Properties

Label 544.2.cc.c.175.14
Level $544$
Weight $2$
Character 544.175
Analytic conductor $4.344$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(79,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 8, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.cc (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 175.14
Character \(\chi\) \(=\) 544.175
Dual form 544.2.cc.c.143.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72164 + 2.57662i) q^{3} +(2.84924 + 0.566749i) q^{5} +(1.07350 - 0.213532i) q^{7} +(-2.52687 + 6.10039i) q^{9} +(-1.65107 - 1.10321i) q^{11} +(3.43124 - 3.43124i) q^{13} +(3.44507 + 8.31714i) q^{15} +(-2.78526 - 3.04012i) q^{17} +(0.843066 + 2.03534i) q^{19} +(2.39837 + 2.39837i) q^{21} +(-3.88838 - 2.59813i) q^{23} +(3.17755 + 1.31619i) q^{25} +(-10.9508 + 2.17824i) q^{27} +(0.598581 - 3.00927i) q^{29} +(-5.36812 - 8.03396i) q^{31} -6.15351i q^{33} +3.17967 q^{35} +(-3.54311 + 2.36743i) q^{37} +(14.7484 + 2.93363i) q^{39} +(0.251769 + 1.26573i) q^{41} +(-0.398138 + 0.961190i) q^{43} +(-10.6570 + 15.9494i) q^{45} +(-4.54349 + 4.54349i) q^{47} +(-5.36035 + 2.22033i) q^{49} +(3.03799 - 12.4106i) q^{51} +(-0.113637 + 0.0470698i) q^{53} +(-4.07905 - 4.07905i) q^{55} +(-3.79284 + 5.67639i) q^{57} +(2.61174 + 1.08182i) q^{59} +(2.10581 + 10.5866i) q^{61} +(-1.40996 + 7.08833i) q^{63} +(11.7211 - 7.83176i) q^{65} +2.27343i q^{67} -14.4919i q^{69} +(0.572331 - 0.382419i) q^{71} +(-2.44907 + 12.3123i) q^{73} +(2.07930 + 10.4533i) q^{75} +(-2.00799 - 0.831737i) q^{77} +(7.26595 - 10.8743i) q^{79} +(-10.4587 - 10.4587i) q^{81} +(0.181706 - 0.0752650i) q^{83} +(-6.21290 - 10.2406i) q^{85} +(8.78428 - 3.63857i) q^{87} +(5.16813 - 5.16813i) q^{89} +(2.95075 - 4.41611i) q^{91} +(11.4585 - 27.6632i) q^{93} +(1.24857 + 6.27698i) q^{95} +(15.5086 + 3.08484i) q^{97} +(10.9020 - 7.28451i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{3} - 16 q^{9} + 16 q^{11} - 16 q^{17} + 16 q^{19} - 16 q^{25} - 32 q^{27} + 32 q^{35} - 16 q^{41} + 96 q^{43} - 16 q^{49} + 16 q^{51} + 32 q^{57} + 16 q^{59} + 64 q^{65} - 96 q^{73} + 16 q^{75}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72164 + 2.57662i 0.993990 + 1.48761i 0.868606 + 0.495504i \(0.165016\pi\)
0.125385 + 0.992108i \(0.459984\pi\)
\(4\) 0 0
\(5\) 2.84924 + 0.566749i 1.27422 + 0.253458i 0.785433 0.618947i \(-0.212440\pi\)
0.488785 + 0.872404i \(0.337440\pi\)
\(6\) 0 0
\(7\) 1.07350 0.213532i 0.405744 0.0807075i 0.0120009 0.999928i \(-0.496180\pi\)
0.393743 + 0.919220i \(0.371180\pi\)
\(8\) 0 0
\(9\) −2.52687 + 6.10039i −0.842289 + 2.03346i
\(10\) 0 0
\(11\) −1.65107 1.10321i −0.497816 0.332630i 0.281184 0.959654i \(-0.409273\pi\)
−0.779000 + 0.627024i \(0.784273\pi\)
\(12\) 0 0
\(13\) 3.43124 3.43124i 0.951654 0.951654i −0.0472302 0.998884i \(-0.515039\pi\)
0.998884 + 0.0472302i \(0.0150394\pi\)
\(14\) 0 0
\(15\) 3.44507 + 8.31714i 0.889514 + 2.14748i
\(16\) 0 0
\(17\) −2.78526 3.04012i −0.675526 0.737336i
\(18\) 0 0
\(19\) 0.843066 + 2.03534i 0.193413 + 0.466939i 0.990600 0.136793i \(-0.0436795\pi\)
−0.797187 + 0.603732i \(0.793680\pi\)
\(20\) 0 0
\(21\) 2.39837 + 2.39837i 0.523367 + 0.523367i
\(22\) 0 0
\(23\) −3.88838 2.59813i −0.810783 0.541748i 0.0796709 0.996821i \(-0.474613\pi\)
−0.890454 + 0.455073i \(0.849613\pi\)
\(24\) 0 0
\(25\) 3.17755 + 1.31619i 0.635511 + 0.263237i
\(26\) 0 0
\(27\) −10.9508 + 2.17824i −2.10747 + 0.419203i
\(28\) 0 0
\(29\) 0.598581 3.00927i 0.111154 0.558807i −0.884569 0.466410i \(-0.845547\pi\)
0.995722 0.0923970i \(-0.0294529\pi\)
\(30\) 0 0
\(31\) −5.36812 8.03396i −0.964143 1.44294i −0.895377 0.445308i \(-0.853094\pi\)
−0.0687653 0.997633i \(-0.521906\pi\)
\(32\) 0 0
\(33\) 6.15351i 1.07119i
\(34\) 0 0
\(35\) 3.17967 0.537462
\(36\) 0 0
\(37\) −3.54311 + 2.36743i −0.582484 + 0.389203i −0.811615 0.584192i \(-0.801411\pi\)
0.229131 + 0.973396i \(0.426411\pi\)
\(38\) 0 0
\(39\) 14.7484 + 2.93363i 2.36163 + 0.469757i
\(40\) 0 0
\(41\) 0.251769 + 1.26573i 0.0393198 + 0.197674i 0.995452 0.0952603i \(-0.0303683\pi\)
−0.956133 + 0.292934i \(0.905368\pi\)
\(42\) 0 0
\(43\) −0.398138 + 0.961190i −0.0607155 + 0.146580i −0.951326 0.308187i \(-0.900278\pi\)
0.890610 + 0.454767i \(0.150278\pi\)
\(44\) 0 0
\(45\) −10.6570 + 15.9494i −1.58866 + 2.37759i
\(46\) 0 0
\(47\) −4.54349 + 4.54349i −0.662736 + 0.662736i −0.956024 0.293288i \(-0.905250\pi\)
0.293288 + 0.956024i \(0.405250\pi\)
\(48\) 0 0
\(49\) −5.36035 + 2.22033i −0.765765 + 0.317190i
\(50\) 0 0
\(51\) 3.03799 12.4106i 0.425404 1.73783i
\(52\) 0 0
\(53\) −0.113637 + 0.0470698i −0.0156092 + 0.00646553i −0.390474 0.920614i \(-0.627689\pi\)
0.374865 + 0.927079i \(0.377689\pi\)
\(54\) 0 0
\(55\) −4.07905 4.07905i −0.550019 0.550019i
\(56\) 0 0
\(57\) −3.79284 + 5.67639i −0.502374 + 0.751856i
\(58\) 0 0
\(59\) 2.61174 + 1.08182i 0.340019 + 0.140841i 0.546158 0.837682i \(-0.316090\pi\)
−0.206139 + 0.978523i \(0.566090\pi\)
\(60\) 0 0
\(61\) 2.10581 + 10.5866i 0.269621 + 1.35548i 0.843761 + 0.536719i \(0.180336\pi\)
−0.574140 + 0.818757i \(0.694664\pi\)
\(62\) 0 0
\(63\) −1.40996 + 7.08833i −0.177638 + 0.893045i
\(64\) 0 0
\(65\) 11.7211 7.83176i 1.45382 0.971410i
\(66\) 0 0
\(67\) 2.27343i 0.277743i 0.990310 + 0.138872i \(0.0443476\pi\)
−0.990310 + 0.138872i \(0.955652\pi\)
\(68\) 0 0
\(69\) 14.4919i 1.74462i
\(70\) 0 0
\(71\) 0.572331 0.382419i 0.0679231 0.0453848i −0.521145 0.853468i \(-0.674495\pi\)
0.589068 + 0.808083i \(0.299495\pi\)
\(72\) 0 0
