −0.100447 0.150330i
\(412\) 0 0
\(413\) 7.26017 + 1.44414i 0.357249 + 0.0710613i
\(414\) 0 0
\(415\) 60.8304 12.0999i 2.98605 0.593962i
\(416\) 0 0
\(417\) −12.2364 + 29.5412i −0.599217 + 1.44664i
\(418\) 0 0
\(419\) 8.58305 + 5.73501i 0.419309 + 0.280174i 0.747273 0.664517i \(-0.231363\pi\)
−0.327964 + 0.944690i \(0.606363\pi\)
\(420\) 0 0
\(421\) −19.1617 + 19.1617i −0.933883 + 0.933883i −0.997946 0.0640632i \(-0.979594\pi\)
0.0640632 + 0.997946i \(0.479594\pi\)
\(422\) 0 0
\(423\) −0.281602 0.679847i −0.0136919 0.0330553i
\(424\) 0 0
\(425\) −44.1676 + 8.64464i −2.14245 + 0.419327i
\(426\) 0 0
\(427\) −1.41810 3.42359i −0.0686266 0.165679i
\(428\) 0 0
\(429\) −6.47836 6.47836i −0.312778 0.312778i
\(430\) 0 0
\(431\) 1.10864 + 0.740767i 0.0534011 + 0.0356815i 0.581984 0.813200i \(-0.302277\pi\)
−0.528583 + 0.848882i \(0.677277\pi\)
\(432\) 0 0
\(433\) −27.7088 11.4773i −1.33160 0.551566i −0.400488 0.916302i \(-0.631159\pi\)
−0.931111 + 0.364736i \(0.881159\pi\)
\(434\) 0 0
\(435\) −54.7175 + 10.8840i −2.62350 + 0.521847i
\(436\) 0 0
\(437\) 1.37750 6.92516i 0.0658948 0.331276i
\(438\) 0 0
\(439\) −18.7585 28.0741i −0.895296 1.33990i −0.940096 0.340909i \(-0.889265\pi\)
0.0448004 0.998996i \(-0.485735\pi\)
\(440\) 0 0
\(441\) 0.967114i 0.0460530i
\(442\) 0 0
\(443\) −26.4412 −1.25626 −0.628130 0.778108i \(-0.716179\pi\)
−0.628130 + 0.778108i \(0.716179\pi\)
\(444\) 0 0
\(445\) 26.1014 17.4404i 1.23732 0.826753i
\(446\) 0 0
\(447\) 0.705060 + 0.140245i 0.0333482 + 0.00663337i
\(448\) 0 0
\(449\) −4.71747 23.7163i −0.222631 1.11924i −0.916774 0.399406i \(-0.869216\pi\)
0.694143 0.719837i \(-0.255784\pi\)
\(450\) 0 0
\(451\) 4.31790 10.4243i 0.203322 0.490862i
\(452\) 0 0
\(453\) 18.8006 28.1370i 0.883328 1.32199i
\(454\) 0 0
\(455\) 10.0837 10.0837i 0.472731 0.472731i
\(456\) 0 0
\(457\) −3.16113 + 1.30938i −0.147871 + 0.0612504i −0.455392 0.890291i \(-0.650501\pi\)
0.307520 + 0.951542i \(0.400501\pi\)
\(458\) 0 0
\(459\) 15.7556 15.6592i 0.735408 0.730907i
\(460\) 0 0
\(461\) −20.0966 + 8.32428i −0.935992 + 0.387700i −0.797948 0.602726i \(-0.794081\pi\)
−0.138043 + 0.990426i \(0.544081\pi\)
\(462\) 0 0
\(463\) 18.4645 + 18.4645i 0.858120 + 0.858120i 0.991117 0.132996i \(-0.0424599\pi\)
−0.132996 + 0.991117i \(0.542460\pi\)
\(464\) 0 0
\(465\) −20.3421 + 30.4441i −0.943343 + 1.41181i
\(466\) 0 0
\(467\) −10.3991 4.30747i −0.481215 0.199326i 0.128870 0.991661i \(-0.458865\pi\)
−0.610085 + 0.792336i \(0.708865\pi\)
\(468\) 0 0
\(469\) −0.162735 0.818125i −0.00751441 0.0377775i
\(470\) 0 0
\(471\) 0.914054 4.59526i 0.0421174 0.211739i
\(472\) 0 0
\(473\) 17.2877 11.5513i 0.794888 0.531127i
\(474\) 0 0
\(475\) 60.6043i 2.78072i
\(476\) 0 0
\(477\) 1.56085i 0.0714662i
\(478\) 0 0
\(479\) 13.6004 9.08748i 0.621417 0.415217i −0.204614 0.978843i \(-0.565594\pi\)
0.826030 + 0.563625i \(0.190594\pi\)
\(480\) 0 0
\(481\) −1.50605 + 7.57142i −0.0686700 + 0.345227i
\(482\) 0 0
\(483\) −0.723329 3.63642i −0.0329126 0.165463i
\(484\) 0 0
