Properties

Label 544.2.cc.c.175.12
Level $544$
Weight $2$
Character 544.175
Analytic conductor $4.344$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(79,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 8, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.cc (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 136)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 175.12
Character \(\chi\) \(=\) 544.175
Dual form 544.2.cc.c.143.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.25761 + 1.88214i) q^{3} +(1.55757 + 0.309820i) q^{5} +(-3.91750 + 0.779239i) q^{7} +(-0.812832 + 1.96235i) q^{9} +(2.04236 + 1.36466i) q^{11} +(-1.67634 + 1.67634i) q^{13} +(1.37568 + 3.32120i) q^{15} +(-0.0531197 + 4.12276i) q^{17} +(1.36178 + 3.28763i) q^{19} +(-6.39331 - 6.39331i) q^{21} +(5.72685 + 3.82656i) q^{23} +(-2.28937 - 0.948286i) q^{25} +(1.94477 - 0.386838i) q^{27} +(-0.362301 + 1.82141i) q^{29} +(-5.41149 - 8.09887i) q^{31} +5.56021i q^{33} -6.34320 q^{35} +(5.16270 - 3.44961i) q^{37} +(-5.26329 - 1.04693i) q^{39} +(-0.977918 - 4.91633i) q^{41} +(1.08459 - 2.61842i) q^{43} +(-1.87402 + 2.80466i) q^{45} +(2.87182 - 2.87182i) q^{47} +(8.27242 - 3.42655i) q^{49} +(-7.82643 + 5.08484i) q^{51} +(3.16997 - 1.31304i) q^{53} +(2.75831 + 2.75831i) q^{55} +(-4.47520 + 6.69761i) q^{57} +(-6.57678 - 2.72419i) q^{59} +(1.72880 + 8.69128i) q^{61} +(1.65513 - 8.32089i) q^{63} +(-3.13038 + 2.09165i) q^{65} +6.11894i q^{67} +15.5911i q^{69} +(5.58989 - 3.73504i) q^{71} +(2.78015 - 13.9768i) q^{73} +(-1.09431 - 5.50148i) q^{75} +(-9.06432 - 3.75456i) q^{77} +(-7.05875 + 10.5642i) q^{79} +(7.67959 + 7.67959i) q^{81} +(16.0062 - 6.62999i) q^{83} +(-1.36005 + 6.40503i) q^{85} +(-3.88378 + 1.60871i) q^{87} +(0.443072 - 0.443072i) q^{89} +(5.26080 - 7.87334i) q^{91} +(8.43769 - 20.3704i) q^{93} +(1.10249 + 5.54261i) q^{95} +(9.17174 + 1.82437i) q^{97} +(-4.33803 + 2.89858i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{3} - 16 q^{9} + 16 q^{11} - 16 q^{17} + 16 q^{19} - 16 q^{25} - 32 q^{27} + 32 q^{35} - 16 q^{41} + 96 q^{43} - 16 q^{49} + 16 q^{51} + 32 q^{57} + 16 q^{59} + 64 q^{65} - 96 q^{73} + 16 q^{75}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.25761 + 1.88214i 0.726080 + 1.08666i 0.992434 + 0.122780i \(0.0391809\pi\)
−0.266354 + 0.963875i \(0.585819\pi\)
\(4\) 0 0
\(5\) 1.55757 + 0.309820i 0.696566 + 0.138556i 0.530658 0.847586i \(-0.321945\pi\)
0.165907 + 0.986141i \(0.446945\pi\)
\(6\) 0 0
\(7\) −3.91750 + 0.779239i −1.48068 + 0.294525i −0.868299 0.496042i \(-0.834786\pi\)
−0.612376 + 0.790566i \(0.709786\pi\)
\(8\) 0 0
\(9\) −0.812832 + 1.96235i −0.270944 + 0.654117i
\(10\) 0 0
\(11\) 2.04236 + 1.36466i 0.615793 + 0.411460i 0.823972 0.566631i \(-0.191753\pi\)
−0.208178 + 0.978091i \(0.566753\pi\)
\(12\) 0 0
\(13\) −1.67634 + 1.67634i −0.464934 + 0.464934i −0.900269 0.435335i \(-0.856630\pi\)
0.435335 + 0.900269i \(0.356630\pi\)
\(14\) 0 0
\(15\) 1.37568 + 3.32120i 0.355200 + 0.857529i
\(16\) 0 0
\(17\) −0.0531197 + 4.12276i −0.0128834 + 0.999917i
\(18\) 0 0
\(19\) 1.36178 + 3.28763i 0.312414 + 0.754233i 0.999614 + 0.0277659i \(0.00883928\pi\)
−0.687201 + 0.726468i \(0.741161\pi\)
\(20\) 0 0
\(21\) −6.39331 6.39331i −1.39513 1.39513i
\(22\) 0 0
\(23\) 5.72685 + 3.82656i 1.19413 + 0.797893i 0.983718 0.179719i \(-0.0575190\pi\)
0.210413 + 0.977612i \(0.432519\pi\)
\(24\) 0 0
\(25\) −2.28937 0.948286i −0.457873 0.189657i
\(26\) 0 0
\(27\) 1.94477 0.386838i 0.374271 0.0744471i
\(28\) 0 0
\(29\) −0.362301 + 1.82141i −0.0672775 + 0.338227i −0.999734 0.0230549i \(-0.992661\pi\)
0.932457 + 0.361282i \(0.117661\pi\)
\(30\) 0 0
\(31\) −5.41149 8.09887i −0.971933 1.45460i −0.888926 0.458051i \(-0.848548\pi\)
−0.0830072 0.996549i \(-0.526452\pi\)
\(32\) 0 0
\(33\) 5.56021i 0.967907i
\(34\) 0 0
\(35\) −6.34320 −1.07220
\(36\) 0 0
\(37\) 5.16270 3.44961i 0.848743 0.567112i −0.0533879 0.998574i \(-0.517002\pi\)
0.902131 + 0.431462i \(0.142002\pi\)
\(38\) 0 0
\(39\) −5.26329 1.04693i −0.842801 0.167644i
\(40\) 0 0
\(41\) −0.977918 4.91633i −0.152725 0.767801i −0.978892 0.204376i \(-0.934483\pi\)
0.826167 0.563425i \(-0.190517\pi\)
\(42\) 0 0
\(43\) 1.08459 2.61842i 0.165398 0.399306i −0.819350 0.573294i \(-0.805665\pi\)
0.984748 + 0.173988i \(0.0556654\pi\)
\(44\) 0 0
\(45\) −1.87402 + 2.80466i −0.279362 + 0.418095i
\(46\) 0 0
\(47\) 2.87182 2.87182i 0.418898 0.418898i −0.465926 0.884824i \(-0.654279\pi\)
0.884824 + 0.465926i \(0.154279\pi\)
\(48\) 0 0
\(49\) 8.27242 3.42655i 1.18177 0.489507i
\(50\) 0 0
\(51\) −7.82643 + 5.08484i −1.09592 + 0.712020i
\(52\) 0 0
\(53\) 3.16997 1.31304i 0.435428 0.180360i −0.154192 0.988041i \(-0.549277\pi\)
0.589620 + 0.807681i \(0.299277\pi\)
\(54\) 0 0
\(55\) 2.75831 + 2.75831i 0.371930 + 0.371930i
\(56\) 0 0
\(57\) −4.47520 + 6.69761i −0.592754 + 0.887120i
\(58\) 0 0
\(59\) −6.57678 2.72419i −0.856224 0.354660i −0.0889946 0.996032i \(-0.528365\pi\)
−0.767230 + 0.641372i \(0.778365\pi\)
\(60\) 0 0
\(61\) 1.72880 + 8.69128i 0.221351 + 1.11280i 0.918361 + 0.395744i \(0.129513\pi\)
−0.697010 + 0.717061i \(0.745487\pi\)
\(62\) 0 0
\(63\) 1.65513 8.32089i 0.208527 1.04833i
\(64\) 0 0
\(65\) −3.13038 + 2.09165i −0.388276 + 0.259438i
\(66\) 0 0
\(67\) 6.11894i 0.747548i 0.927520 + 0.373774i \(0.121936\pi\)
−0.927520 + 0.373774i \(0.878064\pi\)
\(68\) 0 0
\(69\) 15.5911i 1.87694i
\(70\) 0 0
\(71\) 5.58989 3.73504i 0.663398 0.443268i −0.177749 0.984076i \(-0.556881\pi\)
0.841146 + 0.540808i \(0.181881\pi\)