\(73\) −2.44907 + 12.3123i −0.286642 + 1.44105i 0.522099 + 0.852885i \(0.325149\pi\)
−0.808742 + 0.588164i \(0.799851\pi\)
\(74\) 0 0
\(75\) 2.07930 + 10.4533i 0.240097 + 1.20705i
\(76\) 0 0
\(77\) −2.00799 0.831737i −0.228832 0.0947853i
\(78\) 0 0
\(79\) 7.26595 10.8743i 0.817483 1.22345i −0.154405 0.988008i \(-0.549346\pi\)
0.971888 0.235443i \(-0.0756540\pi\)
\(80\) 0 0
\(81\) −10.4587 10.4587i −1.16207 1.16207i
\(82\) 0 0
\(83\) 0.181706 0.0752650i 0.0199448 0.00826141i −0.372689 0.927956i \(-0.621564\pi\)
0.392634 + 0.919695i \(0.371564\pi\)
\(84\) 0 0
\(85\) −6.21290 10.2406i −0.673883 1.11074i
\(86\) 0 0
\(87\) 8.78428 3.63857i 0.941774 0.390095i
\(88\) 0 0
\(89\) 5.16813 5.16813i 0.547820 0.547820i −0.377990 0.925810i \(-0.623384\pi\)
0.925810 + 0.377990i \(0.123384\pi\)
\(90\) 0 0
\(91\) 2.95075 4.41611i 0.309322 0.462934i
\(92\) 0 0
\(93\) 11.4585 27.6632i 1.18819 2.86854i
\(94\) 0 0
\(95\) 1.24857 + 6.27698i 0.128100 + 0.644005i
\(96\) 0 0
\(97\) 15.5086 + 3.08484i 1.57466 + 0.313219i 0.903663 0.428245i \(-0.140868\pi\)
0.670993 + 0.741464i \(0.265868\pi\)
\(98\) 0 0
\(99\) 10.9020 7.28451i 1.09570 0.732121i
\(100\) 0 0
\(101\) −6.93385 −0.689944 −0.344972 0.938613i \(-0.612112\pi\)
−0.344972 + 0.938613i \(0.612112\pi\)
\(102\) 0 0
\(103\) 1.42621i 0.140528i −0.997528 0.0702642i \(-0.977616\pi\)
0.997528 0.0702642i \(-0.0223842\pi\)
\(104\) 0 0
\(105\) 5.47425 + 8.19280i 0.534233 + 0.799536i
\(106\) 0 0
\(107\) −1.47646 + 7.42265i −0.142735 + 0.717575i 0.841437 + 0.540355i \(0.181710\pi\)
−0.984171 + 0.177219i \(0.943290\pi\)
\(108\) 0 0
\(109\) 7.31548 1.45514i 0.700695 0.139377i 0.168129 0.985765i \(-0.446228\pi\)
0.532567 + 0.846388i \(0.321228\pi\)
\(110\) 0 0
\(111\) −12.1999 5.05338i −1.15797 0.479646i
\(112\) 0 0
\(113\) −6.02876 4.02829i −0.567138 0.378950i 0.238693 0.971095i \(-0.423281\pi\)
−0.805831 + 0.592145i \(0.798281\pi\)
\(114\) 0 0
\(115\) −9.60643 9.60643i −0.895804 0.895804i
\(116\) 0 0
\(117\) 12.2616 + 29.6022i 1.13359 + 2.73672i
\(118\) 0 0
\(119\) −3.63914 2.66882i −0.333599 0.244650i
\(120\) 0 0
\(121\) −2.70056 6.51972i −0.245505 0.592702i
\(122\) 0 0
\(123\) −2.82785 + 2.82785i −0.254978 + 0.254978i
\(124\) 0 0
\(125\) −3.76967 2.51882i −0.337170 0.225290i
\(126\) 0 0
\(127\) 4.60400 11.1150i 0.408539 0.986300i −0.576984 0.816756i \(-0.695770\pi\)
0.985523 0.169544i \(-0.0542296\pi\)
\(128\) 0 0
\(129\) −3.16207 + 0.628975i −0.278405 + 0.0553782i
\(130\) 0 0
\(131\) 1.18604 + 0.235918i 0.103625 + 0.0206122i 0.246630 0.969110i \(-0.420677\pi\)
−0.143006 + 0.989722i \(0.545677\pi\)
\(132\) 0 0
\(133\) 1.33964 + 2.00491i 0.116162 + 0.173848i
\(134\) 0 0
\(135\) −32.4358 −2.79163
\(136\) 0 0
\(137\) −7.10936 −0.607394 −0.303697 0.952769i \(-0.598221\pi\)
−0.303697 + 0.952769i \(0.598221\pi\)
\(138\) 0 0
\(139\) 10.3226 + 15.4488i 0.875550 + 1.31035i 0.949718 + 0.313108i \(0.101370\pi\)
−0.0741672 + 0.997246i \(0.523630\pi\)
\(140\) 0 0
\(141\) −19.5291 3.88458i −1.64465 0.327141i
\(142\) 0 0
\(143\) −9.45058 + 1.87984i −0.790298 + 0.157200i
\(144\) 0 0
\(145\) 3.41100 8.23488i 0.283268 0.683869i
\(146\) 0 0
\(147\) −14.9496 9.98898i −1.23302 0.823877i
\(148\) 0 0
\(149\) −10.5928 + 10.5928i −0.867798 + 0.867798i −0.992228 0.124430i \(-0.960290\pi\)
0.124430 + 0.992228i \(0.460290\pi\)
\(150\) 0 0
\(151\) 4.25657 + 10.2763i 0.346395 + 0.836272i 0.997040 + 0.0768894i \(0.0244988\pi\)
−0.650644 + 0.759382i \(0.725501\pi\)
\(152\) 0 0
\(153\) 25.5839 9.30924i 2.06833 0.752608i
\(154\) 0 0
\(155\) −10.7418 25.9330i −0.862803 2.08299i
\(156\) 0 0
\(157\) 4.32762 + 4.32762i 0.345382 + 0.345382i 0.858386 0.513004i \(-0.171468\pi\)
−0.513004 + 0.858386i \(0.671468\pi\)
\(158\) 0 0
\(159\) −0.316922 0.211761i −0.0251336 0.0167937i
\(160\) 0 0
\(161\) −4.72895 1.95880i −0.372694 0.154375i
\(162\) 0 0
\(163\) 23.4802 4.67051i 1.83911 0.365823i 0.851707 0.524018i \(-0.175568\pi\)
0.987408 + 0.158195i \(0.0505676\pi\)
\(164\) 0 0
\(165\) 3.48749 17.5328i 0.271501 1.36493i
\(166\) 0 0
\(167\) 0.314811 + 0.471148i 0.0243608 + 0.0364586i 0.843450 0.537207i \(-0.180521\pi\)
−0.819089 + 0.573666i \(0.805521\pi\)
\(168\) 0 0
\(169\) 10.5468i 0.811290i
\(170\) 0 0
\(171\) −14.5467 −1.11241
\(172\) 0 0
\(173\) 7.47726 4.99615i 0.568486 0.379850i −0.237856 0.971301i \(-0.576445\pi\)
0.806341 + 0.591451i \(0.201445\pi\)
\(174\) 0 0
\(175\) 3.69215 + 0.734414i 0.279100 + 0.0555165i
\(176\) 0 0
\(177\) 1.70905 + 8.59196i 0.128460 + 0.645811i
\(178\) 0 0
\(179\) 4.40207 10.6275i 0.329027 0.794340i −0.669639 0.742687i \(-0.733551\pi\)
0.998665 0.0516532i \(-0.0164490\pi\)
\(180\) 0 0
\(181\) 2.33686 3.49735i 0.173697 0.259956i −0.734399 0.678718i \(-0.762536\pi\)
0.908096 + 0.418762i \(0.137536\pi\)
\(182\) 0 0
\(183\) −23.6522 + 23.6522i −1.74842 + 1.74842i
\(184\) 0 0
\(185\) −11.4369 + 4.73732i −0.840858 + 0.348295i
\(186\) 0 0
\(187\) 1.24478 + 8.09217i 0.0910274 + 0.591758i
\(188\) 0 0
\(189\) −11.2905 + 4.67668i −0.821263 + 0.340178i
\(190\) 0 0
\(191\) 10.1812 + 10.1812i 0.736687 + 0.736687i 0.971935 0.235248i \(-0.0755902\pi\)
−0.235248 + 0.971935i \(0.575590\pi\)
\(192\) 0 0
\(193\) 0.284175 0.425297i 0.0204553 0.0306136i −0.821101 0.570783i \(-0.806640\pi\)
0.841556 + 0.540169i \(0.181640\pi\)
\(194\) 0 0
\(195\) 40.3589 + 16.7172i 2.89016 + 1.19714i
\(196\) 0 0
\(197\) −2.96479 14.9050i −0.211232 1.06194i −0.930245 0.366940i \(-0.880406\pi\)
0.719012 0.694997i \(-0.244594\pi\)
\(198\) 0 0