\(485\) 9.47226 + 3.92354i 0.430113 + 0.178159i
\(486\) 0 0
\(487\) −11.2391 + 16.8204i −0.509290 + 0.762207i −0.993632 0.112672i \(-0.964059\pi\)
0.484342 + 0.874879i \(0.339059\pi\)
\(488\) 0 0
\(489\) −13.8892 13.8892i −0.628092 0.628092i
\(490\) 0 0
\(491\) 19.3271 8.00557i 0.872222 0.361286i 0.0987466 0.995113i \(-0.468517\pi\)
0.773475 + 0.633826i \(0.218517\pi\)
\(492\) 0 0
\(493\) −13.2004 32.1473i −0.594516 1.44784i
\(494\) 0 0
\(495\) −2.47318 + 1.02442i −0.111161 + 0.0460445i
\(496\) 0 0
\(497\) 14.1812 14.1812i 0.636116 0.636116i
\(498\) 0 0
\(499\) −5.07487 + 7.59508i −0.227182 + 0.340002i −0.927496 0.373833i \(-0.878043\pi\)
0.700314 + 0.713835i \(0.253043\pi\)
\(500\) 0 0
\(501\) −4.80950 + 11.6112i −0.214873 + 0.518749i
\(502\) 0 0
\(503\) −4.29208 21.5777i −0.191374 0.962103i −0.950397 0.311039i \(-0.899323\pi\)
0.759023 0.651064i \(-0.225677\pi\)
\(504\) 0 0
\(505\) 48.9466 + 9.73609i 2.17810 + 0.433250i
\(506\) 0 0
\(507\) 12.2252 8.16859i 0.542938 0.362780i
\(508\) 0 0
\(509\) −7.32849 −0.324830 −0.162415 0.986723i \(-0.551928\pi\)
−0.162415 + 0.986723i \(0.551928\pi\)
\(510\) 0 0
\(511\) 13.3648i 0.591222i
\(512\) 0 0
\(513\) −16.6187 24.8716i −0.733732 1.09811i
\(514\) 0 0
\(515\) 0.687740 3.45750i 0.0303054 0.152356i
\(516\) 0 0
\(517\) 7.92519 1.57642i 0.348549 0.0693308i
\(518\) 0 0
\(519\) −17.7180 7.33902i −0.777732 0.322147i
\(520\) 0 0
\(521\) −21.4087 14.3048i −0.937932 0.626706i −0.0101977 0.999948i \(-0.503246\pi\)
−0.927734 + 0.373242i \(0.878246\pi\)
\(522\) 0 0
\(523\) −3.54456 3.54456i −0.154993 0.154993i 0.625351 0.780344i \(-0.284956\pi\)
−0.780344 + 0.625351i \(0.784956\pi\)
\(524\) 0 0
\(525\) 12.1783 + 29.4011i 0.531505 + 1.28317i
\(526\) 0 0
\(527\) −21.0448 8.79282i −0.916726 0.383021i
\(528\) 0 0
\(529\) −8.18281 19.7550i −0.355774 0.858915i
\(530\) 0 0
\(531\) −0.736352 + 0.736352i −0.0319550 + 0.0319550i
\(532\) 0 0
\(533\) −7.03074 4.69779i −0.304535 0.203484i
\(534\) 0 0
\(535\) 26.6069 64.2346i 1.15031 2.77711i
\(536\) 0 0
\(537\) 13.0987 2.60549i 0.565251 0.112435i
\(538\) 0 0
\(539\) −10.4158 2.07183i −0.448639 0.0892399i
\(540\) 0 0
\(541\) −18.1292 27.1323i −0.779436 1.16651i −0.982302 0.187303i \(-0.940026\pi\)
0.202866 0.979207i \(-0.434974\pi\)
\(542\) 0 0
\(543\) −0.626248 −0.0268749
\(544\) 0 0
\(545\) −66.0971 −2.83129
\(546\) 0 0
\(547\) −12.9644 19.4026i −0.554318 0.829596i 0.443455 0.896297i \(-0.353753\pi\)
−0.997773 + 0.0667009i \(0.978753\pi\)
\(548\) 0 0
\(549\) 0.511291 + 0.101702i 0.0218214 + 0.00434054i
\(550\) 0 0
\(551\) −45.8976 + 9.12960i −1.95530 + 0.388934i
\(552\) 0 0
\(553\) −0.490483 + 1.18413i −0.0208575 + 0.0503544i
\(554\) 0 0
\(555\) −20.8853 13.9551i −0.886530 0.592361i
\(556\) 0 0
\(557\) 13.8015 13.8015i 0.584786 0.584786i −0.351428 0.936215i \(-0.614304\pi\)
0.936215 + 0.351428i \(0.114304\pi\)
\(558\) 0 0
\(559\) −5.96282 14.3955i −0.252201 0.608866i
\(560\) 0 0
\(561\) 10.2691 + 15.4715i 0.433564 + 0.653206i
\(562\) 0 0
\(563\) −11.3315 27.3567i −0.477567 1.15295i −0.960747 0.277428i \(-0.910518\pi\)