\(72\) 0 0
\(73\) 2.78015 13.9768i 0.325392 1.63586i −0.378538 0.925586i \(-0.623573\pi\)
0.703930 0.710270i \(-0.251427\pi\)
\(74\) 0 0
\(75\) −1.09431 5.50148i −0.126360 0.635256i
\(76\) 0 0
\(77\) −9.06432 3.75456i −1.03297 0.427872i
\(78\) 0 0
\(79\) −7.05875 + 10.5642i −0.794171 + 1.18856i 0.184440 + 0.982844i \(0.440953\pi\)
−0.978611 + 0.205717i \(0.934047\pi\)
\(80\) 0 0
\(81\) 7.67959 + 7.67959i 0.853288 + 0.853288i
\(82\) 0 0
\(83\) 16.0062 6.62999i 1.75691 0.727736i 0.759936 0.649998i \(-0.225230\pi\)
0.996974 0.0777381i \(-0.0247698\pi\)
\(84\) 0 0
\(85\) −1.36005 + 6.40503i −0.147518 + 0.694723i
\(86\) 0 0
\(87\) −3.88378 + 1.60871i −0.416385 + 0.172472i
\(88\) 0 0
\(89\) 0.443072 0.443072i 0.0469655 0.0469655i −0.683234 0.730200i \(-0.739427\pi\)
0.730200 + 0.683234i \(0.239427\pi\)
\(90\) 0 0
\(91\) 5.26080 7.87334i 0.551481 0.825350i
\(92\) 0 0
\(93\) 8.43769 20.3704i 0.874948 2.11231i
\(94\) 0 0
\(95\) 1.10249 + 5.54261i 0.113113 + 0.568660i
\(96\) 0 0
\(97\) 9.17174 + 1.82437i 0.931249 + 0.185237i 0.637328 0.770593i \(-0.280040\pi\)
0.293921 + 0.955830i \(0.405040\pi\)
\(98\) 0 0
\(99\) −4.33803 + 2.89858i −0.435988 + 0.291318i
\(100\) 0 0
\(101\) 5.10512 0.507978 0.253989 0.967207i \(-0.418257\pi\)
0.253989 + 0.967207i \(0.418257\pi\)
\(102\) 0 0
\(103\) 0.265102i 0.0261212i −0.999915 0.0130606i \(-0.995843\pi\)
0.999915 0.0130606i \(-0.00415744\pi\)
\(104\) 0 0
\(105\) −7.97725 11.9388i −0.778500 1.16511i
\(106\) 0 0
\(107\) 1.02449 5.15045i 0.0990410 0.497913i −0.899142 0.437657i \(-0.855808\pi\)
0.998183 0.0602556i \(-0.0191916\pi\)
\(108\) 0 0
\(109\) 9.58462 1.90650i 0.918040 0.182609i 0.286614 0.958046i \(-0.407470\pi\)
0.631425 + 0.775437i \(0.282470\pi\)
\(110\) 0 0
\(111\) 12.9853 + 5.37869i 1.23251 + 0.510523i
\(112\) 0 0
\(113\) −6.70304 4.47883i −0.630569 0.421333i 0.198795 0.980041i \(-0.436297\pi\)
−0.829364 + 0.558708i \(0.811297\pi\)
\(114\) 0 0
\(115\) 7.73442 + 7.73442i 0.721239 + 0.721239i
\(116\) 0 0
\(117\) −1.92699 4.65216i −0.178150 0.430092i
\(118\) 0 0
\(119\) −3.00452 16.1923i −0.275424 1.48435i
\(120\) 0 0
\(121\) −1.90059 4.58844i −0.172781 0.417131i
\(122\) 0 0
\(123\) 8.02339 8.02339i 0.723445 0.723445i
\(124\) 0 0
\(125\) −9.87426 6.59777i −0.883181 0.590123i
\(126\) 0 0
\(127\) 0.215916 0.521267i 0.0191594 0.0462550i −0.914010 0.405691i \(-0.867031\pi\)
0.933170 + 0.359436i \(0.117031\pi\)
\(128\) 0 0
\(129\) 6.29223 1.25160i 0.554000 0.110197i
\(130\) 0 0
\(131\) −19.6039 3.89946i −1.71280 0.340697i −0.761313 0.648385i \(-0.775445\pi\)
−0.951487 + 0.307688i \(0.900445\pi\)
\(132\) 0 0
\(133\) −7.89662 11.8181i −0.684723 1.02476i
\(134\) 0 0
\(135\) 3.14896 0.271019
\(136\) 0 0
\(137\) −3.05874 −0.261326 −0.130663 0.991427i \(-0.541711\pi\)
−0.130663 + 0.991427i \(0.541711\pi\)
\(138\) 0 0
\(139\) −4.93873 7.39132i −0.418897 0.626924i 0.560670 0.828039i \(-0.310543\pi\)
−0.979568 + 0.201115i \(0.935543\pi\)
\(140\) 0 0
\(141\) 9.01678 + 1.79355i 0.759350 + 0.151044i
\(142\) 0 0
\(143\) −5.71132 + 1.13605i −0.477605 + 0.0950015i
\(144\) 0 0
\(145\) −1.12862 + 2.72472i −0.0937264 + 0.226276i
\(146\) 0 0
\(147\) 16.8527 + 11.2606i 1.38999 + 0.928760i
\(148\) 0 0
\(149\) −8.62399 + 8.62399i −0.706505 + 0.706505i −0.965798 0.259294i \(-0.916510\pi\)
0.259294 + 0.965798i \(0.416510\pi\)
\(150\) 0 0
\(151\) 3.92551 + 9.47701i 0.319453 + 0.771228i 0.999283 + 0.0378583i \(0.0120535\pi\)
−0.679830 + 0.733370i \(0.737946\pi\)
\(152\) 0 0
\(153\) −8.04713 3.45535i −0.650572 0.279349i
\(154\) 0 0
\(155\) −5.91958 14.2911i −0.475472 1.14789i
\(156\) 0 0
\(157\) 13.4869 + 13.4869i 1.07637 + 1.07637i 0.996832 + 0.0795382i \(0.0253446\pi\)
0.0795382 + 0.996832i \(0.474655\pi\)
\(158\) 0 0
\(159\) 6.45790 + 4.31503i 0.512145 + 0.342204i
\(160\) 0 0
\(161\) −25.4167 10.5280i −2.00312 0.829719i
\(162\) 0 0
\(163\) −3.46089 + 0.688413i −0.271078 + 0.0539207i −0.328757 0.944414i \(-0.606630\pi\)
0.0576797 + 0.998335i \(0.481630\pi\)
\(164\) 0 0
\(165\) −1.72266 + 8.66040i −0.134109 + 0.674211i
\(166\) 0 0
\(167\) 7.07994 + 10.5959i 0.547863 + 0.819934i 0.997304 0.0733754i \(-0.0233771\pi\)
−0.449442 + 0.893310i \(0.648377\pi\)
\(168\) 0 0
\(169\) 7.37975i 0.567673i
\(170\) 0 0
\(171\) −7.55837 −0.578003
\(172\) 0 0
\(173\) 9.27081 6.19456i 0.704847 0.470964i −0.150773 0.988568i \(-0.548176\pi\)
0.855620 + 0.517605i \(0.173176\pi\)
\(174\) 0 0
\(175\) 9.70753 + 1.93095i 0.733820 + 0.145966i
\(176\) 0 0
\(177\) −3.14369 15.8044i −0.236294 1.18793i
\(178\) 0 0
\(179\) −1.32051 + 3.18798i −0.0986992 + 0.238281i −0.965515 0.260348i \(-0.916163\pi\)
0.866816 + 0.498629i \(0.166163\pi\)
\(180\) 0 0
\(181\) 7.57255 11.3331i 0.562863 0.842385i −0.435464 0.900206i \(-0.643416\pi\)
0.998327 + 0.0578218i \(0.0184155\pi\)
\(182\) 0 0
\(183\) −14.1841 + 14.1841i −1.04852 + 1.04852i
\(184\) 0 0
\(185\) 9.11002 3.77350i 0.669782 0.277433i
\(186\) 0 0
\(187\) −5.73465 + 8.34766i −0.419359 + 0.610441i
\(188\) 0 0
\(189\) −7.31719 + 3.03088i −0.532247 + 0.220464i
\(190\) 0 0
\(191\) −15.5081 15.5081i −1.12212 1.12212i −0.991422 0.130703i \(-0.958276\pi\)
−0.130703 0.991422i \(-0.541724\pi\)
\(192\) 0 0
\(193\) 0.764638 1.14436i 0.0550398 0.0823730i −0.802929 0.596075i \(-0.796726\pi\)
0.857969 + 0.513702i \(0.171726\pi\)
\(194\) 0 0
\(195\) −7.87358 3.26134i −0.563839 0.233550i
\(196\) 0 0
\(197\) −2.05749 10.3437i −0.146590 0.736957i −0.982230 0.187680i \(-0.939903\pi\)
0.835641 0.549277i \(-0.185097\pi\)