\(199\) −0.0927723 + 0.466398i −0.00657645 + 0.0330621i −0.983934 0.178532i \(-0.942865\pi\)
0.977358 + 0.211594i \(0.0678653\pi\)
\(200\) 0 0
\(201\) −5.85776 + 3.91403i −0.413174 + 0.276074i
\(202\) 0 0
\(203\) 3.35826i 0.235704i
\(204\) 0 0
\(205\) 3.74906i 0.261845i
\(206\) 0 0
\(207\) 25.6750 17.1555i 1.78454 1.19239i
\(208\) 0 0
\(209\) 0.853448 4.29057i 0.0590342 0.296785i
\(210\) 0 0
\(211\) −1.02148 5.13534i −0.0703218 0.353531i 0.929564 0.368661i \(-0.120184\pi\)
−0.999886 + 0.0151300i \(0.995184\pi\)
\(212\) 0 0
\(213\) 1.97070 + 0.816289i 0.135030 + 0.0559312i
\(214\) 0 0
\(215\) −1.67914 + 2.51301i −0.114517 + 0.171386i
\(216\) 0 0
\(217\) −7.47817 7.47817i −0.507652 0.507652i
\(218\) 0 0
\(219\) −35.9406 + 14.8871i −2.42864 + 1.00598i
\(220\) 0 0
\(221\) −19.9883 0.874457i −1.34456 0.0588223i
\(222\) 0 0
\(223\) 5.56999 2.30717i 0.372994 0.154499i −0.188308 0.982110i \(-0.560300\pi\)
0.561303 + 0.827611i \(0.310300\pi\)
\(224\) 0 0
\(225\) −16.0585 + 16.0585i −1.07057 + 1.07057i
\(226\) 0 0
\(227\) −6.86470 + 10.2737i −0.455626 + 0.681893i −0.986165 0.165768i \(-0.946990\pi\)
0.530539 + 0.847661i \(0.321990\pi\)
\(228\) 0 0
\(229\) −2.89813 + 6.99670i −0.191514 + 0.462355i −0.990246 0.139332i \(-0.955505\pi\)
0.798732 + 0.601687i \(0.205505\pi\)
\(230\) 0 0
\(231\) −1.31397 6.60578i −0.0864530 0.434629i
\(232\) 0 0
\(233\) −19.4553 3.86991i −1.27456 0.253526i −0.488986 0.872292i \(-0.662633\pi\)
−0.785576 + 0.618765i \(0.787633\pi\)
\(234\) 0 0
\(235\) −15.5205 + 10.3705i −1.01245 + 0.676494i
\(236\) 0 0
\(237\) 40.5282 2.63259
\(238\) 0 0
\(239\) 24.9953i 1.61681i 0.588625 + 0.808406i \(0.299669\pi\)
−0.588625 + 0.808406i \(0.700331\pi\)
\(240\) 0 0
\(241\) 8.78732 + 13.1511i 0.566041 + 0.847140i 0.998513 0.0545072i \(-0.0173588\pi\)
−0.432473 + 0.901647i \(0.642359\pi\)
\(242\) 0 0
\(243\) 2.40720 12.1018i 0.154422 0.776332i
\(244\) 0 0
\(245\) −16.5313 + 3.28828i −1.05615 + 0.210080i
\(246\) 0 0
\(247\) 9.87650 + 4.09098i 0.628427 + 0.260303i
\(248\) 0 0
\(249\) 0.506762 + 0.338607i 0.0321147 + 0.0214584i
\(250\) 0 0
\(251\) −11.8712 11.8712i −0.749301 0.749301i 0.225047 0.974348i \(-0.427747\pi\)
−0.974348 + 0.225047i \(0.927747\pi\)
\(252\) 0 0
\(253\) 3.55370 + 8.57939i 0.223419 + 0.539382i
\(254\) 0 0
\(255\) 15.6896 33.6388i 0.982523 2.10655i
\(256\) 0 0
\(257\) 8.73779 + 21.0949i 0.545048 + 1.31586i 0.921122 + 0.389273i \(0.127274\pi\)
−0.376074 + 0.926590i \(0.622726\pi\)
\(258\) 0 0
\(259\) −3.29800 + 3.29800i −0.204928 + 0.204928i
\(260\) 0 0
\(261\) 16.8452 + 11.2556i 1.04269 + 0.696704i
\(262\) 0 0
\(263\) 7.24757 17.4972i 0.446904 1.07892i −0.526571 0.850131i \(-0.676523\pi\)
0.973475 0.228791i \(-0.0734774\pi\)
\(264\) 0 0
\(265\) −0.350454 + 0.0697097i −0.0215282 + 0.00428223i
\(266\) 0 0
\(267\) 22.2140 + 4.41863i 1.35947 + 0.270416i
\(268\) 0 0
\(269\) 13.3618 + 19.9973i 0.814681 + 1.21926i 0.972756 + 0.231830i \(0.0744712\pi\)
−0.158075 + 0.987427i \(0.550529\pi\)
\(270\) 0 0
\(271\) −6.93459 −0.421246 −0.210623 0.977567i \(-0.567549\pi\)
−0.210623 + 0.977567i \(0.567549\pi\)
\(272\) 0 0
\(273\) 16.4588 0.996129
\(274\) 0 0
\(275\) −3.79434 5.67862i −0.228807 0.342434i
\(276\) 0 0
\(277\) 19.9019 + 3.95873i 1.19579 + 0.237857i 0.752543 0.658543i \(-0.228827\pi\)
0.443245 + 0.896400i \(0.353827\pi\)
\(278\) 0 0
\(279\) 62.5748 12.4469i 3.74626 0.745177i
\(280\) 0 0
\(281\) 7.51376 18.1398i 0.448233 1.08213i −0.524750 0.851256i \(-0.675841\pi\)
0.972984 0.230874i \(-0.0741587\pi\)
\(282\) 0 0
\(283\) 8.45289 + 5.64804i 0.502472 + 0.335741i 0.780837 0.624734i \(-0.214793\pi\)
−0.278366 + 0.960475i \(0.589793\pi\)
\(284\) 0 0
\(285\) −14.0238 + 14.0238i −0.830698 + 0.830698i
\(286\) 0 0
\(287\) 0.540548 + 1.30500i 0.0319075 + 0.0770316i
\(288\) 0 0
\(289\) −1.48461 + 16.9351i −0.0873299 + 0.996179i
\(290\) 0 0
\(291\) 18.7517 + 45.2707i 1.09925 + 2.65381i
\(292\) 0 0
\(293\) −12.6074 12.6074i −0.736534 0.736534i 0.235371 0.971906i \(-0.424369\pi\)
−0.971906 + 0.235371i \(0.924369\pi\)
\(294\) 0 0
\(295\) 6.82835 + 4.56256i 0.397562 + 0.265642i
\(296\) 0 0
\(297\) 20.4835 + 8.48455i 1.18857 + 0.492324i
\(298\) 0 0
\(299\) −22.2568 + 4.42714i −1.28714 + 0.256028i
\(300\) 0 0
\(301\) −0.222155 + 1.11685i −0.0128048 + 0.0643742i
\(302\) 0 0
\(303\) −11.9376 17.8659i −0.685798 1.02637i
\(304\) 0 0
\(305\) 31.3572i 1.79551i
\(306\) 0 0
\(307\) 9.55065 0.545084 0.272542 0.962144i \(-0.412136\pi\)
0.272542 + 0.962144i \(0.412136\pi\)
\(308\) 0 0
\(309\) 3.67480 2.45542i 0.209052 0.139684i
\(310\) 0 0
\(311\) −15.6177 3.10656i −0.885599 0.176157i −0.268723 0.963217i \(-0.586602\pi\)
−0.616875 + 0.787061i \(0.711602\pi\)
\(312\) 0 0
\(313\) 0.316223 + 1.58976i 0.0178740 + 0.0898584i 0.988693 0.149956i \(-0.0479133\pi\)
−0.970819 + 0.239815i \(0.922913\pi\)
\(314\) 0 0
\(315\) −8.03460 + 19.3972i −0.452698 + 1.09291i
\(316\) 0 0
\(317\) −0.260456 + 0.389800i −0.0146287 + 0.0218933i −0.838712 0.544575i \(-0.816691\pi\)
0.824083 + 0.566469i \(0.191691\pi\)
\(318\) 0 0
\(319\) −4.30815 + 4.30815i −0.241210 + 0.241210i
\(320\) 0 0
\(321\) −21.6673 + 8.97488i −1.20935 + 0.500929i
\(322\) 0 0
\(323\) 3.83951 8.23198i 0.213636 0.458040i
\(324\) 0 0
\(325\) 15.4191 6.38679i 0.855297 0.354276i
\(326\) 0 0
\(327\) 16.3440 + 16.3440i 0.903823 + 0.903823i
\(328\) 0 0
\(329\) −3.90725 + 5.84761i −0.215413 + 0.322389i
\(330\) 0 0
\(331\) −23.3026 9.65226i −1.28083 0.530536i −0.364588 0.931169i \(-0.618790\pi\)
