gp: [N,k,chi] = [5408,2,Mod(1,5408)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("5408.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [4,0,0,0,-8,0,0,0,8,0,0,0,0,0,0,0,-12,0,0,0,16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , β 2 , β 3 1,\beta_1,\beta_2,\beta_3 1 , β 1 , β 2 , β 3 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 4 − 2 x 3 − 4 x 2 + 2 x + 1 x^{4} - 2x^{3} - 4x^{2} + 2x + 1 x 4 − 2 x 3 − 4 x 2 + 2 x + 1
x^4 - 2*x^3 - 4*x^2 + 2*x + 1
:
β 1 \beta_{1} β 1 = = =
ν 2 − 2 ν − 2 \nu^{2} - 2\nu - 2 ν 2 − 2 ν − 2
v^2 - 2*v - 2
β 2 \beta_{2} β 2 = = =
ν 3 − 2 ν 2 − 3 ν + 1 \nu^{3} - 2\nu^{2} - 3\nu + 1 ν 3 − 2 ν 2 − 3 ν + 1
v^3 - 2*v^2 - 3*v + 1
β 3 \beta_{3} β 3 = = =
− ν 3 + 2 ν 2 + 5 ν − 2 -\nu^{3} + 2\nu^{2} + 5\nu - 2 − ν 3 + 2 ν 2 + 5 ν − 2
-v^3 + 2*v^2 + 5*v - 2
ν \nu ν = = =
( β 3 + β 2 + 1 ) / 2 ( \beta_{3} + \beta_{2} + 1 ) / 2 ( β 3 + β 2 + 1 ) / 2
(b3 + b2 + 1) / 2
ν 2 \nu^{2} ν 2 = = =
β 3 + β 2 + β 1 + 3 \beta_{3} + \beta_{2} + \beta _1 + 3 β 3 + β 2 + β 1 + 3
b3 + b2 + b1 + 3
ν 3 \nu^{3} ν 3 = = =
( 7 β 3 + 9 β 2 + 4 β 1 + 13 ) / 2 ( 7\beta_{3} + 9\beta_{2} + 4\beta _1 + 13 ) / 2 ( 7 β 3 + 9 β 2 + 4 β 1 + 1 3 ) / 2
(7*b3 + 9*b2 + 4*b1 + 13) / 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
13 13 1 3
− 1 -1 − 1
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 5408 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(5408)) S 2 n e w ( Γ 0 ( 5 4 0 8 ) ) :
T 3 4 − 10 T 3 2 + 13 T_{3}^{4} - 10T_{3}^{2} + 13 T 3 4 − 1 0 T 3 2 + 1 3
T3^4 - 10*T3^2 + 13
T 5 + 2 T_{5} + 2 T 5 + 2
T5 + 2
T 7 4 − 22 T 7 2 + 13 T_{7}^{4} - 22T_{7}^{2} + 13 T 7 4 − 2 2 T 7 2 + 1 3
T7^4 - 22*T7^2 + 13
T 37 2 + 12 T 37 + 33 T_{37}^{2} + 12T_{37} + 33 T 3 7 2 + 1 2 T 3 7 + 3 3
T37^2 + 12*T37 + 33
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 T^{4} T 4
T^4
3 3 3
T 4 − 10 T 2 + 13 T^{4} - 10T^{2} + 13 T 4 − 1 0 T 2 + 1 3
T^4 - 10*T^2 + 13
5 5 5
( T + 2 ) 4 (T + 2)^{4} ( T + 2 ) 4
(T + 2)^4