\(198\) 0 0
\(199\) 3.58491 18.0226i 0.254128 1.27759i −0.617169 0.786831i \(-0.711721\pi\)
0.871297 0.490756i \(-0.163279\pi\)
\(200\) 0 0
\(201\) −11.5167 + 7.69523i −0.812327 + 0.542779i
\(202\) 0 0
\(203\) 7.41768i 0.520619i
\(204\) 0 0
\(205\) 7.96050i 0.555985i
\(206\) 0 0
\(207\) −12.1640 + 8.12774i −0.845458 + 0.564917i
\(208\) 0 0
\(209\) −1.70525 + 8.57287i −0.117955 + 0.592998i
\(210\) 0 0
\(211\) 0.365262 + 1.83630i 0.0251457 + 0.126416i 0.991319 0.131477i \(-0.0419719\pi\)
−0.966174 + 0.257893i \(0.916972\pi\)
\(212\) 0 0
\(213\) 14.0598 + 5.82374i 0.963359 + 0.399036i
\(214\) 0 0
\(215\) 2.50056 3.74235i 0.170537 0.255226i
\(216\) 0 0
\(217\) 27.5105 + 27.5105i 1.86753 + 1.86753i
\(218\) 0 0
\(219\) 29.8026 12.3446i 2.01387 0.834173i
\(220\) 0 0
\(221\) −6.82212 7.00021i −0.458905 0.470885i
\(222\) 0 0
\(223\) 12.4584 5.16043i 0.834275 0.345568i 0.0756812 0.997132i \(-0.475887\pi\)
0.758594 + 0.651564i \(0.225887\pi\)
\(224\) 0 0
\(225\) 3.72174 3.72174i 0.248116 0.248116i
\(226\) 0 0
\(227\) −11.5521 + 17.2889i −0.766738 + 1.14750i 0.218420 + 0.975855i \(0.429910\pi\)
−0.985158 + 0.171650i \(0.945090\pi\)
\(228\) 0 0
\(229\) −9.64260 + 23.2793i −0.637201 + 1.53834i 0.193193 + 0.981161i \(0.438116\pi\)
−0.830393 + 0.557178i \(0.811884\pi\)
\(230\) 0 0
\(231\) −4.33273 21.7821i −0.285073 1.43316i
\(232\) 0 0
\(233\) −2.27157 0.451844i −0.148816 0.0296013i 0.120120 0.992759i \(-0.461672\pi\)
−0.268936 + 0.963158i \(0.586672\pi\)
\(234\) 0 0
\(235\) 5.36280 3.58331i 0.349830 0.233749i
\(236\) 0 0
\(237\) −28.7604 −1.86819
\(238\) 0 0
\(239\) 11.2231i 0.725965i −0.931796 0.362982i \(-0.881759\pi\)
0.931796 0.362982i \(-0.118241\pi\)
\(240\) 0 0
\(241\) −3.12364 4.67486i −0.201211 0.301134i 0.717118 0.696952i \(-0.245461\pi\)
−0.918329 + 0.395818i \(0.870461\pi\)
\(242\) 0 0
\(243\) −3.63566 + 18.2777i −0.233228 + 1.17251i
\(244\) 0 0
\(245\) 13.9465 2.77413i 0.891008 0.177232i
\(246\) 0 0
\(247\) −7.79400 3.22838i −0.495920 0.205417i
\(248\) 0 0
\(249\) 32.6081 + 21.7880i 2.06645 + 1.38076i
\(250\) 0 0
\(251\) 11.1300 + 11.1300i 0.702519 + 0.702519i 0.964951 0.262432i \(-0.0845244\pi\)
−0.262432 + 0.964951i \(0.584524\pi\)
\(252\) 0 0
\(253\) 6.47432 + 15.6304i 0.407037 + 0.982674i
\(254\) 0 0
\(255\) −13.7656 + 5.49520i −0.862034 + 0.344123i
\(256\) 0 0
\(257\) 1.55502 + 3.75414i 0.0969992 + 0.234177i 0.964929 0.262509i \(-0.0845500\pi\)
−0.867930 + 0.496686i \(0.834550\pi\)
\(258\) 0 0
\(259\) −17.5368 + 17.5368i −1.08968 + 1.08968i
\(260\) 0 0
\(261\) −3.27975 2.19146i −0.203011 0.135648i
\(262\) 0 0
\(263\) −5.20634 + 12.5692i −0.321037 + 0.775051i 0.678158 + 0.734916i \(0.262779\pi\)
−0.999194 + 0.0401344i \(0.987221\pi\)
\(264\) 0 0
\(265\) 5.34425 1.06304i 0.328294 0.0653018i
\(266\) 0 0
\(267\) 1.39113 + 0.276714i 0.0851360 + 0.0169346i
\(268\) 0 0
\(269\) 0.757121 + 1.13311i 0.0461625 + 0.0690871i 0.853833 0.520547i \(-0.174272\pi\)
−0.807670 + 0.589634i \(0.799272\pi\)
\(270\) 0 0
\(271\) −1.17410 −0.0713212 −0.0356606 0.999364i \(-0.511354\pi\)
−0.0356606 + 0.999364i \(0.511354\pi\)
\(272\) 0 0
\(273\) 21.4348 1.29729
\(274\) 0 0
\(275\) −3.38161 5.06094i −0.203919 0.305186i
\(276\) 0 0
\(277\) −25.2299 5.01854i −1.51592 0.301535i −0.634147 0.773212i \(-0.718649\pi\)
−0.881771 + 0.471677i \(0.843649\pi\)
\(278\) 0 0
\(279\) 20.2915 4.03622i 1.21482 0.241642i
\(280\) 0 0
\(281\) −1.11240 + 2.68556i −0.0663600 + 0.160207i −0.953580 0.301139i \(-0.902633\pi\)
0.887220 + 0.461346i \(0.152633\pi\)
\(282\) 0 0
\(283\) 5.74499 + 3.83868i 0.341504 + 0.228186i 0.714481 0.699655i \(-0.246663\pi\)
−0.372977 + 0.927841i \(0.621663\pi\)
\(284\) 0 0
\(285\) −9.04548 + 9.04548i −0.535808 + 0.535808i
\(286\) 0 0
\(287\) 7.66199 + 18.4977i 0.452273 + 1.09188i
\(288\) 0 0
\(289\) −16.9944 0.438000i −0.999668 0.0257647i
\(290\) 0 0
\(291\) 8.10072 + 19.5569i 0.474872 + 1.14644i
\(292\) 0 0
\(293\) 10.3468 + 10.3468i 0.604467 + 0.604467i 0.941495 0.337028i \(-0.109422\pi\)
−0.337028 + 0.941495i \(0.609422\pi\)
\(294\) 0 0
\(295\) −9.39978 6.28073i −0.547277 0.365678i
\(296\) 0 0
\(297\) 4.49981 + 1.86388i 0.261105 + 0.108153i
\(298\) 0 0
\(299\) −16.0148 + 3.18554i −0.926159 + 0.184225i
\(300\) 0 0
\(301\) −2.20849 + 11.1028i −0.127295 + 0.639956i
\(302\) 0 0
\(303\) 6.42023 + 9.60855i 0.368833 + 0.551997i
\(304\) 0 0
\(305\) 14.0729i 0.805811i
\(306\) 0 0
\(307\) 26.5174 1.51343 0.756715 0.653745i \(-0.226803\pi\)
0.756715 + 0.653745i \(0.226803\pi\)
\(308\) 0 0
\(309\) 0.498959 0.333394i 0.0283848 0.0189661i
\(310\) 0 0
\(311\) −6.62139 1.31708i −0.375465 0.0746846i 0.00375083 0.999993i \(-0.498806\pi\)
−0.379215 + 0.925308i \(0.623806\pi\)
\(312\) 0 0
\(313\) −0.830614 4.17578i −0.0469491 0.236029i 0.950185 0.311687i \(-0.100894\pi\)
−0.997134 + 0.0756583i \(0.975894\pi\)
\(314\) 0 0
\(315\) 5.15595 12.4476i 0.290505 0.701341i
\(316\) 0 0
\(317\) −6.65233 + 9.95591i −0.373632 + 0.559180i −0.969868 0.243629i \(-0.921662\pi\)
0.596237 + 0.802809i \(0.296662\pi\)
\(318\) 0 0
\(319\) −3.22555 + 3.22555i −0.180596 + 0.180596i
\(320\) 0 0
\(321\) 10.9823 4.54901i 0.612971 0.253901i
\(322\) 0 0
\(323\) −13.6264 + 5.43966i −0.758196 + 0.302671i
\(324\) 0 0
\(325\) 5.42741 2.24811i 0.301059 0.124703i
\(326\) 0 0
\(327\) 15.6420 + 15.6420i 0.865004 + 0.865004i
\(328\) 0 0
\(329\) −9.01250 + 13.4882i −0.496875 + 0.743627i
\(330\) 0 0
\(331\) −7.49253 3.10351i −0.411827 0.170584i 0.167144 0.985932i \(-0.446545\pi\)
−0.578971 + 0.815348i \(0.696545\pi\)