−0.916239 + 0.400633i \(0.868790\pi\)
\(332\) 0 0
\(333\) −5.48930 27.5966i −0.300812 1.51228i
\(334\) 0 0
\(335\) −1.28846 + 6.47754i −0.0703962 + 0.353906i
\(336\) 0 0
\(337\) 4.75051 3.17419i 0.258777 0.172909i −0.419414 0.907795i \(-0.637764\pi\)
0.678191 + 0.734886i \(0.262764\pi\)
\(338\) 0 0
\(339\) 22.4691i 1.22035i
\(340\) 0 0
\(341\) 19.1868i 1.03902i
\(342\) 0 0
\(343\) −11.6507 + 7.78475i −0.629078 + 0.420337i
\(344\) 0 0
\(345\) 8.21328 41.2909i 0.442188 2.22303i
\(346\) 0 0
\(347\) 5.22360 + 26.2608i 0.280418 + 1.40976i 0.822182 + 0.569225i \(0.192757\pi\)
−0.541764 + 0.840531i \(0.682243\pi\)
\(348\) 0 0
\(349\) −5.23539 2.16857i −0.280244 0.116081i 0.238134 0.971232i \(-0.423464\pi\)
−0.518378 + 0.855151i \(0.673464\pi\)
\(350\) 0 0
\(351\) −30.1006 + 45.0487i −1.60665 + 2.40452i
\(352\) 0 0
\(353\) −17.2667 17.2667i −0.919016 0.919016i 0.0779424 0.996958i \(-0.475165\pi\)
−0.996958 + 0.0779424i \(0.975165\pi\)
\(354\) 0 0
\(355\) 1.84744 0.765235i 0.0980520 0.0406145i
\(356\) 0 0
\(357\) 0.611229 13.9714i 0.0323497 0.739446i
\(358\) 0 0
\(359\) −33.2447 + 13.7704i −1.75459 + 0.726774i −0.757309 + 0.653057i \(0.773486\pi\)
−0.997279 + 0.0737173i \(0.976514\pi\)
\(360\) 0 0
\(361\) 10.0032 10.0032i 0.526483 0.526483i
\(362\) 0 0
\(363\) 12.1494 18.1829i 0.637681 0.954357i
\(364\) 0 0
\(365\) −13.9560 + 33.6927i −0.730490 + 1.76356i
\(366\) 0 0
\(367\) 2.88416 + 14.4997i 0.150552 + 0.756876i 0.980110 + 0.198455i \(0.0635924\pi\)
−0.829558 + 0.558421i \(0.811408\pi\)
\(368\) 0 0
\(369\) −8.35764 1.66244i −0.435081 0.0865431i
\(370\) 0 0
\(371\) −0.111938 + 0.0747944i −0.00581151 + 0.00388313i
\(372\) 0 0
\(373\) 2.68975 0.139270 0.0696349 0.997573i \(-0.477817\pi\)
0.0696349 + 0.997573i \(0.477817\pi\)
\(374\) 0 0
\(375\) 14.0495i 0.725514i
\(376\) 0 0
\(377\) −8.27164 12.3794i −0.426011 0.637571i
\(378\) 0 0
\(379\) 1.19273 5.99624i 0.0612662 0.308006i −0.937986 0.346673i \(-0.887311\pi\)
0.999252 + 0.0386673i \(0.0123112\pi\)
\(380\) 0 0
\(381\) 36.5657 7.27336i 1.87332 0.372626i
\(382\) 0 0
\(383\) 11.7055 + 4.84857i 0.598122 + 0.247750i 0.661141 0.750262i \(-0.270073\pi\)
−0.0630184 + 0.998012i \(0.520073\pi\)
\(384\) 0 0
\(385\) −5.24986 3.50784i −0.267558 0.178776i
\(386\) 0 0
\(387\) −4.85760 4.85760i −0.246925 0.246925i
\(388\) 0 0
\(389\) 7.98630 + 19.2806i 0.404921 + 0.977567i 0.986453 + 0.164043i \(0.0524536\pi\)
−0.581532 + 0.813524i \(0.697546\pi\)
\(390\) 0 0
\(391\) 2.93154 + 19.0576i 0.148254 + 0.963784i
\(392\) 0 0
\(393\) 1.43406 + 3.46214i 0.0723390 + 0.174642i
\(394\) 0 0
\(395\) 26.8654 26.8654i 1.35174 1.35174i
\(396\) 0 0
\(397\) −32.1873 21.5068i −1.61543 1.07940i −0.939563 0.342376i \(-0.888768\pi\)
−0.675870 0.737021i \(-0.736232\pi\)
\(398\) 0 0
\(399\) −2.85952 + 6.90349i −0.143155 + 0.345607i
\(400\) 0 0
\(401\) 3.73319 0.742577i 0.186427 0.0370825i −0.100994 0.994887i \(-0.532202\pi\)
0.287421 + 0.957804i \(0.407202\pi\)
\(402\) 0 0
\(403\) −45.9857 9.14712i −2.29071 0.455651i
\(404\) 0 0
\(405\) −23.8718 35.7267i −1.18620 1.77527i
\(406\) 0 0
\(407\) 8.46170 0.419431
\(408\) 0 0
\(409\) −25.4900 −1.26040 −0.630200 0.776433i \(-0.717027\pi\)
−0.630200 + 0.776433i \(0.717027\pi\)
\(410\) 0 0
\(411\) −12.2398 18.3181i −0.603744 0.903566i
\(412\) 0 0
\(413\) 3.03470 + 0.603639i 0.149328 + 0.0297032i
\(414\) 0 0
\(415\) 0.560380 0.111466i 0.0275080 0.00547167i
\(416\) 0 0
\(417\) −22.0340 + 53.1948i −1.07901 + 2.60496i
\(418\) 0 0
\(419\) 0.997962 + 0.666817i 0.0487537 + 0.0325762i 0.579708 0.814824i \(-0.303167\pi\)
−0.530955 + 0.847400i \(0.678167\pi\)
\(420\) 0 0
\(421\) −4.37164 + 4.37164i −0.213061 + 0.213061i −0.805566 0.592506i \(-0.798139\pi\)
0.592506 + 0.805566i \(0.298139\pi\)
\(422\) 0 0
\(423\) −16.2363 39.1978i −0.789435 1.90586i
\(424\) 0 0
\(425\) −4.84897 13.3261i −0.235210 0.646409i
\(426\) 0 0
\(427\) 4.52116 + 10.9150i 0.218794 + 0.528216i
\(428\) 0 0
\(429\) −21.1142 21.1142i −1.01940 1.01940i
\(430\) 0 0
\(431\) −14.6489 9.78805i −0.705610 0.471474i 0.150272 0.988645i \(-0.451985\pi\)
−0.855882 + 0.517171i \(0.826985\pi\)
\(432\) 0 0
\(433\) 27.3362 + 11.3230i 1.31369 + 0.544150i 0.925960 0.377622i \(-0.123258\pi\)
0.387733 + 0.921772i \(0.373258\pi\)
\(434\) 0 0
\(435\) 27.0907 5.38867i 1.29890 0.258367i
\(436\) 0 0
\(437\) 2.00993 10.1046i 0.0961478 0.483368i
\(438\) 0 0
\(439\) −10.6237 15.8995i −0.507043 0.758843i 0.486330 0.873775i \(-0.338335\pi\)
−0.993373 + 0.114932i \(0.963335\pi\)
\(440\) 0 0
\(441\) 38.3107i 1.82432i
\(442\) 0 0
\(443\) 6.76589 0.321457 0.160729 0.986999i \(-0.448616\pi\)
0.160729 + 0.986999i \(0.448616\pi\)
\(444\) 0 0
\(445\) 17.6542 11.7962i 0.836892 0.559193i
\(446\) 0 0
\(447\) −45.5307 9.05663i −2.15353 0.428364i
\(448\) 0 0
\(449\) −1.84456 9.27321i −0.0870500 0.437630i −0.999590 0.0286418i \(-0.990882\pi\)
0.912540 0.408988i \(-0.134118\pi\)
\(450\) 0 0
\(451\) 0.980677 2.36756i 0.0461783 0.111484i
\(452\) 0 0
\(453\) −19.1498 + 28.6596i −0.899734 + 1.34655i
\(454\) 0 0
\(455\) 10.9102 10.9102i 0.511478 0.511478i
\(456\) 0 0
\(457\) −21.8728 + 9.06001i −1.02317 + 0.423809i −0.830241 0.557404i \(-0.811797\pi\)
−0.192925 + 0.981214i \(0.561797\pi\)
\(458\) 0 0
\(459\) 37.1229 + 27.2246i 1.73275 + 1.27074i
\(460\) 0 0
\(461\) 27.7787 11.5063i 1.29378 0.535903i 0.373673 0.927560i \(-0.378098\pi\)
0.920111 + 0.391657i \(0.128098\pi\)
\(462\) 0 0
\(463\) −14.9625 14.9625i −0.695368 0.695368i 0.268040 0.963408i \(-0.413624\pi\)