0.483180 0.875521i \(-0.339482\pi\)
\(564\) 0 0
\(565\) 10.7869 + 10.7869i 0.453806 + 0.453806i
\(566\) 0 0
\(567\) −11.9766 8.00253i −0.502971 0.336075i
\(568\) 0 0
\(569\) −8.65964 3.58694i −0.363031 0.150372i 0.193709 0.981059i \(-0.437948\pi\)
−0.556740 + 0.830687i \(0.687948\pi\)
\(570\) 0 0
\(571\) 12.2859 2.44381i 0.514147 0.102270i 0.0688038 0.997630i \(-0.478082\pi\)
0.445343 + 0.895360i \(0.353082\pi\)
\(572\) 0 0
\(573\) 4.44673 22.3552i 0.185765 0.933902i
\(574\) 0 0
\(575\) −7.71218 11.5421i −0.321620 0.481338i
\(576\) 0 0
\(577\) 5.73217i 0.238633i −0.992856 0.119317i \(-0.961930\pi\)
0.992856 0.119317i \(-0.0380704\pi\)
\(578\) 0 0
\(579\) 16.2075 0.673560
\(580\) 0 0
\(581\) 22.7144 15.1773i 0.942351 0.629659i
\(582\) 0 0
\(583\) 16.8102 + 3.34376i 0.696209 + 0.138485i
\(584\) 0 0
\(585\) 0.391380 + 1.96760i 0.0161816 + 0.0813502i
\(586\) 0 0
\(587\) −1.26920 + 3.06413i −0.0523856 + 0.126470i −0.947906 0.318551i \(-0.896804\pi\)
0.895520 + 0.445021i \(0.146804\pi\)
\(588\) 0 0
\(589\) −17.0632 + 25.5368i −0.703075 + 1.05223i
\(590\) 0 0
\(591\) −22.0785 + 22.0785i −0.908187 + 0.908187i
\(592\) 0 0
\(593\) 12.2414 5.07054i 0.502693 0.208222i −0.116903 0.993143i \(-0.537297\pi\)
0.619596 + 0.784921i \(0.287297\pi\)
\(594\) 0 0
\(595\) −24.0816 + 15.9841i −0.987251 + 0.655285i
\(596\) 0 0
\(597\) −11.6311 + 4.81777i −0.476030 + 0.197178i
\(598\) 0 0
\(599\) −4.43417 4.43417i −0.181175 0.181175i 0.610693 0.791868i \(-0.290891\pi\)
−0.791868 + 0.610693i \(0.790891\pi\)
\(600\) 0 0
\(601\) 4.36634 6.53469i 0.178107 0.266556i −0.731665 0.681664i \(-0.761256\pi\)
0.909772 + 0.415109i \(0.136256\pi\)
\(602\) 0 0
\(603\) 0.108415 + 0.0449069i 0.00441500 + 0.00182875i
\(604\) 0 0
\(605\) 2.82650 + 14.2098i 0.114914 + 0.577710i
\(606\) 0 0
\(607\) −2.60650 + 13.1038i −0.105795 + 0.531866i 0.891147 + 0.453715i \(0.149902\pi\)
−0.996942 + 0.0781510i \(0.975098\pi\)
\(608\) 0 0
\(609\) −20.4318 + 13.6521i −0.827938 + 0.553210i
\(610\) 0 0
\(611\) 6.05561i 0.244984i
\(612\) 0 0
\(613\) 2.78252i 0.112385i 0.998420 + 0.0561924i \(0.0178960\pi\)
−0.998420 + 0.0561924i \(0.982104\pi\)
\(614\) 0 0
\(615\) 22.8766 15.2856i 0.922472 0.616376i
\(616\) 0 0
\(617\) −3.33870 + 16.7848i −0.134411 + 0.675730i 0.853548 + 0.521014i \(0.174446\pi\)
−0.987959 + 0.154716i \(0.950554\pi\)
\(618\) 0 0
\(619\) 6.44112 + 32.3817i 0.258891 + 1.30153i 0.863233 + 0.504806i \(0.168436\pi\)
−0.604342 + 0.796725i \(0.706564\pi\)
\(620\) 0 0
\(621\) 6.33005 + 2.62199i 0.254016 + 0.105217i
\(622\) 0 0
\(623\) 7.68181 11.4966i 0.307765 0.460603i
\(624\) 0 0
\(625\) 27.9804 + 27.9804i 1.11922 + 1.11922i
\(626\) 0 0
\(627\) 23.1020 9.56915i 0.922604 0.382155i
\(628\) 0 0
\(629\) 6.03205 14.4372i 0.240514 0.575647i
\(630\) 0 0
\(631\) 19.1037 7.91302i 0.760507 0.315012i 0.0314865 0.999504i \(-0.489976\pi\)
0.729021 + 0.684492i \(0.239976\pi\)
\(632\) 0 0
\(633\) 1.78501 1.78501i 0.0709476 0.0709476i
\(634\) 0 0
\(635\) 26.4368 39.5654i 1.04911 1.57011i