\(332\) 0 0
\(333\) 2.57293 + 12.9350i 0.140996 + 0.708833i
\(334\) 0 0
\(335\) −1.89577 + 9.53068i −0.103577 + 0.520717i
\(336\) 0 0
\(337\) −22.3238 + 14.9163i −1.21605 + 0.812541i −0.986976 0.160868i \(-0.948571\pi\)
−0.229077 + 0.973408i \(0.573571\pi\)
\(338\) 0 0
\(339\) 18.2487i 0.991133i
\(340\) 0 0
\(341\) 23.9256i 1.29564i
\(342\) 0 0
\(343\) −6.48943 + 4.33610i −0.350396 + 0.234127i
\(344\) 0 0
\(345\) −4.83042 + 24.2841i −0.260061 + 1.30741i
\(346\) 0 0
\(347\) 0.808226 + 4.06323i 0.0433878 + 0.218125i 0.996396 0.0848177i \(-0.0270308\pi\)
−0.953009 + 0.302943i \(0.902031\pi\)
\(348\) 0 0
\(349\) −10.7699 4.46102i −0.576497 0.238793i 0.0753324 0.997158i \(-0.475998\pi\)
−0.651829 + 0.758366i \(0.725998\pi\)
\(350\) 0 0
\(351\) −2.61162 + 3.90857i −0.139398 + 0.208624i
\(352\) 0 0
\(353\) −14.2069 14.2069i −0.756155 0.756155i 0.219466 0.975620i \(-0.429569\pi\)
−0.975620 + 0.219466i \(0.929569\pi\)
\(354\) 0 0
\(355\) 9.86382 4.08573i 0.523517 0.216848i
\(356\) 0 0
\(357\) 26.6977 26.0185i 1.41299 1.37704i
\(358\) 0 0
\(359\) −7.57532 + 3.13780i −0.399810 + 0.165607i −0.573523 0.819190i \(-0.694424\pi\)
0.173713 + 0.984796i \(0.444424\pi\)
\(360\) 0 0
\(361\) 4.48098 4.48098i 0.235841 0.235841i
\(362\) 0 0
\(363\) 6.24590 9.34765i 0.327825 0.490624i
\(364\) 0 0
\(365\) 8.66055 20.9084i 0.453314 1.09440i
\(366\) 0 0
\(367\) −2.36264 11.8778i −0.123329 0.620017i −0.992167 0.124920i \(-0.960133\pi\)
0.868838 0.495097i \(-0.164867\pi\)
\(368\) 0 0
\(369\) 10.4424 + 2.07713i 0.543612 + 0.108131i
\(370\) 0 0
\(371\) −11.3952 + 7.61400i −0.591607 + 0.395299i
\(372\) 0 0
\(373\) −26.2968 −1.36160 −0.680798 0.732471i \(-0.738367\pi\)
−0.680798 + 0.732471i \(0.738367\pi\)
\(374\) 0 0
\(375\) 26.8822i 1.38819i
\(376\) 0 0
\(377\) −2.44596 3.66064i −0.125974 0.188533i
\(378\) 0 0
\(379\) −1.94490 + 9.77769i −0.0999030 + 0.502246i 0.898140 + 0.439710i \(0.144919\pi\)
−0.998043 + 0.0625360i \(0.980081\pi\)
\(380\) 0 0
\(381\) 1.25264 0.249165i 0.0641745 0.0127651i
\(382\) 0 0
\(383\) −10.5148 4.35536i −0.537280 0.222549i 0.0975084 0.995235i \(-0.468913\pi\)
−0.634788 + 0.772686i \(0.718913\pi\)
\(384\) 0 0
\(385\) −12.9551 8.65629i −0.660251 0.441166i
\(386\) 0 0
\(387\) 4.25668 + 4.25668i 0.216379 + 0.216379i
\(388\) 0 0
\(389\) −7.68665 18.5572i −0.389729 0.940889i −0.989997 0.141090i \(-0.954939\pi\)
0.600268 0.799799i \(-0.295061\pi\)
\(390\) 0 0
\(391\) −16.0802 + 23.4072i −0.813211 + 1.18375i
\(392\) 0 0
\(393\) −17.3147 41.8013i −0.873409 2.10860i
\(394\) 0 0
\(395\) −14.2675 + 14.2675i −0.717874 + 0.717874i
\(396\) 0 0
\(397\) 2.64896 + 1.76998i 0.132948 + 0.0888328i 0.620266 0.784392i \(-0.287025\pi\)
−0.487318 + 0.873225i \(0.662025\pi\)
\(398\) 0 0
\(399\) 12.3125 29.7251i 0.616398 1.48812i
\(400\) 0 0
\(401\) −25.1811 + 5.00882i −1.25748 + 0.250129i −0.778471 0.627680i \(-0.784005\pi\)
−0.479011 + 0.877809i \(0.659005\pi\)
\(402\) 0 0
\(403\) 22.6480 + 4.50497i 1.12818 + 0.224408i
\(404\) 0 0
\(405\) 9.58220 + 14.3408i 0.476144 + 0.712599i
\(406\) 0 0
\(407\) 15.2516 0.755994
\(408\) 0 0
\(409\) 6.70044 0.331316 0.165658 0.986183i \(-0.447025\pi\)
0.165658 + 0.986183i \(0.447025\pi\)
\(410\) 0 0
\(411\) −3.84669 5.75699i −0.189743 0.283971i
\(412\) 0 0
\(413\) 27.8873 + 5.54714i 1.37225 + 0.272957i
\(414\) 0 0
\(415\) 26.9849 5.36763i 1.32464 0.263486i
\(416\) 0 0
\(417\) 7.70055 18.5908i 0.377097 0.910393i
\(418\) 0 0
\(419\) −5.44403 3.63759i −0.265958 0.177708i 0.415440 0.909621i \(-0.363628\pi\)
−0.681398 + 0.731913i \(0.738628\pi\)
\(420\) 0 0
\(421\) 21.5388 21.5388i 1.04973 1.04973i 0.0510380 0.998697i \(-0.483747\pi\)
0.998697 0.0510380i \(-0.0162530\pi\)
\(422\) 0 0
\(423\) 3.30121 + 7.96981i 0.160510 + 0.387506i
\(424\) 0 0
\(425\) 4.03117 9.38814i 0.195541 0.455392i
\(426\) 0 0
\(427\) −13.5452 32.7009i −0.655497 1.58251i
\(428\) 0 0
\(429\) −9.32081 9.32081i −0.450013 0.450013i
\(430\) 0 0
\(431\) −17.7741 11.8762i −0.856146 0.572059i 0.0482099 0.998837i \(-0.484648\pi\)
−0.904356 + 0.426779i \(0.859648\pi\)
\(432\) 0 0
\(433\) 6.61056 + 2.73819i 0.317683 + 0.131589i 0.535827 0.844328i \(-0.320000\pi\)
−0.218143 + 0.975917i \(0.570000\pi\)
\(434\) 0 0
\(435\) −6.54766 + 1.30241i −0.313936 + 0.0624458i
\(436\) 0 0
\(437\) −4.78159 + 24.0387i −0.228735 + 1.14993i
\(438\) 0 0
\(439\) 3.66708 + 5.48817i 0.175020 + 0.261936i 0.908600 0.417667i \(-0.137152\pi\)
−0.733580 + 0.679603i \(0.762152\pi\)
\(440\) 0 0
\(441\) 19.0186i 0.905647i
\(442\) 0 0
\(443\) 0.0876330 0.00416357 0.00208179 0.999998i \(-0.499337\pi\)
0.00208179 + 0.999998i \(0.499337\pi\)
\(444\) 0 0
\(445\) 0.827387 0.552843i 0.0392219 0.0262072i
\(446\) 0 0
\(447\) −27.0772 5.38598i −1.28071 0.254748i
\(448\) 0 0
\(449\) −7.14374 35.9140i −0.337134 1.69489i −0.662308 0.749232i \(-0.730423\pi\)
0.325174 0.945654i \(-0.394577\pi\)
\(450\) 0 0
\(451\) 4.71185 11.3754i 0.221872 0.535647i
\(452\) 0 0
\(453\) −12.9003 + 19.3067i −0.606110 + 0.907108i
\(454\) 0 0
\(455\) 10.6334 10.6334i 0.498500 0.498500i
\(456\) 0 0
\(457\) −6.50023 + 2.69248i −0.304068 + 0.125949i −0.529500 0.848310i \(-0.677621\pi\)
0.225432 + 0.974259i \(0.427621\pi\)
\(458\) 0 0
\(459\) 1.49154 + 8.03837i 0.0696190 + 0.375199i
\(460\) 0 0
\(461\) 12.8491 5.32227i 0.598442 0.247883i −0.0628356 0.998024i \(-0.520014\pi\)
0.661278 + 0.750141i \(0.270014\pi\)
\(462\) 0 0
\(463\) −7.89732 7.89732i −0.367019 0.367019i 0.499370 0.866389i \(-0.333565\pi\)