−0.963408 + 0.268040i \(0.913624\pi\)
\(464\) 0 0
\(465\) 48.3260 72.3249i 2.24106 3.35399i
\(466\) 0 0
\(467\) −33.3168 13.8003i −1.54172 0.638601i −0.559924 0.828544i \(-0.689170\pi\)
−0.981795 + 0.189943i \(0.939170\pi\)
\(468\) 0 0
\(469\) 0.485450 + 2.44052i 0.0224160 + 0.112693i
\(470\) 0 0
\(471\) −3.70002 + 18.6012i −0.170488 + 0.857100i
\(472\) 0 0
\(473\) 1.71775 1.14776i 0.0789821 0.0527742i
\(474\) 0 0
\(475\) 7.57704i 0.347659i
\(476\) 0 0
\(477\) 0.812166i 0.0371865i
\(478\) 0 0
\(479\) 14.6280 9.77412i 0.668371 0.446591i −0.174536 0.984651i \(-0.555843\pi\)
0.842907 + 0.538060i \(0.180843\pi\)
\(480\) 0 0
\(481\) −4.03404 + 20.2805i −0.183936 + 0.924710i
\(482\) 0 0
\(483\) −3.09449 15.5571i −0.140804 0.707871i
\(484\) 0 0
\(485\) 42.4392 + 17.5789i 1.92707 + 0.798217i
\(486\) 0 0
\(487\) 8.20327 12.2771i 0.371726 0.556327i −0.597697 0.801722i \(-0.703918\pi\)
0.969423 + 0.245395i \(0.0789176\pi\)
\(488\) 0 0
\(489\) 52.4587 + 52.4587i 2.37226 + 2.37226i
\(490\) 0 0
\(491\) −18.3182 + 7.58764i −0.826688 + 0.342425i −0.755591 0.655044i \(-0.772650\pi\)
−0.0710973 + 0.997469i \(0.522650\pi\)
\(492\) 0 0
\(493\) −10.8157 + 6.56185i −0.487116 + 0.295531i
\(494\) 0 0
\(495\) 35.1910 14.5766i 1.58172 0.655169i
\(496\) 0 0
\(497\) 0.532737 0.532737i 0.0238965 0.0238965i
\(498\) 0 0
\(499\) 2.45869 3.67969i 0.110066 0.164725i −0.772347 0.635201i \(-0.780917\pi\)
0.882413 + 0.470475i \(0.155917\pi\)
\(500\) 0 0
\(501\) −0.671978 + 1.62230i −0.0300218 + 0.0724789i
\(502\) 0 0
\(503\) −5.36414 26.9673i −0.239175 1.20241i −0.894500 0.447067i \(-0.852468\pi\)
0.655325 0.755347i \(-0.272532\pi\)
\(504\) 0 0
\(505\) −19.7562 3.92975i −0.879139 0.174872i
\(506\) 0 0
\(507\) 27.1750 18.1578i 1.20688 0.806414i
\(508\) 0 0
\(509\) −32.6513 −1.44724 −0.723621 0.690197i \(-0.757524\pi\)
−0.723621 + 0.690197i \(0.757524\pi\)
\(510\) 0 0
\(511\) 13.7402i 0.607832i
\(512\) 0 0
\(513\) −13.6657 20.4521i −0.603355 0.902984i
\(514\) 0 0
\(515\) 0.808302 4.06361i 0.0356180 0.179064i
\(516\) 0 0
\(517\) 12.5140 2.48920i 0.550367 0.109475i
\(518\) 0 0
\(519\) 25.7463 + 10.6645i 1.13014 + 0.468119i
\(520\) 0 0
\(521\) −0.761700 0.508952i −0.0333707 0.0222976i 0.538773 0.842451i \(-0.318888\pi\)
−0.572144 + 0.820153i \(0.693888\pi\)
\(522\) 0 0
\(523\) 27.5393 + 27.5393i 1.20421 + 1.20421i 0.972874 + 0.231334i \(0.0743090\pi\)
0.231334 + 0.972874i \(0.425691\pi\)
\(524\) 0 0
\(525\) 4.46425 + 10.7777i 0.194836 + 0.470375i
\(526\) 0 0
\(527\) −9.47253 + 38.6964i −0.412630 + 1.68564i
\(528\) 0 0
\(529\) −0.432517 1.04419i −0.0188051 0.0453995i
\(530\) 0 0
\(531\) −13.1990 + 13.1990i −0.572789 + 0.572789i
\(532\) 0 0
\(533\) 5.20690 + 3.47914i 0.225536 + 0.150698i
\(534\) 0 0
\(535\) −8.41356 + 20.3121i −0.363750 + 0.878170i
\(536\) 0 0
\(537\) 34.9619 6.95436i 1.50872 0.300103i
\(538\) 0 0
\(539\) 11.2998 + 2.24767i 0.486717 + 0.0968141i
\(540\) 0 0
\(541\) −10.6957 16.0073i −0.459845 0.688206i 0.527002 0.849864i \(-0.323316\pi\)
−0.986847 + 0.161658i \(0.948316\pi\)
\(542\) 0 0
\(543\) 13.0346 0.559367
\(544\) 0 0
\(545\) 21.6682 0.928165
\(546\) 0 0
\(547\) −5.75904 8.61902i −0.246239 0.368522i 0.687676 0.726018i \(-0.258631\pi\)
−0.933915 + 0.357495i \(0.883631\pi\)
\(548\) 0 0
\(549\) −69.9035 13.9047i −2.98341 0.593437i
\(550\) 0 0
\(551\) 6.62953 1.31870i 0.282428 0.0561783i
\(552\) 0 0
\(553\) 5.47798 13.2250i 0.232948 0.562385i
\(554\) 0 0
\(555\) −31.8965 21.3126i −1.35393 0.904669i
\(556\) 0 0
\(557\) 12.2722 12.2722i 0.519988 0.519988i −0.397580 0.917568i \(-0.630150\pi\)
0.917568 + 0.397580i \(0.130150\pi\)
\(558\) 0 0
\(559\) 1.93196 + 4.66418i 0.0817134 + 0.197274i
\(560\) 0 0
\(561\) −18.7074 + 17.1392i −0.789826 + 0.723616i
\(562\) 0 0
\(563\) 13.9907 + 33.7766i 0.589639 + 1.42352i 0.883848 + 0.467774i \(0.154944\pi\)
−0.294209 + 0.955741i \(0.595056\pi\)
\(564\) 0 0
\(565\) −14.8944 14.8944i −0.626610 0.626610i
\(566\) 0 0
\(567\) −13.4606 8.99410i −0.565293 0.377717i
\(568\) 0 0
\(569\) −26.4641 10.9618i −1.10943 0.459543i −0.248691 0.968583i \(-0.580000\pi\)
−0.860743 + 0.509040i \(0.830000\pi\)
\(570\) 0 0
\(571\) 15.6422 3.11143i 0.654607 0.130209i 0.143397 0.989665i \(-0.454197\pi\)
0.511210 + 0.859456i \(0.329197\pi\)
\(572\) 0 0
\(573\) −8.70471 + 43.7616i −0.363645 + 1.82817i
\(574\) 0 0
\(575\) −8.93591 13.3735i −0.372653 0.557715i
\(576\) 0 0
\(577\) 0.533016i 0.0221898i 0.999938 + 0.0110949i \(0.00353168\pi\)
−0.999938 + 0.0110949i \(0.996468\pi\)
\(578\) 0 0
\(579\) 1.58508 0.0658735
\(580\) 0 0
\(581\) 0.178989 0.119597i 0.00742573 0.00496172i
\(582\) 0 0
\(583\) 0.239550 + 0.0476494i 0.00992113 + 0.00197344i
\(584\) 0 0
\(585\) 18.1593 + 91.2929i 0.750794 + 3.77450i
\(586\) 0 0
\(587\) −2.81261 + 6.79025i −0.116089 + 0.280264i −0.971235 0.238124i \(-0.923468\pi\)
0.855146 + 0.518388i \(0.173468\pi\)
\(588\) 0 0
\(589\) 11.8262 17.6991i 0.487289 0.729279i
\(590\) 0 0
\(591\) 33.3002 33.3002i 1.36979 1.36979i
\(592\) 0 0
\(593\) 41.6870 17.2673i 1.71188 0.709085i 0.711905 0.702276i \(-0.247833\pi\)
0.999977 0.00680847i \(-0.00216722\pi\)
\(594\) 0 0
\(595\) −8.85622 9.66657i −0.363070 0.396291i
\(596\) 0 0
\(597\) −1.36145 + 0.563931i −0.0557204 + 0.0230802i
\(598\) 0 0
\(599\) −19.8695 19.8695i −0.811847 0.811847i 0.173064 0.984911i \(-0.444633\pi\)
−0.984911 + 0.173064i \(0.944633\pi\)
\(600\) 0 0
\(601\) −8.28776 + 12.4035i −0.338065 + 0.505950i −0.961084 0.276257i \(-0.910906\pi\)
0.623019 + 0.782207i \(0.285906\pi\)