\(636\) 0 0
\(637\) −3.04565 + 7.35284i −0.120673 + 0.291330i
\(638\) 0 0
\(639\) 0.550418 + 2.76714i 0.0217742 + 0.109466i
\(640\) 0 0
\(641\) −8.54254 1.69922i −0.337410 0.0671150i 0.0234775 0.999724i \(-0.492526\pi\)
−0.360888 + 0.932609i \(0.617526\pi\)
\(642\) 0 0
\(643\) −19.0459 + 12.7260i −0.751095 + 0.501866i −0.871220 0.490893i \(-0.836671\pi\)
0.120125 + 0.992759i \(0.461671\pi\)
\(644\) 0 0
\(645\) 50.6993 1.99628
\(646\) 0 0
\(647\) 44.2598i 1.74003i 0.493024 + 0.870016i \(0.335891\pi\)
−0.493024 + 0.870016i \(0.664109\pi\)
\(648\) 0 0
\(649\) −6.35301 9.50795i −0.249377 0.373220i
\(650\) 0 0
\(651\) −3.14630 + 15.8175i −0.123313 + 0.619938i
\(652\) 0 0
\(653\) −11.9296 + 2.37294i −0.466841 + 0.0928604i −0.422905 0.906174i \(-0.638990\pi\)
−0.0439355 + 0.999034i \(0.513990\pi\)
\(654\) 0 0
\(655\) −32.5059 13.4644i −1.27011 0.526098i
\(656\) 0 0
\(657\) 1.56327 + 1.04455i 0.0609891 + 0.0407516i
\(658\) 0 0
\(659\) 26.0905 + 26.0905i 1.01634 + 1.01634i 0.999864 + 0.0164765i \(0.00524487\pi\)
0.0164765 + 0.999864i \(0.494755\pi\)
\(660\) 0 0
\(661\) −4.70510 11.3591i −0.183007 0.441818i 0.805577 0.592492i \(-0.201856\pi\)
−0.988584 + 0.150674i \(0.951856\pi\)
\(662\) 0 0
\(663\) 12.8731 5.28599i 0.499951 0.205291i
\(664\) 0 0
\(665\) 14.8946 + 35.9587i 0.577586 + 1.39442i
\(666\) 0 0
\(667\) 7.57941 7.57941i 0.293476 0.293476i
\(668\) 0 0
\(669\) 8.81217 + 5.88810i 0.340698 + 0.227647i
\(670\) 0 0
\(671\) −2.19065 + 5.28871i −0.0845693 + 0.204168i
\(672\) 0 0
\(673\) −31.4502 + 6.25584i −1.21232 + 0.241145i −0.759529 0.650473i \(-0.774571\pi\)
−0.452788 + 0.891618i \(0.649571\pi\)
\(674\) 0 0
\(675\) −57.6784 11.4729i −2.22004 0.441594i
\(676\) 0 0
\(677\) 25.6042 + 38.3193i 0.984047 + 1.47273i 0.878168 + 0.478352i \(0.158766\pi\)
0.105879 + 0.994379i \(0.466234\pi\)
\(678\) 0 0
\(679\) 4.51592 0.173305
\(680\) 0 0
\(681\) 21.2341 0.813692
\(682\) 0 0
\(683\) 17.8349 + 26.6918i 0.682433 + 1.02133i 0.997388 + 0.0722266i \(0.0230105\pi\)
−0.314955 + 0.949107i \(0.601990\pi\)
\(684\) 0 0
\(685\) −8.64404 1.71941i −0.330272 0.0656951i
\(686\) 0 0
\(687\) 40.2573 8.00767i 1.53591 0.305512i
\(688\) 0 0
\(689\) 4.91543 11.8669i 0.187263 0.452093i
\(690\) 0 0
\(691\) 21.0814 + 14.0862i 0.801975 + 0.535863i 0.887682 0.460458i \(-0.152315\pi\)
−0.0857066 + 0.996320i \(0.527315\pi\)
\(692\) 0 0
\(693\) −0.833744 + 0.833744i −0.0316713 + 0.0316713i
\(694\) 0 0
\(695\) 29.4221 + 71.0313i 1.11605 + 2.69437i
\(696\) 0 0
\(697\) 12.0815 + 12.1559i 0.457618 + 0.460436i
\(698\) 0 0
\(699\) 1.13214 + 2.73322i 0.0428213 + 0.103380i
\(700\) 0 0
\(701\) 13.1199 + 13.1199i 0.495533 + 0.495533i 0.910044 0.414511i \(-0.136048\pi\)
−0.414511 + 0.910044i \(0.636048\pi\)
\(702\) 0 0
\(703\) −17.5188 11.7057i −0.660733 0.441488i
\(704\) 0 0
\(705\) 18.2038 + 7.54028i 0.685596 + 0.283983i
\(706\) 0 0
\(707\) 21.5591 4.28837i 0.810813 0.161281i
\(708\) 0 0
\(709\) 0.00545205 0.0274093i 0.000204756 0.00102938i −0.980683 0.195605i \(-0.937333\pi\)
0.980888 + 0.194576i \(0.0623330\pi\)