−0.866389 + 0.499370i \(0.833565\pi\)
\(464\) 0 0
\(465\) 19.4534 29.1141i 0.902131 1.35014i
\(466\) 0 0
\(467\) 20.6714 + 8.56237i 0.956557 + 0.396219i 0.805692 0.592335i \(-0.201794\pi\)
0.150866 + 0.988554i \(0.451794\pi\)
\(468\) 0 0
\(469\) −4.76812 23.9710i −0.220171 1.10688i
\(470\) 0 0
\(471\) −8.42303 + 42.3454i −0.388113 + 1.95117i
\(472\) 0 0
\(473\) 5.78837 3.86766i 0.266149 0.177835i
\(474\) 0 0
\(475\) 8.81794i 0.404595i
\(476\) 0 0
\(477\) 7.28787i 0.333689i
\(478\) 0 0
\(479\) 13.6534 9.12292i 0.623841 0.416837i −0.203075 0.979163i \(-0.565093\pi\)
0.826916 + 0.562326i \(0.190093\pi\)
\(480\) 0 0
\(481\) −2.87173 + 14.4372i −0.130940 + 0.658279i
\(482\) 0 0
\(483\) −12.1492 61.0779i −0.552806 2.77914i
\(484\) 0 0
\(485\) 13.7204 + 5.68317i 0.623011 + 0.258060i
\(486\) 0 0
\(487\) −1.02911 + 1.54017i −0.0466334 + 0.0697918i −0.854054 0.520185i \(-0.825863\pi\)
0.807420 + 0.589977i \(0.200863\pi\)
\(488\) 0 0
\(489\) −5.64813 5.64813i −0.255417 0.255417i
\(490\) 0 0
\(491\) 8.00880 3.31735i 0.361432 0.149710i −0.194575 0.980888i \(-0.562333\pi\)
0.556007 + 0.831178i \(0.312333\pi\)
\(492\) 0 0
\(493\) −7.48999 1.59043i −0.337332 0.0716295i
\(494\) 0 0
\(495\) −7.65481 + 3.17073i −0.344058 + 0.142514i
\(496\) 0 0
\(497\) −18.9879 + 18.9879i −0.851723 + 0.851723i
\(498\) 0 0
\(499\) −15.5586 + 23.2852i −0.696501 + 1.04239i 0.299592 + 0.954068i \(0.403150\pi\)
−0.996092 + 0.0883192i \(0.971850\pi\)
\(500\) 0 0
\(501\) −11.0392 + 26.6509i −0.493194 + 1.19068i
\(502\) 0 0
\(503\) 1.42171 + 7.14743i 0.0633910 + 0.318688i 0.999450 0.0331543i \(-0.0105553\pi\)
−0.936059 + 0.351842i \(0.885555\pi\)
\(504\) 0 0
\(505\) 7.95157 + 1.58167i 0.353840 + 0.0703832i
\(506\) 0 0
\(507\) −13.8897 + 9.28083i −0.616865 + 0.412176i
\(508\) 0 0
\(509\) 21.5629 0.955760 0.477880 0.878425i \(-0.341405\pi\)
0.477880 + 0.878425i \(0.341405\pi\)
\(510\) 0 0
\(511\) 56.9203i 2.51801i
\(512\) 0 0
\(513\) 3.92013 + 5.86688i 0.173078 + 0.259029i
\(514\) 0 0
\(515\) 0.0821337 0.412914i 0.00361924 0.0181952i
\(516\) 0 0
\(517\) 9.78432 1.94622i 0.430314 0.0855947i
\(518\) 0 0
\(519\) 23.3181 + 9.65866i 1.02355 + 0.423968i
\(520\) 0 0
\(521\) 4.85313 + 3.24276i 0.212619 + 0.142068i 0.657320 0.753611i \(-0.271690\pi\)
−0.444701 + 0.895679i \(0.646690\pi\)
\(522\) 0 0
\(523\) 0.928399 + 0.928399i 0.0405961 + 0.0405961i 0.727113 0.686517i \(-0.240861\pi\)
−0.686517 + 0.727113i \(0.740861\pi\)
\(524\) 0 0
\(525\) 8.57394 + 20.6993i 0.374197 + 0.903392i
\(526\) 0 0
\(527\) 33.6772 21.8801i 1.46700 0.953112i
\(528\) 0 0
\(529\) 9.35256 + 22.5791i 0.406633 + 0.981699i
\(530\) 0 0
\(531\) 10.6916 10.6916i 0.463978 0.463978i
\(532\) 0 0
\(533\) 9.88077 + 6.60212i 0.427984 + 0.285970i
\(534\) 0 0
\(535\) 3.19142 7.70477i 0.137977 0.333106i
\(536\) 0 0
\(537\) −7.66091 + 1.52385i −0.330593 + 0.0657590i
\(538\) 0 0
\(539\) 21.5713 + 4.29080i 0.929141 + 0.184818i
\(540\) 0 0
\(541\) −20.1913 30.2184i −0.868092 1.29919i −0.953052 0.302807i \(-0.902076\pi\)
0.0849601 0.996384i \(-0.472924\pi\)
\(542\) 0 0
\(543\) 30.8538 1.32406
\(544\) 0 0
\(545\) 15.5194 0.664777
\(546\) 0 0
\(547\) 4.20366 + 6.29123i 0.179736 + 0.268993i 0.910387 0.413757i \(-0.135784\pi\)
−0.730652 + 0.682750i \(0.760784\pi\)
\(548\) 0 0
\(549\) −18.4606 3.67204i −0.787878 0.156719i
\(550\) 0 0
\(551\) −6.48148 + 1.28925i −0.276120 + 0.0549238i
\(552\) 0 0
\(553\) 19.4206 46.8855i 0.825849 1.99378i
\(554\) 0 0
\(555\) 18.5591 + 12.4008i 0.787789 + 0.526384i
\(556\) 0 0
\(557\) −26.1434 + 26.1434i −1.10773 + 1.10773i −0.114283 + 0.993448i \(0.536457\pi\)
−0.993448 + 0.114283i \(0.963543\pi\)
\(558\) 0 0
\(559\) 2.57124 + 6.20751i 0.108752 + 0.262550i
\(560\) 0 0
\(561\) −22.9234 0.295356i −0.967827 0.0124700i
\(562\) 0 0
\(563\) −9.43760 22.7844i −0.397748 0.960248i −0.988199 0.153175i \(-0.951050\pi\)
0.590452 0.807073i \(-0.298950\pi\)
\(564\) 0 0
\(565\) −9.05282 9.05282i −0.380855 0.380855i
\(566\) 0 0
\(567\) −36.0690 24.1006i −1.51476 1.01213i
\(568\) 0 0
\(569\) 21.6080 + 8.95034i 0.905856 + 0.375218i 0.786469 0.617630i \(-0.211907\pi\)
0.119387 + 0.992848i \(0.461907\pi\)
\(570\) 0 0
\(571\) −7.43083 + 1.47808i −0.310971 + 0.0618559i −0.348109 0.937454i \(-0.613176\pi\)
0.0371378 + 0.999310i \(0.488176\pi\)
\(572\) 0 0
\(573\) 9.68533 48.6915i 0.404611 2.03411i
\(574\) 0 0
\(575\) −9.48219 14.1911i −0.395434 0.591810i
\(576\) 0 0
\(577\) 15.4426i 0.642884i −0.946929 0.321442i \(-0.895832\pi\)
0.946929 0.321442i \(-0.104168\pi\)
\(578\) 0 0
\(579\) 3.11546 0.129474
\(580\) 0 0
\(581\) −57.5380 + 38.4456i −2.38708 + 1.59499i
\(582\) 0 0
\(583\) 8.26605 + 1.64422i 0.342345 + 0.0680966i
\(584\) 0 0
\(585\) −1.56008 7.84307i −0.0645015 0.324271i
\(586\) 0 0
\(587\) 4.61264 11.1359i 0.190384 0.459628i −0.799648 0.600469i \(-0.794981\pi\)
0.990032 + 0.140841i \(0.0449807\pi\)
\(588\) 0 0
\(589\) 19.2568 28.8199i 0.793463 1.18750i
\(590\) 0 0
\(591\) 16.8808 16.8808i 0.694382 0.694382i
\(592\) 0 0
\(593\) 27.8859 11.5507i 1.14514 0.474332i 0.272237 0.962230i \(-0.412236\pi\)
0.872900 + 0.487898i \(0.162236\pi\)
\(594\) 0 0
\(595\) 0.336949 26.1515i 0.0138136 1.07211i
\(596\) 0 0
\(597\) 38.4295 15.9180i 1.57281 0.651481i
\(598\) 0 0
\(599\) −11.1432 11.1432i −0.455299 0.455299i 0.441810 0.897109i \(-0.354337\pi\)
−0.897109 + 0.441810i \(0.854337\pi\)
\(600\) 0 0
\(601\) −24.8557 + 37.1992i −1.01389 + 1.51739i −0.166759 + 0.985998i \(0.553330\pi\)
−0.847127 + 0.531390i \(0.821670\pi\)
\(602\) 0 0
