Properties

Label 544.2.bx.b
Level $544$
Weight $2$
Character orbit 544.bx
Analytic conductor $4.344$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [544,2,Mod(31,544)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("544.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(544, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 0, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.bx (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-8,0,8,0,-8,0,8,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{16}^{7} - \zeta_{16}^{6} + \cdots - 1) q^{3} + (\zeta_{16}^{5} + 1) q^{5} + (\zeta_{16}^{6} - \zeta_{16}^{5} + \cdots - 1) q^{7} + (2 \zeta_{16}^{6} - 2 \zeta_{16}^{4} + \cdots + 1) q^{9}+ \cdots + ( - 3 \zeta_{16}^{7} - 2 \zeta_{16}^{6} + \cdots + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 8 q^{5} - 8 q^{7} + 8 q^{9} - 8 q^{11} - 8 q^{13} + 8 q^{17} - 8 q^{21} + 8 q^{23} + 8 q^{25} + 16 q^{27} + 8 q^{29} - 8 q^{31} + 8 q^{37} + 40 q^{39} + 8 q^{41} + 32 q^{43} + 8 q^{45} - 8 q^{47}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{16}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
−0.923880 0.382683i
0.382683 0.923880i
0.382683 + 0.923880i
0.923880 0.382683i
−0.923880 + 0.382683i
−0.382683 0.923880i
−0.382683 + 0.923880i
0.923880 + 0.382683i
0 −2.46508 0.490334i 0 1.38268 0.923880i 0 −1.49033 + 2.23044i 0 3.06453 + 1.26937i 0
63.1 0 0.689246 + 1.03153i 0 1.92388 + 0.382683i 0 0.0315301 + 0.158513i 0 0.559056 1.34968i 0
95.1 0 0.689246 1.03153i 0 1.92388 0.382683i 0 0.0315301 0.158513i 0 0.559056 + 1.34968i 0
159.1 0 0.465076 + 2.33809i 0 0.617317 0.923880i 0 −3.33809 + 2.23044i 0 −2.47875 + 1.02673i 0
351.1 0 −2.46508 + 0.490334i 0 1.38268 + 0.923880i 0 −1.49033 2.23044i 0 3.06453 1.26937i 0
415.1 0 −2.68925 1.79690i 0 0.0761205 + 0.382683i 0 0.796897 + 0.158513i 0 2.85516 + 6.89296i 0
447.1 0 −2.68925 + 1.79690i 0 0.0761205 0.382683i 0 0.796897 0.158513i 0 2.85516 6.89296i 0
479.1 0 0.465076 2.33809i 0 0.617317 + 0.923880i 0 −3.33809 2.23044i 0 −2.47875 1.02673i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
68.i even 16 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 544.2.bx.b 8
4.b odd 2 1 544.2.bx.h yes 8
17.e odd 16 1 544.2.bx.h yes 8
68.i even 16 1 inner 544.2.bx.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
544.2.bx.b 8 1.a even 1 1 trivial
544.2.bx.b 8 68.i even 16 1 inner
544.2.bx.h yes 8 4.b odd 2 1
544.2.bx.h yes 8 17.e odd 16 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(544, [\chi])\):

\( T_{3}^{8} + 8T_{3}^{7} + 28T_{3}^{6} + 64T_{3}^{5} + 150T_{3}^{4} + 264T_{3}^{3} + 148T_{3}^{2} + 136T_{3} + 578 \) Copy content Toggle raw display
\( T_{5}^{8} - 8T_{5}^{7} + 28T_{5}^{6} - 56T_{5}^{5} + 70T_{5}^{4} - 56T_{5}^{3} + 28T_{5}^{2} - 8T_{5} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 8 T^{7} + \cdots + 578 \) Copy content Toggle raw display
$5$ \( T^{8} - 8 T^{7} + \cdots + 2 \) Copy content Toggle raw display
$7$ \( T^{8} + 8 T^{7} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( T^{8} + 8 T^{7} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{8} + 8 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( (T^{4} - 4 T^{3} + \cdots + 289)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 36 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{8} - 8 T^{7} + \cdots + 12482 \) Copy content Toggle raw display
$29$ \( T^{8} - 8 T^{7} + \cdots + 578 \) Copy content Toggle raw display
$31$ \( T^{8} + 8 T^{7} + \cdots + 14439938 \) Copy content Toggle raw display
$37$ \( T^{8} - 8 T^{7} + \cdots + 132098 \) Copy content Toggle raw display
$41$ \( T^{8} - 8 T^{7} + \cdots + 4802 \) Copy content Toggle raw display
$43$ \( T^{8} - 32 T^{7} + \cdots + 1110916 \) Copy content Toggle raw display
$47$ \( T^{8} + 8 T^{7} + \cdots + 1993744 \) Copy content Toggle raw display
$53$ \( T^{8} + 8 T^{7} + \cdots + 3844 \) Copy content Toggle raw display
$59$ \( T^{8} + 100 T^{6} + \cdots + 749956 \) Copy content Toggle raw display
$61$ \( T^{8} + 8 T^{7} + \cdots + 1276802 \) Copy content Toggle raw display
$67$ \( (T^{4} - 176 T^{2} + \cdots + 5056)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 24 T^{7} + \cdots + 3792258 \) Copy content Toggle raw display
$73$ \( T^{8} + 8 T^{7} + \cdots + 25538 \) Copy content Toggle raw display
$79$ \( T^{8} + 24 T^{7} + \cdots + 293378 \) Copy content Toggle raw display
$83$ \( T^{8} + 32 T^{7} + \cdots + 1110916 \) Copy content Toggle raw display
$89$ \( T^{8} - 24 T^{7} + \cdots + 147962896 \) Copy content Toggle raw display
$97$ \( T^{8} - 8 T^{7} + \cdots + 77900162 \) Copy content Toggle raw display
show more
show less