\(710\) 0 0
\(711\) −0.100173 0.149920i −0.00375679 0.00562243i
\(712\) 0 0
\(713\) 7.03485i 0.263457i
\(714\) 0 0
\(715\) −22.0294 −0.823852
\(716\) 0 0
\(717\) −35.1546 + 23.4896i −1.31287 + 0.877234i
\(718\) 0 0
\(719\) 50.0003 + 9.94567i 1.86469 + 0.370911i 0.992899 0.118959i \(-0.0379556\pi\)
0.871796 + 0.489870i \(0.162956\pi\)
\(720\) 0 0
\(721\) −0.302923 1.52290i −0.0112814 0.0567156i
\(722\) 0 0
\(723\) 11.8895 28.7037i 0.442175 1.06750i
\(724\) 0 0
\(725\) −51.1136 + 76.4970i −1.89831 + 2.84103i
\(726\) 0 0
\(727\) −26.1689 + 26.1689i −0.970549 + 0.970549i −0.999579 0.0290292i \(-0.990758\pi\)
0.0290292 + 0.999579i \(0.490758\pi\)
\(728\) 0 0
\(729\) 26.6475 11.0378i 0.986944 0.408806i
\(730\) 0 0
\(731\) 6.06609 + 30.9932i 0.224363 + 1.14632i
\(732\) 0 0
\(733\) 27.7420 11.4911i 1.02467 0.424434i 0.193887 0.981024i \(-0.437891\pi\)
0.830787 + 0.556590i \(0.187891\pi\)
\(734\) 0 0
\(735\) −18.3111 18.3111i −0.675416 0.675416i
\(736\) 0 0
\(737\) −0.715900 + 1.07142i −0.0263705 + 0.0394663i
\(738\) 0 0
\(739\) −5.46559 2.26392i −0.201055 0.0832797i 0.279884 0.960034i \(-0.409704\pi\)
−0.480939 + 0.876754i \(0.659704\pi\)
\(740\) 0 0
\(741\) −3.65588 18.3793i −0.134302 0.675182i
\(742\) 0 0
\(743\) 1.93989 9.75248i 0.0711677 0.357784i −0.928749 0.370710i \(-0.879114\pi\)
0.999916 + 0.0129257i \(0.00411449\pi\)
\(744\) 0 0
\(745\) 1.43721 0.960315i 0.0526554 0.0351832i
\(746\) 0 0
\(747\) 3.84311i 0.140612i
\(748\) 0 0
\(749\) 30.6240i 1.11898i
\(750\) 0 0
\(751\) −35.8721 + 23.9690i −1.30899 + 0.874641i −0.997146 0.0754921i \(-0.975947\pi\)
−0.311846 + 0.950133i \(0.600947\pi\)
\(752\) 0 0
\(753\) 2.27691 11.4468i 0.0829751 0.417144i
\(754\) 0 0
\(755\) −15.8741 79.8047i −0.577719 2.90439i
\(756\) 0 0
\(757\) −11.6970 4.84507i −0.425136 0.176097i 0.159848 0.987142i \(-0.448899\pi\)
−0.584985 + 0.811044i \(0.698899\pi\)
\(758\) 0 0
\(759\) −3.18205 + 4.76227i −0.115501 + 0.172860i
\(760\) 0 0
\(761\) 14.9604 + 14.9604i 0.542315 + 0.542315i 0.924207 0.381892i \(-0.124727\pi\)
−0.381892 + 0.924207i \(0.624727\pi\)
\(762\) 0 0
\(763\) −26.8971 + 11.1411i −0.973739 + 0.403336i
\(764\) 0 0
\(765\) 0.0124810 4.06609i 0.000451251 0.147010i
\(766\) 0 0
\(767\) −7.91731 + 3.27946i −0.285878 + 0.118414i
\(768\) 0 0
\(769\) 5.62268 5.62268i 0.202759 0.202759i −0.598422 0.801181i \(-0.704205\pi\)
0.801181 + 0.598422i \(0.204205\pi\)
\(770\) 0 0
\(771\) −5.72179 + 8.56327i −0.206065 + 0.308399i
\(772\) 0 0
\(773\) 16.6372 40.1658i 0.598399 1.44466i −0.276813 0.960924i \(-0.589278\pi\)
0.875212 0.483740i \(-0.160722\pi\)
\(774\) 0 0
\(775\) 11.7798 + 59.2211i 0.423143 + 2.12728i
\(776\) 0 0
\(777\) −10.8511 2.15842i −0.389282 0.0774331i
\(778\) 0 0
\(779\) 19.1891 12.8217i 0.687521 0.459387i
\(780\) 0 0
\(781\) −30.9811 −1.10859
\(782\) 0 0
\(783\) 45.4100i 1.62282i
\(784\) 0 0
\(785\) −6.25890 9.36710i −0.223390 0.334326i
\(786\) 0 0
\(787\) 5.54976 27.9005i 0.197827 0.994546i −0.746462 0.665429i \(-0.768249\pi\)
0.944289 0.329117i \(-0.106751\pi\)