\(602\) 0 0
\(603\) −13.8688 5.74465i −0.564781 0.233940i
\(604\) 0 0
\(605\) −3.99949 20.1068i −0.162602 0.817457i
\(606\) 0 0
\(607\) −4.45355 + 22.3895i −0.180764 + 0.908762i 0.778800 + 0.627272i \(0.215829\pi\)
−0.959564 + 0.281490i \(0.909171\pi\)
\(608\) 0 0
\(609\) 8.65296 5.78172i 0.350636 0.234287i
\(610\) 0 0
\(611\) 31.1796i 1.26139i
\(612\) 0 0
\(613\) 2.66972i 0.107829i −0.998546 0.0539146i \(-0.982830\pi\)
0.998546 0.0539146i \(-0.0171699\pi\)
\(614\) 0 0
\(615\) −9.65989 + 6.45453i −0.389524 + 0.260272i
\(616\) 0 0
\(617\) 1.85421 9.32176i 0.0746478 0.375280i −0.925345 0.379127i \(-0.876224\pi\)
0.999993 + 0.00384677i \(0.00122447\pi\)
\(618\) 0 0
\(619\) 2.23331 + 11.2276i 0.0897645 + 0.451276i 0.999360 + 0.0357809i \(0.0113918\pi\)
−0.909595 + 0.415496i \(0.863608\pi\)
\(620\) 0 0
\(621\) 48.2401 + 19.9817i 1.93581 + 0.801837i
\(622\) 0 0
\(623\) 4.44441 6.65153i 0.178062 0.266488i
\(624\) 0 0
\(625\) −21.4731 21.4731i −0.858926 0.858926i
\(626\) 0 0
\(627\) 12.5245 5.18782i 0.500180 0.207181i
\(628\) 0 0
\(629\) 17.0658 + 4.17755i 0.680457 + 0.166570i
\(630\) 0 0
\(631\) 38.2174 15.8302i 1.52141 0.630188i 0.543536 0.839386i \(-0.317085\pi\)
0.977873 + 0.209198i \(0.0670852\pi\)
\(632\) 0 0
\(633\) 11.4732 11.4732i 0.456018 0.456018i
\(634\) 0 0
\(635\) 19.4173 29.0601i 0.770553 1.15321i
\(636\) 0 0
\(637\) −10.7742 + 26.0111i −0.426888 + 1.03060i
\(638\) 0 0
\(639\) 0.886704 + 4.45776i 0.0350775 + 0.176346i
\(640\) 0 0
\(641\) 6.51603 + 1.29612i 0.257368 + 0.0511936i 0.322088 0.946710i \(-0.395615\pi\)
−0.0647200 + 0.997903i \(0.520615\pi\)
\(642\) 0 0
\(643\) 30.6722 20.4945i 1.20959 0.808224i 0.223546 0.974693i \(-0.428237\pi\)
0.986047 + 0.166470i \(0.0532369\pi\)
\(644\) 0 0
\(645\) −9.36596 −0.368784
\(646\) 0 0
\(647\) 9.05916i 0.356153i −0.984017 0.178076i \(-0.943013\pi\)
0.984017 0.178076i \(-0.0569874\pi\)
\(648\) 0 0
\(649\) −3.11869 4.66745i −0.122419 0.183214i
\(650\) 0 0
\(651\) 6.39367 32.1431i 0.250588 1.25979i
\(652\) 0 0
\(653\) −21.1507 + 4.20713i −0.827690 + 0.164638i −0.590717 0.806879i \(-0.701155\pi\)
−0.236973 + 0.971516i \(0.576155\pi\)
\(654\) 0 0
\(655\) 3.24560 + 1.34437i 0.126816 + 0.0525290i
\(656\) 0 0
\(657\) −68.9216 46.0519i −2.68889 1.79666i
\(658\) 0 0
\(659\) −2.23049 2.23049i −0.0868876 0.0868876i 0.662327 0.749215i \(-0.269569\pi\)
−0.749215 + 0.662327i \(0.769569\pi\)
\(660\) 0 0
\(661\) −19.0064 45.8854i −0.739262 1.78474i −0.608864 0.793275i \(-0.708374\pi\)
−0.130398 0.991462i \(-0.541626\pi\)
\(662\) 0 0
\(663\) −32.1595 53.0076i −1.24897 2.05865i
\(664\) 0 0
\(665\) 2.68067 + 6.47172i 0.103952 + 0.250962i
\(666\) 0 0
\(667\) −10.1460 + 10.1460i −0.392854 + 0.392854i
\(668\) 0 0
\(669\) 15.5342 + 10.3796i 0.600588 + 0.401300i
\(670\) 0 0
\(671\) 8.20241 19.8024i 0.316650 0.764462i
\(672\) 0 0
\(673\) 18.7405 3.72773i 0.722395 0.143693i 0.179819 0.983700i \(-0.442449\pi\)
0.542576 + 0.840006i \(0.317449\pi\)
\(674\) 0 0
\(675\) −37.6636 7.49176i −1.44967 0.288358i
\(676\) 0 0
\(677\) 1.45451 + 2.17683i 0.0559015 + 0.0836624i 0.858367 0.513035i \(-0.171479\pi\)
−0.802466 + 0.596698i \(0.796479\pi\)
\(678\) 0 0
\(679\) 17.3071 0.664187
\(680\) 0 0
\(681\) −38.2901 −1.46728
\(682\) 0 0
\(683\) −4.97072 7.43922i −0.190200 0.284654i 0.724098 0.689697i \(-0.242256\pi\)
−0.914297 + 0.405044i \(0.867256\pi\)
\(684\) 0 0
\(685\) −20.2563 4.02922i −0.773952 0.153949i
\(686\) 0 0
\(687\) −23.0174 + 4.57844i −0.878168 + 0.174678i
\(688\) 0 0
\(689\) −0.228406 + 0.551421i −0.00870158 + 0.0210075i
\(690\) 0 0
\(691\) 23.1673 + 15.4799i 0.881326 + 0.588883i 0.911792 0.410652i \(-0.134699\pi\)
−0.0304657 + 0.999536i \(0.509699\pi\)
\(692\) 0 0
\(693\) 10.1478 10.1478i 0.385485 0.385485i
\(694\) 0 0
\(695\) 20.6559 + 49.8677i 0.783523 + 1.89159i
\(696\) 0 0
\(697\) 3.14672 4.29080i 0.119191 0.162526i
\(698\) 0 0
\(699\) −23.5239 56.7916i −0.889754 2.14806i
\(700\) 0 0
\(701\) 3.36707 + 3.36707i 0.127173 + 0.127173i 0.767828 0.640656i \(-0.221337\pi\)
−0.640656 + 0.767828i \(0.721337\pi\)
\(702\) 0 0
\(703\) −7.80561 5.21554i −0.294394 0.196708i
\(704\) 0 0
\(705\) −53.4415 22.1362i −2.01272 0.833697i
\(706\) 0 0
\(707\) −7.44348 + 1.48060i −0.279941 + 0.0556837i
\(708\) 0 0
\(709\) −7.32212 + 36.8108i −0.274988 + 1.38246i 0.558309 + 0.829633i \(0.311450\pi\)
−0.833297 + 0.552825i \(0.813550\pi\)
\(710\) 0 0
\(711\) 47.9772 + 71.8030i 1.79929 + 2.69282i
\(712\) 0 0
\(713\) 45.1861i 1.69223i
\(714\) 0 0
\(715\) −27.9924 −1.04685
\(716\) 0 0
\(717\) −64.4034 + 43.0330i −2.40519 + 1.60710i
\(718\) 0 0
\(719\) −13.3199 2.64949i −0.496749 0.0988095i −0.0596434 0.998220i \(-0.518996\pi\)
−0.437105 + 0.899410i \(0.643996\pi\)
\(720\) 0 0
\(721\) −0.304541 1.53103i −0.0113417 0.0570186i
\(722\) 0 0
\(723\) −18.7569 + 45.2831i −0.697576 + 1.68410i
\(724\) 0 0
\(725\) 5.86278 8.77427i 0.217738 0.325868i
\(726\) 0 0
\(727\) −32.7732 + 32.7732i −1.21549 + 1.21549i −0.246294 + 0.969195i \(0.579213\pi\)
−0.969195 + 0.246294i \(0.920787\pi\)
\(728\) 0 0
\(729\) −5.66863 + 2.34802i −0.209949 + 0.0869638i
\(730\) 0 0
\(731\) 4.03105 1.46678i 0.149094 0.0542509i
\(732\) 0 0
\(733\) 25.2869 10.4742i 0.933994 0.386873i 0.136802 0.990598i \(-0.456318\pi\)
0.797192 + 0.603726i \(0.206318\pi\)
\(734\) 0 0
\(735\) −36.9336 36.9336i −1.36232 1.36232i
\(736\) 0 0
\(737\) 2.50807 3.75359i 0.0923859 0.138265i
\(738\) 0 0
\(739\) −8.84951 3.66559i −0.325534 0.134841i 0.213930 0.976849i \(-0.431373\pi\)