7 7 7
T 4 − 22 T 2 + 13 T^{4} - 22T^{2} + 13 T 4 − 2 2 T 2 + 1 3
T^4 - 22*T^2 + 13
11 11 1 1
T 4 − 30 T 2 + 117 T^{4} - 30T^{2} + 117 T 4 − 3 0 T 2 + 1 1 7
T^4 - 30*T^2 + 117
13 13 1 3
T 4 T^{4} T 4
T^4
17 17 1 7
( T 2 + 6 T − 3 ) 2 (T^{2} + 6 T - 3)^{2} ( T 2 + 6 T − 3 ) 2
(T^2 + 6*T - 3)^2
19 19 1 9
T 4 − 22 T 2 + 13 T^{4} - 22T^{2} + 13 T 4 − 2 2 T 2 + 1 3
T^4 - 22*T^2 + 13
23 23 2 3
T 4 − 82 T 2 + 1573 T^{4} - 82T^{2} + 1573 T 4 − 8 2 T 2 + 1 5 7 3
T^4 - 82*T^2 + 1573
29 29 2 9
( T − 3 ) 4 (T - 3)^{4} ( T − 3 ) 4
(T - 3)^4
31 31 3 1
T 4 − 88 T 2 + 208 T^{4} - 88T^{2} + 208 T 4 − 8 8 T 2 + 2 0 8
T^4 - 88*T^2 + 208
37 37 3 7
( T 2 + 12 T + 33 ) 2 (T^{2} + 12 T + 33)^{2} ( T 2 + 1 2 T + 3 3 ) 2
(T^2 + 12*T + 33)^2
41 41 4 1
( T 2 + 4 T − 23 ) 2 (T^{2} + 4 T - 23)^{2} ( T 2 + 4 T − 2 3 ) 2
(T^2 + 4*T - 23)^2
43 43 4 3
T 4 − 90 T 2 + 1053 T^{4} - 90T^{2} + 1053 T 4 − 9 0 T 2 + 1 0 5 3
T^4 - 90*T^2 + 1053
47 47 4 7
T 4 − 192 T 2 + 7488 T^{4} - 192T^{2} + 7488 T 4 − 1 9 2 T 2 + 7 4 8 8
T^4 - 192*T^2 + 7488
53 53 5 3
( T 2 − 12 T + 24 ) 2 (T^{2} - 12 T + 24)^{2} ( T 2 − 1 2 T + 2 4 ) 2
(T^2 - 12*T + 24)^2
59 59 5 9
T 4 − 246 T 2 + 14157 T^{4} - 246 T^{2} + 14157 T 4 − 2 4 6 T 2 + 1 4 1 5 7
T^4 - 246*T^2 + 14157
61 61 6 1
( T − 3 ) 4 (T - 3)^{4} ( T − 3 ) 4
(T - 3)^4
67 67 6 7
T 4 − 22 T 2 + 13 T^{4} - 22T^{2} + 13 T 4 − 2 2 T 2 + 1 3
T^4 - 22*T^2 + 13
71 71 7 1
T 4 − 270 T 2 + 9477 T^{4} - 270T^{2} + 9477 T 4 − 2 7 0 T 2 + 9 4 7 7
T^4 - 270*T^2 + 9477
73 73 7 3
( T + 6 ) 4 (T + 6)^{4} ( T + 6 ) 4
(T + 6)^4
79 79 7 9
T 4 − 120 T 2 + 1872 T^{4} - 120T^{2} + 1872 T 4 − 1 2 0 T 2 + 1 8 7 2
T^4 - 120*T^2 + 1872
83 83 8 3
T 4 − 120 T 2 + 1872 T^{4} - 120T^{2} + 1872 T 4 − 1 2 0 T 2 + 1 8 7 2
T^4 - 120*T^2 + 1872
89 89 8 9
( T 2 + 8 T − 11 ) 2 (T^{2} + 8 T - 11)^{2} ( T 2 + 8 T − 1 1 ) 2
(T^2 + 8*T - 11)^2
97 97 9 7
( T 2 + 24 T + 141 ) 2 (T^{2} + 24 T + 141)^{2} ( T 2 + 2 4 T + 1 4 1 ) 2
(T^2 + 24*T + 141)^2
show more
show less