\(788\) 0 0
\(789\) −12.3799 + 2.46252i −0.440737 + 0.0876680i
\(790\) 0 0
\(791\) 6.20773 + 2.57132i 0.220721 + 0.0914258i
\(792\) 0 0
\(793\) 3.56700 + 2.38339i 0.126668 + 0.0846367i
\(794\) 0 0
\(795\) 29.5527 + 29.5527i 1.04813 + 1.04813i
\(796\) 0 0
\(797\) 16.1567 + 39.0057i 0.572299 + 1.38165i 0.899593 + 0.436729i \(0.143863\pi\)
−0.327295 + 0.944922i \(0.606137\pi\)
\(798\) 0 0
\(799\) −2.43142 + 12.0304i −0.0860173 + 0.425606i
\(800\) 0 0
\(801\) 0.744375 + 1.79708i 0.0263012 + 0.0634967i
\(802\) 0 0
\(803\) −14.5987 + 14.5987i −0.515176 + 0.515176i
\(804\) 0 0
\(805\) −7.41257 4.95292i −0.261259 0.174568i
\(806\) 0 0
\(807\) 0.534966 1.29152i 0.0188317 0.0454638i
\(808\) 0 0
\(809\) 20.4694 4.07161i 0.719664 0.143150i 0.178346 0.983968i \(-0.442925\pi\)
0.541318 + 0.840818i \(0.317925\pi\)
\(810\) 0 0
\(811\) 19.7791 + 3.93431i 0.694538 + 0.138152i 0.529721 0.848172i \(-0.322297\pi\)
0.164817 + 0.986324i \(0.447297\pi\)
\(812\) 0 0
\(813\) 0.456601 + 0.683351i 0.0160137 + 0.0239662i
\(814\) 0 0
\(815\) −47.2297 −1.65438
\(816\) 0 0
\(817\) 42.5271 1.48784
\(818\) 0 0
\(819\) 0.490918 + 0.734711i 0.0171541 + 0.0256729i
\(820\) 0 0
\(821\) −39.9253 7.94163i −1.39340 0.277165i −0.559387 0.828907i \(-0.688963\pi\)
−0.834015 + 0.551742i \(0.813963\pi\)
\(822\) 0 0
\(823\) 1.01321 0.201541i 0.0353184 0.00702527i −0.177399 0.984139i \(-0.556768\pi\)
0.212718 + 0.977114i \(0.431768\pi\)
\(824\) 0 0
\(825\) 18.8129 45.4183i 0.654980 1.58126i
\(826\) 0 0
\(827\) 32.4708 + 21.6963i 1.12912 + 0.754454i 0.972430 0.233194i \(-0.0749176\pi\)
0.156690 + 0.987648i \(0.449918\pi\)
\(828\) 0 0
\(829\) −10.1880 + 10.1880i −0.353845 + 0.353845i −0.861538 0.507693i \(-0.830498\pi\)
0.507693 + 0.861538i \(0.330498\pi\)
\(830\) 0 0
\(831\) 5.05787 + 12.2108i 0.175456 + 0.423588i
\(832\) 0 0
\(833\) 9.00294 13.3847i 0.311933 0.463753i
\(834\) 0 0
\(835\) 11.5644 + 27.9189i 0.400202 + 0.966173i
\(836\) 0 0
\(837\) −21.0737 21.0737i −0.728414 0.728414i
\(838\) 0 0
\(839\) 5.81558 + 3.88585i 0.200776 + 0.134154i 0.651894 0.758310i \(-0.273975\pi\)
−0.451118 + 0.892464i \(0.648975\pi\)
\(840\) 0 0
\(841\) −38.8410 16.0885i −1.33934 0.554774i
\(842\) 0 0
\(843\) 33.7575 6.71479i 1.16267 0.231270i
\(844\) 0 0
\(845\) 6.89709 34.6740i 0.237267 1.19282i
\(846\) 0 0
\(847\) 3.54536 + 5.30600i 0.121820 + 0.182316i
\(848\) 0 0
\(849\) 7.76046i 0.266338i
\(850\) 0 0
\(851\) 4.82605 0.165435
\(852\) 0 0
\(853\) −24.7676 + 16.5492i −0.848026 + 0.566633i −0.901915 0.431914i \(-0.857838\pi\)
0.0538885 + 0.998547i \(0.482838\pi\)
\(854\) 0 0
\(855\) −5.37019 1.06820i −0.183657 0.0365316i
\(856\) 0 0
\(857\) −1.68953 8.49385i −0.0577133 0.290145i 0.941140 0.338017i \(-0.109756\pi\)
−0.998853 + 0.0478721i \(0.984756\pi\)
\(858\) 0 0
\(859\) −5.35005 + 12.9162i −0.182541 + 0.440694i −0.988489 0.151293i \(-0.951656\pi\)
0.805948 + 0.591987i \(0.201656\pi\)
\(860\) 0 0
\(861\) 6.73273 10.0762i 0.229451 0.343397i
\(862\) 0 0
\(863\) −21.9763 + 21.9763i −0.748081 + 0.748081i −0.974119 0.226038i \(-0.927423\pi\)