−0.539465 + 0.842008i \(0.681373\pi\)
\(740\) 0 0
\(741\) 6.46290 + 32.4912i 0.237421 + 1.19359i
\(742\) 0 0
\(743\) −1.10893 + 5.57494i −0.0406825 + 0.204525i −0.995781 0.0917645i \(-0.970749\pi\)
0.955098 + 0.296289i \(0.0957493\pi\)
\(744\) 0 0
\(745\) −36.1850 + 24.1780i −1.32571 + 0.885814i
\(746\) 0 0
\(747\) 1.29866i 0.0475156i
\(748\) 0 0
\(749\) 8.28348i 0.302672i
\(750\) 0 0
\(751\) −30.2193 + 20.1919i −1.10272 + 0.736812i −0.967213 0.253965i \(-0.918265\pi\)
−0.135503 + 0.990777i \(0.543265\pi\)
\(752\) 0 0
\(753\) 10.1496 51.0254i 0.369871 1.85947i
\(754\) 0 0
\(755\) 6.30393 + 31.6920i 0.229423 + 1.15339i
\(756\) 0 0
\(757\) −32.6522 13.5250i −1.18676 0.491574i −0.300065 0.953919i \(-0.597008\pi\)
−0.886700 + 0.462345i \(0.847008\pi\)
\(758\) 0 0
\(759\) −15.9876 + 23.9272i −0.580314 + 0.868502i
\(760\) 0 0
\(761\) 19.7187 + 19.7187i 0.714801 + 0.714801i 0.967536 0.252735i \(-0.0813299\pi\)
−0.252735 + 0.967536i \(0.581330\pi\)
\(762\) 0 0
\(763\) 7.54243 3.12418i 0.273054 0.113103i
\(764\) 0 0
\(765\) 78.1706 12.0246i 2.82626 0.434751i
\(766\) 0 0
\(767\) 12.6735 5.24952i 0.457612 0.189549i
\(768\) 0 0
\(769\) 26.9749 26.9749i 0.972738 0.972738i −0.0268997 0.999638i \(-0.508563\pi\)
0.999638 + 0.0268997i \(0.00856346\pi\)
\(770\) 0 0
\(771\) −39.3101 + 58.8318i −1.41572 + 2.11878i
\(772\) 0 0
\(773\) 7.59170 18.3280i 0.273054 0.659212i −0.726556 0.687107i \(-0.758880\pi\)
0.999611 + 0.0278950i \(0.00888042\pi\)
\(774\) 0 0
\(775\) −6.48331 32.5938i −0.232887 1.17080i
\(776\) 0 0
\(777\) −14.1757 2.81972i −0.508550 0.101157i
\(778\) 0 0
\(779\) −2.36394 + 1.57953i −0.0846968 + 0.0565926i
\(780\) 0 0
\(781\) −1.36685 −0.0489096
\(782\) 0 0
\(783\) 34.2576i 1.22427i
\(784\) 0 0
\(785\) 9.87775 + 14.7831i 0.352552 + 0.527631i
\(786\) 0 0
\(787\) 3.17472 15.9604i 0.113166 0.568926i −0.882044 0.471168i \(-0.843833\pi\)
0.995210 0.0977587i \(-0.0311673\pi\)
\(788\) 0 0
\(789\) 57.5613 11.4497i 2.04924 0.407618i
\(790\) 0 0
\(791\) −7.33204 3.03703i −0.260697 0.107984i
\(792\) 0 0
\(793\) 43.5507 + 29.0996i 1.54653 + 1.03336i
\(794\) 0 0
\(795\) −0.782972 0.782972i −0.0277691 0.0277691i
\(796\) 0 0
\(797\) −5.34141 12.8953i −0.189203 0.456775i 0.800604 0.599194i \(-0.204512\pi\)
−0.989807 + 0.142418i \(0.954512\pi\)
\(798\) 0 0
\(799\) 26.4675 + 1.15792i 0.936354 + 0.0409641i
\(800\) 0 0
\(801\) 18.4684 + 44.5868i 0.652550 + 1.57540i
\(802\) 0 0
\(803\) 17.6267 17.6267i 0.622032 0.622032i
\(804\) 0 0
\(805\) −12.3638 8.26120i −0.435765 0.291169i
\(806\) 0 0
\(807\) −28.5212 + 68.8564i −1.00400 + 2.42386i
\(808\) 0 0
\(809\) −5.23056 + 1.04042i −0.183897 + 0.0365793i −0.286179 0.958176i \(-0.592385\pi\)
0.102283 + 0.994755i \(0.467385\pi\)
\(810\) 0 0
\(811\) −13.4158 2.66857i −0.471093 0.0937062i −0.0461659 0.998934i \(-0.514700\pi\)
−0.424927 + 0.905228i \(0.639700\pi\)
\(812\) 0 0
\(813\) −11.9389 17.8678i −0.418715 0.626651i
\(814\) 0 0
\(815\) 69.5478 2.43615
\(816\) 0 0
\(817\) −2.29201 −0.0801872
\(818\) 0 0
\(819\) 19.4838 + 29.1596i 0.680820 + 1.01892i
\(820\) 0 0
\(821\) 17.1412 + 3.40959i 0.598231 + 0.118996i 0.484912 0.874563i \(-0.338852\pi\)
0.113319 + 0.993559i \(0.463852\pi\)
\(822\) 0 0
\(823\) 37.8016 7.51921i 1.31768 0.262103i 0.514322 0.857597i \(-0.328044\pi\)
0.803360 + 0.595494i \(0.203044\pi\)
\(824\) 0 0
\(825\) 8.09916 19.5531i 0.281977 0.680752i
\(826\) 0 0
\(827\) 27.6757 + 18.4923i 0.962379 + 0.643041i 0.934271 0.356564i \(-0.116052\pi\)
0.0281083 + 0.999605i \(0.491052\pi\)
\(828\) 0 0
\(829\) 11.3108 11.3108i 0.392840 0.392840i −0.482859 0.875698i \(-0.660402\pi\)
0.875698 + 0.482859i \(0.160402\pi\)
\(830\) 0 0
\(831\) 24.0638 + 58.0951i 0.834763 + 2.01530i
\(832\) 0 0
\(833\) 21.6801 + 10.1119i 0.751170 + 0.350356i
\(834\) 0 0
\(835\) 0.629950 + 1.52083i 0.0218003 + 0.0526306i
\(836\) 0 0
\(837\) 76.2849 + 76.2849i 2.63679 + 2.63679i
\(838\) 0 0
\(839\) −38.1022 25.4591i −1.31544 0.878946i −0.317833 0.948147i \(-0.602955\pi\)
−0.997603 + 0.0692008i \(0.977955\pi\)
\(840\) 0 0
\(841\) 18.0951 + 7.49524i 0.623969 + 0.258457i
\(842\) 0 0
\(843\) 59.6754 11.8702i 2.05533 0.408831i
\(844\) 0 0
\(845\) 5.97737 30.0503i 0.205628 1.03376i
\(846\) 0 0
\(847\) −4.29121 6.42226i −0.147448 0.220671i
\(848\) 0 0
\(849\) 31.5038i 1.08121i
\(850\) 0 0
\(851\) 19.9279 0.683118
\(852\) 0 0
\(853\) 19.7290 13.1825i 0.675509 0.451361i −0.169913 0.985459i \(-0.554349\pi\)
0.845423 + 0.534098i \(0.179349\pi\)
\(854\) 0 0
\(855\) −41.4470 8.24432i −1.41746 0.281950i
\(856\) 0 0
\(857\) −2.43308 12.2319i −0.0831123 0.417834i −0.999832 0.0183038i \(-0.994173\pi\)
0.916720 0.399530i \(-0.130827\pi\)
\(858\) 0 0
\(859\) 0.425098 1.02628i 0.0145041 0.0350161i −0.916462 0.400123i \(-0.868967\pi\)
0.930966 + 0.365107i \(0.118967\pi\)
\(860\) 0 0
\(861\) −2.43185 + 3.63953i −0.0828774 + 0.124035i
\(862\) 0 0
\(863\) 4.69476 4.69476i 0.159812 0.159812i −0.622672 0.782483i \(-0.713953\pi\)
0.782483 + 0.622672i \(0.213953\pi\)
\(864\) 0 0
\(865\) 24.1361 9.99748i 0.820650 0.339925i
\(866\) 0 0
\(867\) −46.1911 + 25.3308i −1.56873 + 0.860280i
\(868\) 0 0
\(869\) −23.9932 + 9.93830i −0.813913 + 0.337134i
\(870\) 0 0
\(871\) 7.80067 + 7.80067i 0.264316 + 0.264316i
\(872\) 0 0
\(873\) −58.0068 + 86.8133i −1.96323 + 2.93819i
\(874\) 0 0
\(875\) −4.58459 1.89900i −0.154987 0.0641979i
\(876\) 0 0
\(877\) −1.00715 5.06328i −0.0340090 0.170975i 0.960048 0.279835i \(-0.0902798\pi\)