\(603\) −12.0075 4.97367i −0.488984 0.202544i
\(604\) 0 0
\(605\) −1.53872 7.73566i −0.0625578 0.314499i
\(606\) 0 0
\(607\) 2.44705 12.3021i 0.0993225 0.499328i −0.898815 0.438328i \(-0.855571\pi\)
0.998138 0.0610004i \(-0.0194291\pi\)
\(608\) 0 0
\(609\) 13.9611 9.32853i 0.565733 0.378011i
\(610\) 0 0
\(611\) 9.62830i 0.389519i
\(612\) 0 0
\(613\) 37.9509i 1.53282i 0.642351 + 0.766411i \(0.277959\pi\)
−0.642351 + 0.766411i \(0.722041\pi\)
\(614\) 0 0
\(615\) 14.9828 10.0112i 0.604164 0.403690i
\(616\) 0 0
\(617\) −1.83441 + 9.22219i −0.0738505 + 0.371272i −0.999982 0.00592821i \(-0.998113\pi\)
0.926132 + 0.377200i \(0.123113\pi\)
\(618\) 0 0
\(619\) −7.07536 35.5702i −0.284383 1.42969i −0.813710 0.581271i \(-0.802556\pi\)
0.529328 0.848418i \(-0.322444\pi\)
\(620\) 0 0
\(621\) 12.6177 + 5.22641i 0.506329 + 0.209729i
\(622\) 0 0
\(623\) −1.39047 + 2.08099i −0.0557082 + 0.0833732i
\(624\) 0 0
\(625\) −4.57470 4.57470i −0.182988 0.182988i
\(626\) 0 0
\(627\) −18.2799 + 7.57178i −0.730028 + 0.302388i
\(628\) 0 0
\(629\) 13.9477 + 21.4679i 0.556130 + 0.855979i
\(630\) 0 0
\(631\) 31.6304 13.1018i 1.25919 0.521573i 0.349528 0.936926i \(-0.386342\pi\)
0.909660 + 0.415353i \(0.136342\pi\)
\(632\) 0 0
\(633\) −2.99681 + 2.99681i −0.119113 + 0.119113i
\(634\) 0 0
\(635\) 0.497803 0.745015i 0.0197547 0.0295650i
\(636\) 0 0
\(637\) −8.12334 + 19.6115i −0.321858 + 0.777035i
\(638\) 0 0
\(639\) 2.78582 + 14.0053i 0.110205 + 0.554040i
\(640\) 0 0
\(641\) 41.0725 + 8.16982i 1.62226 + 0.322688i 0.920806 0.390022i \(-0.127532\pi\)
0.701459 + 0.712710i \(0.252532\pi\)
\(642\) 0 0
\(643\) 12.8831 8.60823i 0.508061 0.339475i −0.274976 0.961451i \(-0.588670\pi\)
0.783037 + 0.621976i \(0.213670\pi\)
\(644\) 0 0
\(645\) 10.1883 0.401166
\(646\) 0 0
\(647\) 4.31868i 0.169785i 0.996390 + 0.0848923i \(0.0270546\pi\)
−0.996390 + 0.0848923i \(0.972945\pi\)
\(648\) 0 0
\(649\) −9.71454 14.5388i −0.381329 0.570699i
\(650\) 0 0
\(651\) −17.1812 + 86.3760i −0.673386 + 3.38534i
\(652\) 0 0
\(653\) −16.4937 + 3.28079i −0.645447 + 0.128387i −0.506950 0.861975i \(-0.669227\pi\)
−0.138497 + 0.990363i \(0.544227\pi\)
\(654\) 0 0
\(655\) −29.3263 12.1473i −1.14587 0.474636i
\(656\) 0 0
\(657\) 25.1675 + 16.8164i 0.981877 + 0.656070i
\(658\) 0 0
\(659\) −24.3424 24.3424i −0.948246 0.948246i 0.0504793 0.998725i \(-0.483925\pi\)
−0.998725 + 0.0504793i \(0.983925\pi\)
\(660\) 0 0
\(661\) 13.8353 + 33.4013i 0.538130 + 1.29916i 0.926027 + 0.377457i \(0.123202\pi\)
−0.387897 + 0.921703i \(0.626798\pi\)
\(662\) 0 0
\(663\) 4.59585 21.6437i 0.178488 0.840572i
\(664\) 0 0
\(665\) −8.63804 20.8541i −0.334969 0.808686i
\(666\) 0 0
\(667\) −9.04457 + 9.04457i −0.350207 + 0.350207i
\(668\) 0 0
\(669\) 25.3804 + 16.9586i 0.981263 + 0.655659i
\(670\) 0 0
\(671\) −8.32980 + 20.1099i −0.321568 + 0.776335i
\(672\) 0 0
\(673\) −37.1218 + 7.38398i −1.43094 + 0.284631i −0.848910 0.528537i \(-0.822741\pi\)
−0.582028 + 0.813168i \(0.697741\pi\)
\(674\) 0 0
\(675\) −4.81912 0.958583i −0.185488 0.0368959i
\(676\) 0 0
\(677\) −5.75120 8.60728i −0.221037 0.330805i 0.704334 0.709869i \(-0.251246\pi\)
−0.925370 + 0.379064i \(0.876246\pi\)
\(678\) 0 0
\(679\) −37.3519 −1.43343
\(680\) 0 0
\(681\) −47.0681 −1.80366
\(682\) 0 0
\(683\) 2.82528 + 4.22832i 0.108106 + 0.161792i 0.881578 0.472038i \(-0.156482\pi\)
−0.773472 + 0.633831i \(0.781482\pi\)
\(684\) 0 0
\(685\) −4.76420 0.947658i −0.182031 0.0362082i
\(686\) 0 0
\(687\) −55.9415 + 11.1275i −2.13430 + 0.424539i
\(688\) 0 0
\(689\) −3.11284 + 7.51506i −0.118590 + 0.286301i
\(690\) 0 0
\(691\) 1.80294 + 1.20468i 0.0685870 + 0.0458283i 0.589391 0.807848i \(-0.299368\pi\)
−0.520804 + 0.853676i \(0.674368\pi\)
\(692\) 0 0
\(693\) 14.7355 14.7355i 0.559757 0.559757i
\(694\) 0 0
\(695\) −5.40243 13.0426i −0.204926 0.494734i
\(696\) 0 0
\(697\) 20.3208 3.77057i 0.769705 0.142821i
\(698\) 0 0
\(699\) −2.00631 4.84366i −0.0758856 0.183204i
\(700\) 0 0
\(701\) −29.0858 29.0858i −1.09856 1.09856i −0.994580 0.103977i \(-0.966843\pi\)
−0.103977 0.994580i \(-0.533157\pi\)
\(702\) 0 0
\(703\) 18.3715 + 12.2754i 0.692894 + 0.462977i
\(704\) 0 0
\(705\) 13.4886 + 5.58715i 0.508009 + 0.210424i
\(706\) 0 0
\(707\) −19.9993 + 3.97810i −0.752150 + 0.149612i
\(708\) 0 0
\(709\) 2.89581 14.5582i 0.108754 0.546745i −0.887540 0.460731i \(-0.847587\pi\)
0.996294 0.0860136i \(-0.0274128\pi\)
\(710\) 0 0
\(711\) −14.9930 22.4386i −0.562282 0.841514i
\(712\) 0 0
\(713\) 67.0885i 2.51248i
\(714\) 0 0
\(715\) −9.24775 −0.345846
\(716\) 0 0
\(717\) 21.1235 14.1143i 0.788873 0.527108i
\(718\) 0 0
\(719\) −17.5647 3.49383i −0.655052 0.130298i −0.143635 0.989631i \(-0.545879\pi\)
−0.511417 + 0.859333i \(0.670879\pi\)
\(720\) 0 0
\(721\) 0.206578 + 1.03854i 0.00769335 + 0.0386771i
\(722\) 0 0
\(723\) 4.87043 11.7583i 0.181133 0.437294i
\(724\) 0 0
\(725\) 2.55665 3.82630i 0.0949518 0.142105i
\(726\) 0 0
\(727\) 9.14200 9.14200i 0.339058 0.339058i −0.516955 0.856013i \(-0.672934\pi\)
0.856013 + 0.516955i \(0.172934\pi\)
\(728\) 0 0
\(729\) −8.87181 + 3.67482i −0.328585 + 0.136105i
\(730\) 0 0
\(731\) 10.7375 + 4.61058i 0.397142 + 0.170529i
\(732\) 0 0
\(733\) −12.0200 + 4.97884i −0.443968 + 0.183898i −0.593457 0.804866i \(-0.702237\pi\)
0.149489 + 0.988763i \(0.452237\pi\)
\(734\) 0 0
\(735\) 22.7605 + 22.7605i 0.839533 + 0.839533i
\(736\) 0 0
\(737\) −8.35027 + 12.4971i −0.307586 + 0.460335i
\(738\) 0 0
\(739\) 27.1906 + 11.2627i 1.00022 + 0.414305i 0.821878 0.569663i \(-0.192926\pi\)