0.226038 + 0.974119i \(0.427423\pi\)
\(864\) 0 0
\(865\) −42.6026 + 17.6466i −1.44853 + 0.600001i
\(866\) 0 0
\(867\) −27.6970 + 5.33272i −0.940638 + 0.181109i
\(868\) 0 0
\(869\) 1.82923 0.757691i 0.0620523 0.0257029i
\(870\) 0 0
\(871\) 0.682843 + 0.682843i 0.0231372 + 0.0231372i
\(872\) 0 0
\(873\) −0.352950 + 0.528226i −0.0119455 + 0.0178778i
\(874\) 0 0
\(875\) 38.3118 + 15.8693i 1.29518 + 0.536479i
\(876\) 0 0
\(877\) 0.471143 + 2.36860i 0.0159094 + 0.0799818i 0.987924 0.154937i \(-0.0495175\pi\)
−0.972015 + 0.234919i \(0.924518\pi\)
\(878\) 0 0
\(879\) −6.56729 + 33.0160i −0.221509 + 1.11360i
\(880\) 0 0
\(881\) −30.2718 + 20.2270i −1.01988 + 0.681464i −0.948758 0.316003i \(-0.897659\pi\)
−0.0711250 + 0.997467i \(0.522659\pi\)
\(882\) 0 0
\(883\) 45.6924i 1.53767i −0.639446 0.768836i \(-0.720836\pi\)
0.639446 0.768836i \(-0.279164\pi\)
\(884\) 0 0
\(885\) 27.8838i 0.937305i
\(886\) 0 0
\(887\) 11.7069 7.82227i 0.393078 0.262646i −0.343288 0.939230i \(-0.611541\pi\)
0.736365 + 0.676584i \(0.236541\pi\)
\(888\) 0 0
\(889\) 4.08896 20.5566i 0.137139 0.689446i
\(890\) 0 0
\(891\) 4.34102 + 21.8238i 0.145430 + 0.731124i
\(892\) 0 0
\(893\) 15.2696 + 6.32486i 0.510976 + 0.211653i
\(894\) 0 0
\(895\) 17.8409 26.7007i 0.596354 0.892507i
\(896\) 0 0
\(897\) 3.03511 + 3.03511i 0.101340 + 0.101340i
\(898\) 0 0
\(899\) −43.0755 + 17.8424i −1.43665 + 0.595079i
\(900\) 0 0
\(901\) −14.5300 + 21.6019i −0.484066 + 0.719664i
\(902\) 0 0
\(903\) 20.6312 8.54574i 0.686564 0.284384i
\(904\) 0 0
\(905\) −1.06477 + 1.06477i −0.0353940 + 0.0353940i
\(906\) 0 0
\(907\) −0.670220 + 1.00305i −0.0222543 + 0.0333059i −0.842430 0.538806i \(-0.818876\pi\)
0.820176 + 0.572112i \(0.193876\pi\)
\(908\) 0 0
\(909\) −1.18338 + 2.85693i −0.0392502 + 0.0947584i
\(910\) 0 0
\(911\) −4.49473 22.5965i −0.148917 0.748656i −0.981000 0.194006i \(-0.937852\pi\)
0.832084 0.554650i \(-0.187148\pi\)
\(912\) 0 0
\(913\) −41.3901 8.23300i −1.36981 0.272473i
\(914\) 0 0
\(915\) −11.6063 + 7.75506i −0.383692 + 0.256374i
\(916\) 0 0
\(917\) −15.4973 −0.511765
\(918\) 0 0
\(919\) 21.8485i 0.720717i 0.932814 + 0.360358i \(0.117346\pi\)
−0.932814 + 0.360358i \(0.882654\pi\)
\(920\) 0 0
\(921\) −9.58480 14.3447i −0.315830 0.472673i
\(922\) 0 0
\(923\) −4.52955 + 22.7716i −0.149092 + 0.749536i
\(924\) 0 0
\(925\) −40.6268 + 8.08118i −1.33580 + 0.265708i
\(926\) 0 0
\(927\) 0.201808 + 0.0835918i 0.00662826 + 0.00274551i
\(928\) 0 0
\(929\) 44.3386 + 29.6261i 1.45470 + 0.972000i 0.996539 + 0.0831312i \(0.0264921\pi\)
0.458162 + 0.888869i \(0.348508\pi\)
\(930\) 0 0
\(931\) −15.3595 15.3595i −0.503389 0.503389i
\(932\) 0 0
\(933\) 21.0510 + 50.8215i 0.689178 + 1.66382i
\(934\) 0 0
\(935\) 43.7649 + 8.84512i 1.43127 + 0.289266i
\(936\) 0 0
\(937\) 12.1271 + 29.2774i 0.396175 + 0.956451i 0.988564 + 0.150799i \(0.0481847\pi\)
−0.592389 + 0.805652i \(0.701815\pi\)
\(938\) 0 0
\(939\) −24.6458 + 24.6458i −0.804285 + 0.804285i
\(940\) 0 0
