L(s) = 1 | + (−2.46 + 0.490i)3-s + (1.38 + 0.923i)5-s + (−1.49 − 2.23i)7-s + (3.06 − 1.26i)9-s + (−0.183 + 0.923i)11-s + (−2.08 + 2.08i)13-s + (−3.86 − 1.59i)15-s + (−1.82 − 3.69i)17-s + (1.14 − 2.75i)19-s + (4.76 + 4.76i)21-s + (3.87 + 0.771i)23-s + (−0.855 − 2.06i)25-s + (−0.662 + 0.442i)27-s + (2.89 − 4.33i)29-s + (−1.60 − 8.04i)31-s + ⋯ |
L(s) = 1 | + (−1.42 + 0.283i)3-s + (0.618 + 0.413i)5-s + (−0.563 − 0.843i)7-s + (1.02 − 0.423i)9-s + (−0.0554 + 0.278i)11-s + (−0.577 + 0.577i)13-s + (−0.997 − 0.412i)15-s + (−0.443 − 0.896i)17-s + (0.261 − 0.631i)19-s + (1.04 + 1.04i)21-s + (0.808 + 0.160i)23-s + (−0.171 − 0.412i)25-s + (−0.127 + 0.0851i)27-s + (0.538 − 0.805i)29-s + (−0.287 − 1.44i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.204 + 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.204 + 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.487837 - 0.396247i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.487837 - 0.396247i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (1.82 + 3.69i)T \) |
good | 3 | \( 1 + (2.46 - 0.490i)T + (2.77 - 1.14i)T^{2} \) |
| 5 | \( 1 + (-1.38 - 0.923i)T + (1.91 + 4.61i)T^{2} \) |
| 7 | \( 1 + (1.49 + 2.23i)T + (-2.67 + 6.46i)T^{2} \) |
| 11 | \( 1 + (0.183 - 0.923i)T + (-10.1 - 4.20i)T^{2} \) |
| 13 | \( 1 + (2.08 - 2.08i)T - 13iT^{2} \) |
| 19 | \( 1 + (-1.14 + 2.75i)T + (-13.4 - 13.4i)T^{2} \) |
| 23 | \( 1 + (-3.87 - 0.771i)T + (21.2 + 8.80i)T^{2} \) |
| 29 | \( 1 + (-2.89 + 4.33i)T + (-11.0 - 26.7i)T^{2} \) |
| 31 | \( 1 + (1.60 + 8.04i)T + (-28.6 + 11.8i)T^{2} \) |
| 37 | \( 1 + (1.66 + 8.39i)T + (-34.1 + 14.1i)T^{2} \) |
| 41 | \( 1 + (-5.29 + 3.53i)T + (15.6 - 37.8i)T^{2} \) |
| 43 | \( 1 + (-4.80 - 11.6i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + (5.14 + 5.14i)T + 47iT^{2} \) |
| 53 | \( 1 + (3.98 + 1.65i)T + (37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (1.68 - 0.699i)T + (41.7 - 41.7i)T^{2} \) |
| 61 | \( 1 + (2.26 + 3.38i)T + (-23.3 + 56.3i)T^{2} \) |
| 67 | \( 1 + 6.72T + 67T^{2} \) |
| 71 | \( 1 + (-7.39 + 1.47i)T + (65.5 - 27.1i)T^{2} \) |
| 73 | \( 1 + (-0.680 - 0.454i)T + (27.9 + 67.4i)T^{2} \) |
| 79 | \( 1 + (-0.644 + 3.24i)T + (-72.9 - 30.2i)T^{2} \) |
| 83 | \( 1 + (9.49 + 3.93i)T + (58.6 + 58.6i)T^{2} \) |
| 89 | \( 1 + (-12.5 - 12.5i)T + 89iT^{2} \) |
| 97 | \( 1 + (8.63 - 12.9i)T + (-37.1 - 89.6i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75796082284196930150836923420, −9.785971306889662951589275488711, −9.382365005015340489327917525858, −7.53433048810012304335072851457, −6.77105675241537864005891607462, −6.09545334737776569330631886967, −5.01718108058445849873081169420, −4.18529818357859033328379387598, −2.51217393190410858764629103059, −0.45675189385435691979106734269,
1.39354814526775250191290865448, 3.05228772426949449773351212898, 4.85075953173193960200851636906, 5.57036257517181820666937061988, 6.18321256597125451125162722880, 7.08164166562885234531180530472, 8.452125031297631614249600572871, 9.312387592685277149262774683347, 10.32646064094050007694387087591, 10.94378920031445058338104082106