0.178343 + 0.983968i \(0.442926\pi\)
\(740\) 0 0
\(741\) −3.72552 18.7294i −0.136860 0.688043i
\(742\) 0 0
\(743\) −1.16420 + 5.85282i −0.0427103 + 0.214719i −0.996247 0.0865584i \(-0.972413\pi\)
0.953536 + 0.301278i \(0.0974131\pi\)
\(744\) 0 0
\(745\) −16.1043 + 10.7606i −0.590017 + 0.394237i
\(746\) 0 0
\(747\) 36.7989i 1.34640i
\(748\) 0 0
\(749\) 20.9752i 0.766417i
\(750\) 0 0
\(751\) 4.76539 3.18413i 0.173891 0.116191i −0.465579 0.885007i \(-0.654154\pi\)
0.639470 + 0.768816i \(0.279154\pi\)
\(752\) 0 0
\(753\) −6.95107 + 34.9454i −0.253311 + 1.27348i
\(754\) 0 0
\(755\) 3.17808 + 15.9773i 0.115662 + 0.581473i
\(756\) 0 0
\(757\) 5.74019 + 2.37766i 0.208631 + 0.0864177i 0.484552 0.874763i \(-0.338983\pi\)
−0.275921 + 0.961180i \(0.588983\pi\)
\(758\) 0 0
\(759\) −21.2765 + 31.8425i −0.772287 + 1.15581i
\(760\) 0 0
\(761\) 34.6524 + 34.6524i 1.25615 + 1.25615i 0.952917 + 0.303231i \(0.0980654\pi\)
0.303231 + 0.952917i \(0.401935\pi\)
\(762\) 0 0
\(763\) −36.0621 + 14.9374i −1.30554 + 0.540771i
\(764\) 0 0
\(765\) −11.4634 7.87511i −0.414461 0.284725i
\(766\) 0 0
\(767\) 15.5916 6.45826i 0.562981 0.233194i
\(768\) 0 0
\(769\) −20.7436 + 20.7436i −0.748035 + 0.748035i −0.974110 0.226075i \(-0.927410\pi\)
0.226075 + 0.974110i \(0.427410\pi\)
\(770\) 0 0
\(771\) −5.11023 + 7.64799i −0.184040 + 0.275436i
\(772\) 0 0
\(773\) 15.5416 37.5208i 0.558994 1.34953i −0.351570 0.936162i \(-0.614352\pi\)
0.910564 0.413369i \(-0.135648\pi\)
\(774\) 0 0
\(775\) 4.70884 + 23.6729i 0.169146 + 0.850357i
\(776\) 0 0
\(777\) −55.0612 10.9524i −1.97531 0.392913i
\(778\) 0 0
\(779\) 14.8313 9.90999i 0.531388 0.355062i
\(780\) 0 0
\(781\) 16.5136 0.590903
\(782\) 0 0
\(783\) 3.68237i 0.131597i
\(784\) 0 0
\(785\) 16.8282 + 25.1852i 0.600626 + 0.898900i
\(786\) 0 0
\(787\) 6.57472 33.0533i 0.234363 1.17822i −0.666965 0.745089i \(-0.732407\pi\)
0.901329 0.433136i \(-0.142593\pi\)
\(788\) 0 0
\(789\) −30.2046 + 6.00806i −1.07531 + 0.213893i
\(790\) 0 0
\(791\) 29.7492 + 12.3225i 1.05776 + 0.438139i
\(792\) 0 0
\(793\) −17.4676 11.6715i −0.620294 0.414467i
\(794\) 0 0
\(795\) 8.72175 + 8.72175i 0.309329 + 0.309329i
\(796\) 0 0
\(797\) 3.63700 + 8.78050i 0.128829 + 0.311021i 0.975112 0.221713i \(-0.0711647\pi\)
−0.846283 + 0.532734i \(0.821165\pi\)
\(798\) 0 0
\(799\) 11.6873 + 11.9924i 0.413466 + 0.424260i
\(800\) 0 0
\(801\) 0.509319 + 1.22961i 0.0179959 + 0.0434460i
\(802\) 0 0
\(803\) 24.7515 24.7515i 0.873463 0.873463i
\(804\) 0 0
\(805\) −36.3265 24.2726i −1.28034 0.855498i
\(806\) 0 0
\(807\) −1.18052 + 2.85002i −0.0415562 + 0.100325i
\(808\) 0 0
\(809\) −19.9757 + 3.97341i −0.702308 + 0.139698i −0.533311 0.845919i \(-0.679053\pi\)
−0.168996 + 0.985617i \(0.554053\pi\)
\(810\) 0 0
\(811\) 43.7391 + 8.70024i 1.53589 + 0.305507i 0.889296 0.457331i \(-0.151195\pi\)
0.646590 + 0.762838i \(0.276195\pi\)
\(812\) 0 0
\(813\) −1.47655 2.20981i −0.0517849 0.0775016i
\(814\) 0 0
\(815\) −5.60385 −0.196294
\(816\) 0 0
\(817\) 10.0854 0.352842
\(818\) 0 0
\(819\) 11.1741 + 16.7232i 0.390455 + 0.584357i
\(820\) 0 0
\(821\) −46.0889 9.16766i −1.60851 0.319953i −0.692599 0.721323i \(-0.743534\pi\)
−0.915916 + 0.401370i \(0.868534\pi\)
\(822\) 0 0
\(823\) 49.8672 9.91920i 1.73826 0.345762i 0.778729 0.627360i \(-0.215865\pi\)
0.959532 + 0.281599i \(0.0908647\pi\)
\(824\) 0 0
\(825\) 5.27267 12.7293i 0.183571 0.443179i
\(826\) 0 0
\(827\) 4.87246 + 3.25567i 0.169432 + 0.113211i 0.637395 0.770537i \(-0.280012\pi\)
−0.467963 + 0.883748i \(0.655012\pi\)
\(828\) 0 0
\(829\) −1.74130 + 1.74130i −0.0604779 + 0.0604779i −0.736699 0.676221i \(-0.763616\pi\)
0.676221 + 0.736699i \(0.263616\pi\)
\(830\) 0 0
\(831\) −22.2837 53.7976i −0.773013 1.86622i
\(832\) 0 0
\(833\) 13.6874 + 34.2872i 0.474241 + 1.18798i
\(834\) 0 0
\(835\) 7.74469 + 18.6973i 0.268016 + 0.647048i
\(836\) 0 0
\(837\) −13.6571 13.6571i −0.472057 0.472057i
\(838\) 0 0
\(839\) 25.9855 + 17.3630i 0.897120 + 0.599436i 0.916350 0.400379i \(-0.131122\pi\)
−0.0192301 + 0.999815i \(0.506122\pi\)
\(840\) 0 0
\(841\) 23.6062 + 9.77803i 0.814008 + 0.337173i
\(842\) 0 0
\(843\) −6.45356 + 1.28369i −0.222272 + 0.0442127i
\(844\) 0 0
\(845\) −2.28639 + 11.4945i −0.0786543 + 0.395422i
\(846\) 0 0
\(847\) 11.0211 + 16.4942i 0.378688 + 0.566747i
\(848\) 0 0
\(849\) 15.6404i 0.536779i
\(850\) 0 0
\(851\) 42.7662 1.46601
\(852\) 0 0
\(853\) 29.0938 19.4398i 0.996152 0.665608i 0.0532168 0.998583i \(-0.483053\pi\)
0.942936 + 0.332975i \(0.108053\pi\)
\(854\) 0 0
\(855\) −11.7727 2.34173i −0.402617 0.0800856i
\(856\) 0 0
\(857\) 4.73913 + 23.8252i 0.161886 + 0.813854i 0.973327 + 0.229421i \(0.0736831\pi\)
−0.811442 + 0.584433i \(0.801317\pi\)
\(858\) 0 0
\(859\) −8.98480 + 21.6912i −0.306557 + 0.740095i 0.693254 + 0.720693i \(0.256176\pi\)
−0.999812 + 0.0194021i \(0.993824\pi\)
\(860\) 0 0
\(861\) −25.1795 + 37.6837i −0.858114 + 1.28426i
\(862\) 0 0
\(863\) −39.7230 + 39.7230i −1.35219 + 1.35219i −0.468979 + 0.883210i \(0.655378\pi\)
−0.883210 + 0.468979i \(0.844622\pi\)
\(864\) 0 0
\(865\) 16.3591 6.77617i 0.556227 0.230397i
\(866\) 0 0
\(867\) −20.5478 32.5366i −0.697841 1.10500i
\(868\) 0 0
\(869\) −28.8329 + 11.9430i −0.978090 + 0.405138i
\(870\) 0 0
\(871\) −10.2574 10.2574i −0.347560 0.347560i
\(872\) 0 0
\(873\) −11.0351 + 16.5153i −0.373483 + 0.558957i
\(874\) 0 0
\(875\) 43.8236 + 18.1523i 1.48151 + 0.613661i
\(876\) 0 0
\(877\) 0.834949 + 4.19757i 0.0281942 + 0.141742i 0.992318 0.123709i \(-0.0394790\pi\)