\(941\) 12.7817 + 8.54045i 0.416671 + 0.278411i 0.746183 0.665741i \(-0.231884\pi\)
−0.329512 + 0.944151i \(0.606884\pi\)
\(942\) 0 0
\(943\) −2.02294 + 4.88380i −0.0658759 + 0.159038i
\(944\) 0 0
\(945\) −37.0423 + 7.36816i −1.20498 + 0.239686i
\(946\) 0 0
\(947\) 5.57771 + 1.10948i 0.181251 + 0.0360531i 0.284881 0.958563i \(-0.408046\pi\)
−0.103630 + 0.994616i \(0.533046\pi\)
\(948\) 0 0
\(949\) 8.59587 + 12.8646i 0.279034 + 0.417604i
\(950\) 0 0
\(951\) 12.0245 0.389921
\(952\) 0 0
\(953\) 50.4072 1.63285 0.816425 0.577451i \(-0.195952\pi\)
0.816425 + 0.577451i \(0.195952\pi\)
\(954\) 0 0
\(955\) −30.4485 45.5694i −0.985290 1.47459i
\(956\) 0 0
\(957\) 37.2307 + 7.40565i 1.20350 + 0.239391i
\(958\) 0 0
\(959\) −3.80736 + 0.757331i −0.122946 + 0.0244555i
\(960\) 0 0
\(961\) 0.153126 0.369678i 0.00493954 0.0119251i
\(962\) 0 0
\(963\) 3.58208 + 2.39347i 0.115431 + 0.0771285i
\(964\) 0 0
\(965\) 27.5564 27.5564i 0.887072 0.887072i
\(966\) 0 0
\(967\) −20.5670 49.6531i −0.661389 1.59674i −0.795628 0.605786i \(-0.792859\pi\)
0.134238 0.990949i \(-0.457141\pi\)
\(968\) 0 0
\(969\) −0.116585 + 37.9814i −0.00374525 + 1.22014i
\(970\) 0 0
\(971\) 6.40801 + 15.4703i 0.205643 + 0.496466i 0.992728 0.120378i \(-0.0384108\pi\)
−0.787085 + 0.616844i \(0.788411\pi\)
\(972\) 0 0
\(973\) 23.9457 + 23.9457i 0.767663 + 0.767663i
\(974\) 0 0
\(975\) −30.6326 20.4681i −0.981029 0.655502i
\(976\) 0 0
\(977\) 51.9957 + 21.5373i 1.66349 + 0.689040i 0.998336 0.0576654i \(-0.0183657\pi\)
0.665155 + 0.746706i \(0.268366\pi\)
\(978\) 0 0
\(979\) −20.9491 + 4.16704i −0.669537 + 0.133179i
\(980\) 0 0
\(981\) 0.799012 4.01690i 0.0255105 0.128250i
\(982\) 0 0
\(983\) −20.2455 30.2995i −0.645731 0.966404i −0.999517 0.0310779i \(-0.990106\pi\)
0.353786 0.935326i \(-0.384894\pi\)
\(984\) 0 0
\(985\) 75.0769i 2.39215i
\(986\) 0 0
\(987\) 8.67871 0.276246
\(988\) 0 0
\(989\) −8.09928 + 5.41177i −0.257542 + 0.172084i
\(990\) 0 0
\(991\) −8.06621 1.60447i −0.256232 0.0509677i 0.0653029 0.997865i \(-0.479199\pi\)
−0.321535 + 0.946898i \(0.604199\pi\)
\(992\) 0 0
\(993\) 4.65623 + 23.4085i 0.147761 + 0.742845i
\(994\) 0 0
\(995\) −11.5843 + 27.9669i −0.367246 + 0.886610i
\(996\) 0 0
\(997\) 15.0804 22.5694i 0.477601 0.714780i −0.511942 0.859020i \(-0.671074\pi\)
0.989543 + 0.144240i \(0.0460737\pi\)
\(998\) 0 0
\(999\) 14.4570 14.4570i 0.457399 0.457399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.cc.c.175.3 112
4.3 odd 2 136.2.s.c.107.13 yes 112
8.3 odd 2 inner 544.2.cc.c.175.4 112
8.5 even 2 136.2.s.c.107.6 yes 112
17.7 odd 16 inner 544.2.cc.c.143.4 112
68.7 even 16 136.2.s.c.75.6 112
136.75 even 16 inner 544.2.cc.c.143.3 112
136.109 odd 16 136.2.s.c.75.13 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.s.c.75.6 112 68.7 even 16
136.2.s.c.75.13 yes 112 136.109 odd 16
136.2.s.c.107.6 yes 112 8.5 even 2
136.2.s.c.107.13 yes 112 4.3 odd 2
544.2.cc.c.143.3 112 136.75 even 16 inner
544.2.cc.c.143.4 112 17.7 odd 16 inner
544.2.cc.c.175.3 112 1.1 even 1 trivial
544.2.cc.c.175.4 112 8.3 odd 2 inner