−0.994057 + 0.108860i \(0.965280\pi\)
\(878\) 0 0
\(879\) 10.7791 54.1901i 0.363569 1.82779i
\(880\) 0 0
\(881\) −18.0545 + 12.0636i −0.608271 + 0.406433i −0.821205 0.570633i \(-0.806698\pi\)
0.212935 + 0.977066i \(0.431698\pi\)
\(882\) 0 0
\(883\) 29.6365i 0.997346i −0.866790 0.498673i \(-0.833821\pi\)
0.866790 0.498673i \(-0.166179\pi\)
\(884\) 0 0
\(885\) 25.4491i 0.855463i
\(886\) 0 0
\(887\) 35.1208 23.4670i 1.17924 0.787944i 0.197901 0.980222i \(-0.436588\pi\)
0.981340 + 0.192278i \(0.0615875\pi\)
\(888\) 0 0
\(889\) 2.56897 12.9151i 0.0861604 0.433158i
\(890\) 0 0
\(891\) 5.72989 + 28.8061i 0.191958 + 0.965041i
\(892\) 0 0
\(893\) −13.0780 5.41709i −0.437639 0.181276i
\(894\) 0 0
\(895\) 18.5657 27.7855i 0.620583 0.928768i
\(896\) 0 0
\(897\) −49.7252 49.7252i −1.66028 1.66028i
\(898\) 0 0
\(899\) −27.3896 + 11.3451i −0.913494 + 0.378381i
\(900\) 0 0
\(901\) 0.459605 + 0.214366i 0.0153117 + 0.00714158i
\(902\) 0 0
\(903\) −3.26017 + 1.35041i −0.108492 + 0.0449387i
\(904\) 0 0
\(905\) 8.64038 8.64038i 0.287216 0.287216i
\(906\) 0 0
\(907\) 21.5907 32.3127i 0.716907 1.07293i −0.276801 0.960927i \(-0.589274\pi\)
0.993708 0.112000i \(-0.0357256\pi\)
\(908\) 0 0
\(909\) 17.5209 42.2992i 0.581132 1.40298i
\(910\) 0 0
\(911\) −10.4388 52.4794i −0.345853 1.73872i −0.626966 0.779047i \(-0.715703\pi\)
0.281113 0.959675i \(-0.409297\pi\)
\(912\) 0 0
\(913\) −0.383042 0.0761918i −0.0126768 0.00252158i
\(914\) 0 0
\(915\) −80.7956 + 53.9859i −2.67102 + 1.78472i
\(916\) 0 0
\(917\) 1.32359 0.0437087
\(918\) 0 0
\(919\) 13.3692i 0.441010i 0.975386 + 0.220505i \(0.0707706\pi\)
−0.975386 + 0.220505i \(0.929229\pi\)
\(920\) 0 0
\(921\) 16.4428 + 24.6084i 0.541809 + 0.810874i
\(922\) 0 0
\(923\) 0.651631 3.27597i 0.0214487 0.107830i
\(924\) 0 0
\(925\) −14.3744 + 2.85925i −0.472628 + 0.0940115i
\(926\) 0 0
\(927\) 8.70043 + 3.60384i 0.285760 + 0.118366i
\(928\) 0 0
\(929\) 42.4970 + 28.3956i 1.39428 + 0.931629i 0.999920 + 0.0126737i \(0.00403428\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(930\) 0 0
\(931\) −9.03827 9.03827i −0.296217 0.296217i
\(932\) 0 0
\(933\) −18.8837 45.5893i −0.618224 1.49253i
\(934\) 0 0
\(935\) −1.03955 + 23.7620i −0.0339970 + 0.777101i
\(936\) 0 0
\(937\) −8.11589 19.5935i −0.265135 0.640092i 0.734107 0.679034i \(-0.237601\pi\)
−0.999241 + 0.0389423i \(0.987601\pi\)
\(938\) 0 0
\(939\) −3.55178 + 3.55178i −0.115908 + 0.115908i
\(940\) 0 0
\(941\) 31.9559 + 21.3522i 1.04173 + 0.696063i 0.953916 0.300074i \(-0.0970114\pi\)
0.0878157 + 0.996137i \(0.472011\pi\)
\(942\) 0 0
\(943\) 2.30956 5.57577i 0.0752096 0.181572i
\(944\) 0 0
\(945\) −34.8198 + 6.92609i −1.13269 + 0.225306i
\(946\) 0 0
\(947\) 36.5017 + 7.26065i 1.18615 + 0.235939i 0.748455 0.663185i \(-0.230796\pi\)
0.437692 + 0.899125i \(0.355796\pi\)
\(948\) 0 0
\(949\) 33.8432 + 50.6499i 1.09860 + 1.64416i
\(950\) 0 0
\(951\) −1.45278 −0.0471095
\(952\) 0 0
\(953\) −14.7363 −0.477355 −0.238678 0.971099i \(-0.576714\pi\)
−0.238678 + 0.971099i \(0.576714\pi\)
\(954\) 0 0
\(955\) 23.2385 + 34.7789i 0.751981 + 1.12542i
\(956\) 0 0
\(957\) −18.5176 3.68337i −0.598588 0.119067i
\(958\) 0 0
\(959\) −7.63189 + 1.51808i −0.246447 + 0.0490213i
\(960\) 0 0
\(961\) −23.8646 + 57.6142i −0.769825 + 1.85852i
\(962\) 0 0
\(963\) −41.5503 27.7630i −1.33894 0.894651i
\(964\) 0 0
\(965\) 1.05072 1.05072i 0.0338238 0.0338238i
\(966\) 0 0
\(967\) −7.82515 18.8916i −0.251640 0.607512i 0.746697 0.665164i \(-0.231639\pi\)
−0.998337 + 0.0576521i \(0.981639\pi\)
\(968\) 0 0
\(969\) 27.8210 4.27957i 0.893738 0.137479i
\(970\) 0 0
\(971\) 11.5844 + 27.9672i 0.371761 + 0.897511i 0.993452 + 0.114248i \(0.0364460\pi\)
−0.621691 + 0.783263i \(0.713554\pi\)
\(972\) 0 0
\(973\) 14.3801 + 14.3801i 0.461005 + 0.461005i
\(974\) 0 0
\(975\) 43.0025 + 28.7333i 1.37718 + 0.920203i
\(976\) 0 0
\(977\) −4.59670 1.90401i −0.147061 0.0609148i 0.307939 0.951406i \(-0.400361\pi\)
−0.455000 + 0.890491i \(0.650361\pi\)
\(978\) 0 0
\(979\) −14.2345 + 2.83141i −0.454935 + 0.0904923i
\(980\) 0 0
\(981\) −9.60831 + 48.3042i −0.306770 + 1.54223i
\(982\) 0 0
\(983\) 21.0890 + 31.5619i 0.672635 + 1.00667i 0.998130 + 0.0611260i \(0.0194691\pi\)
−0.325495 + 0.945544i \(0.605531\pi\)
\(984\) 0 0
\(985\) 44.1482i 1.40668i
\(986\) 0 0
\(987\) −21.7939 −0.693709
\(988\) 0 0
\(989\) 4.04541 2.70306i 0.128637 0.0859522i
\(990\) 0 0
\(991\) 33.9143 + 6.74598i 1.07732 + 0.214293i 0.701695 0.712477i \(-0.252427\pi\)
0.375629 + 0.926770i \(0.377427\pi\)
\(992\) 0 0
\(993\) −15.2486 76.6597i −0.483898 2.43272i
\(994\) 0 0
\(995\) −0.528660 + 1.27630i −0.0167597 + 0.0404614i
\(996\) 0 0
\(997\) −12.3285 + 18.4509i −0.390447 + 0.584345i −0.973669 0.227968i \(-0.926792\pi\)
0.583222 + 0.812313i \(0.301792\pi\)
\(998\) 0 0
\(999\) 33.6429 33.6429i 1.06442 1.06442i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.cc.c.175.14 112
4.3 odd 2 136.2.s.c.107.9 yes 112
8.3 odd 2 inner 544.2.cc.c.175.13 112
8.5 even 2 136.2.s.c.107.3 yes 112
17.7 odd 16 inner 544.2.cc.c.143.13 112
68.7 even 16 136.2.s.c.75.3 112
136.75 even 16 inner 544.2.cc.c.143.14 112
136.109 odd 16 136.2.s.c.75.9 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.s.c.75.3 112 68.7 even 16
136.2.s.c.75.9 yes 112 136.109 odd 16
136.2.s.c.107.3 yes 112 8.5 even 2
136.2.s.c.107.9 yes 112 4.3 odd 2
544.2.cc.c.143.13 112 17.7 odd 16 inner
544.2.cc.c.143.14 112 136.75 even 16 inner
544.2.cc.c.175.13 112 8.3 odd 2 inner
544.2.cc.c.175.14 112 1.1 even 1 trivial