−0.964124 + 0.265451i \(0.914479\pi\)
\(878\) 0 0
\(879\) −6.46194 + 32.4864i −0.217956 + 1.09574i
\(880\) 0 0
\(881\) 30.0537 20.0813i 1.01254 0.676555i 0.0655561 0.997849i \(-0.479118\pi\)
0.946979 + 0.321294i \(0.104118\pi\)
\(882\) 0 0
\(883\) 11.1632i 0.375672i −0.982200 0.187836i \(-0.939853\pi\)
0.982200 0.187836i \(-0.0601474\pi\)
\(884\) 0 0
\(885\) 25.5904i 0.860212i
\(886\) 0 0
\(887\) −24.1279 + 16.1217i −0.810135 + 0.541315i −0.890251 0.455471i \(-0.849471\pi\)
0.0801157 + 0.996786i \(0.474471\pi\)
\(888\) 0 0
\(889\) −0.439659 + 2.21031i −0.0147457 + 0.0741316i
\(890\) 0 0
\(891\) 5.20444 + 26.1645i 0.174355 + 0.876543i
\(892\) 0 0
\(893\) 13.3522 + 5.53068i 0.446816 + 0.185077i
\(894\) 0 0
\(895\) −3.04448 + 4.55638i −0.101766 + 0.152303i
\(896\) 0 0
\(897\) −26.1360 26.1360i −0.872654 0.872654i
\(898\) 0 0
\(899\) 16.7119 6.92231i 0.557374 0.230872i
\(900\) 0 0
\(901\) 5.24498 + 13.1388i 0.174736 + 0.437716i
\(902\) 0 0
\(903\) −23.6745 + 9.80630i −0.787838 + 0.326333i
\(904\) 0 0
\(905\) 15.3060 15.3060i 0.508788 0.508788i
\(906\) 0 0
\(907\) −28.9723 + 43.3602i −0.962011 + 1.43975i −0.0649269 + 0.997890i \(0.520681\pi\)
−0.897084 + 0.441861i \(0.854319\pi\)
\(908\) 0 0
\(909\) −4.14960 + 10.0180i −0.137634 + 0.332277i
\(910\) 0 0
\(911\) 0.592380 + 2.97809i 0.0196264 + 0.0986687i 0.989357 0.145509i \(-0.0464820\pi\)
−0.969731 + 0.244178i \(0.921482\pi\)
\(912\) 0 0
\(913\) 41.7380 + 8.30221i 1.38133 + 0.274763i
\(914\) 0 0
\(915\) −26.4872 + 17.6982i −0.875639 + 0.585083i
\(916\) 0 0
\(917\) 79.8368 2.63644
\(918\) 0 0
\(919\) 6.84897i 0.225927i 0.993599 + 0.112963i \(0.0360343\pi\)
−0.993599 + 0.112963i \(0.963966\pi\)
\(920\) 0 0
\(921\) 33.3485 + 49.9096i 1.09887 + 1.64458i
\(922\) 0 0
\(923\) −3.10935 + 15.6318i −0.102346 + 0.514526i
\(924\) 0 0
\(925\) −15.0905 + 3.00169i −0.496174 + 0.0986951i
\(926\) 0 0
\(927\) 0.520222 + 0.215483i 0.0170863 + 0.00707740i
\(928\) 0 0
\(929\) −13.6512 9.12141i −0.447880 0.299264i 0.311101 0.950377i \(-0.399302\pi\)
−0.758981 + 0.651113i \(0.774302\pi\)
\(930\) 0 0
\(931\) 22.5304 + 22.5304i 0.738405 + 0.738405i
\(932\) 0 0
\(933\) −5.84818 14.1188i −0.191461 0.462227i
\(934\) 0 0
\(935\) −11.5184 + 11.2253i −0.376691 + 0.367108i
\(936\) 0 0
\(937\) −12.9063 31.1586i −0.421631 1.01791i −0.981866 0.189575i \(-0.939289\pi\)
0.560235 0.828334i \(-0.310711\pi\)
\(938\) 0 0
\(939\) 6.81482 6.81482i 0.222393 0.222393i
\(940\) 0 0
\(941\) 1.56839 + 1.04797i 0.0511281 + 0.0341627i 0.580872 0.813995i \(-0.302712\pi\)
−0.529744 + 0.848158i \(0.677712\pi\)
\(942\) 0 0
\(943\) 13.2122 31.8971i 0.430249 1.03871i
\(944\) 0 0
\(945\) −12.3360 + 2.45379i −0.401292 + 0.0798219i
\(946\) 0 0
\(947\) −22.7008 4.51548i −0.737678 0.146733i −0.188070 0.982156i \(-0.560223\pi\)
−0.549609 + 0.835422i \(0.685223\pi\)
\(948\) 0 0
\(949\) 18.7693 + 28.0903i 0.609279 + 0.911850i
\(950\) 0 0
\(951\) −27.1045 −0.878922
\(952\) 0 0
\(953\) 22.0527 0.714358 0.357179 0.934036i \(-0.383739\pi\)
0.357179 + 0.934036i \(0.383739\pi\)
\(954\) 0 0
\(955\) −19.3502 28.9596i −0.626157 0.937111i
\(956\) 0 0
\(957\) −10.1274 2.01447i −0.327372 0.0651184i
\(958\) 0 0
\(959\) 11.9826 2.38349i 0.386939 0.0769669i
\(960\) 0 0
\(961\) −24.4443 + 59.0137i −0.788525 + 1.90367i
\(962\) 0 0
\(963\) 9.27425 + 6.19685i 0.298858 + 0.199691i
\(964\) 0 0
\(965\) 1.54552 1.54552i 0.0497521 0.0497521i
\(966\) 0 0
\(967\) −21.2143 51.2160i −0.682207 1.64699i −0.759919 0.650018i \(-0.774761\pi\)
0.0777115 0.996976i \(-0.475239\pi\)
\(968\) 0 0
\(969\) −27.3749 18.8060i −0.879409 0.604134i
\(970\) 0 0
\(971\) 0.393875 + 0.950898i 0.0126401 + 0.0305158i 0.930074 0.367373i \(-0.119743\pi\)
−0.917434 + 0.397889i \(0.869743\pi\)
\(972\) 0 0
\(973\) 25.1071 + 25.1071i 0.804895 + 0.804895i
\(974\) 0 0
\(975\) 11.0568 + 7.38792i 0.354101 + 0.236603i
\(976\) 0 0
\(977\) 11.0562 + 4.57961i 0.353718 + 0.146515i 0.552465 0.833536i \(-0.313687\pi\)
−0.198747 + 0.980051i \(0.563687\pi\)
\(978\) 0 0
\(979\) 1.50955 0.300269i 0.0482455 0.00959662i
\(980\) 0 0
\(981\) −4.04947 + 20.3580i −0.129289 + 0.649982i
\(982\) 0 0
\(983\) −11.5932 17.3504i −0.369765 0.553393i 0.599197 0.800602i \(-0.295487\pi\)
−0.968962 + 0.247209i \(0.920487\pi\)
\(984\) 0 0
\(985\) 16.7484i 0.533650i
\(986\) 0 0
\(987\) −36.7208 −1.16884
\(988\) 0 0
\(989\) 16.2308 10.8451i 0.516110 0.344854i
\(990\) 0 0
\(991\) −32.6899 6.50243i −1.03843 0.206557i −0.353704 0.935357i \(-0.615078\pi\)
−0.684726 + 0.728801i \(0.740078\pi\)
\(992\) 0 0
\(993\) −3.58142 18.0050i −0.113653 0.571371i
\(994\) 0 0
\(995\) 11.1675 26.9607i 0.354034 0.854713i
\(996\) 0 0
\(997\) −3.46448 + 5.18496i −0.109721 + 0.164209i −0.882267 0.470750i \(-0.843983\pi\)
0.772545 + 0.634960i \(0.218983\pi\)
\(998\) 0 0
\(999\) 8.70582 8.70582i 0.275440 0.275440i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.cc.c.175.12 112
4.3 odd 2 136.2.s.c.107.10 yes 112
8.3 odd 2 inner 544.2.cc.c.175.11 112
8.5 even 2 136.2.s.c.107.8 yes 112
17.7 odd 16 inner 544.2.cc.c.143.11 112
68.7 even 16 136.2.s.c.75.8 112
136.75 even 16 inner 544.2.cc.c.143.12 112
136.109 odd 16 136.2.s.c.75.10 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.2.s.c.75.8 112 68.7 even 16
136.2.s.c.75.10 yes 112 136.109 odd 16
136.2.s.c.107.8 yes 112 8.5 even 2
136.2.s.c.107.10 yes 112 4.3 odd 2
544.2.cc.c.143.11 112 17.7 odd 16 inner
544.2.cc.c.143.12 112 136.75 even 16 inner
544.2.cc.c.175.11 112 8.3 odd 2 inner
544.2.cc.c.175.12 112 1.1 even 1 trivial