Properties

Label 5408.2.a.bg
Level 54085408
Weight 22
Character orbit 5408.a
Self dual yes
Analytic conductor 43.18343.183
Analytic rank 11
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5408,2,Mod(1,5408)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5408.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5408, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 5408=25132 5408 = 2^{5} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5408.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-8,0,0,0,8,0,0,0,0,0,0,0,-12,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 43.183097413143.1830974131
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.7488.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x34x2+2x+1 x^{4} - 2x^{3} - 4x^{2} + 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 416)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q32q5+(β3+β1)q7+(2β2+2)q9+(β3β1)q112β1q15+(2β23)q17+(β3β1)q19+(β2+4)q21++(2β38β1)q99+O(q100) q + \beta_1 q^{3} - 2 q^{5} + (\beta_{3} + \beta_1) q^{7} + ( - 2 \beta_{2} + 2) q^{9} + (\beta_{3} - \beta_1) q^{11} - 2 \beta_1 q^{15} + (2 \beta_{2} - 3) q^{17} + ( - \beta_{3} - \beta_1) q^{19} + (\beta_{2} + 4) q^{21}+ \cdots + (2 \beta_{3} - 8 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q5+8q912q17+16q214q25+12q2924q3324q378q4116q45+16q49+24q5316q57+12q61+28q6924q73+12q77+48q97+O(q100) 4 q - 8 q^{5} + 8 q^{9} - 12 q^{17} + 16 q^{21} - 4 q^{25} + 12 q^{29} - 24 q^{33} - 24 q^{37} - 8 q^{41} - 16 q^{45} + 16 q^{49} + 24 q^{53} - 16 q^{57} + 12 q^{61} + 28 q^{69} - 24 q^{73} + 12 q^{77}+ \cdots - 48 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x34x2+2x+1 x^{4} - 2x^{3} - 4x^{2} + 2x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν22ν2 \nu^{2} - 2\nu - 2 Copy content Toggle raw display
β2\beta_{2}== ν32ν23ν+1 \nu^{3} - 2\nu^{2} - 3\nu + 1 Copy content Toggle raw display
β3\beta_{3}== ν3+2ν2+5ν2 -\nu^{3} + 2\nu^{2} + 5\nu - 2 Copy content Toggle raw display
ν\nu== (β3+β2+1)/2 ( \beta_{3} + \beta_{2} + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β3+β2+β1+3 \beta_{3} + \beta_{2} + \beta _1 + 3 Copy content Toggle raw display
ν3\nu^{3}== (7β3+9β2+4β1+13)/2 ( 7\beta_{3} + 9\beta_{2} + 4\beta _1 + 13 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0.698857
−0.326909
3.05896
−1.43091
0 −2.90931 0 −2.00000 0 −0.779548 0 5.46410 0
1.2 0 −1.23931 0 −2.00000 0 −4.62518 0 −1.46410 0
1.3 0 1.23931 0 −2.00000 0 4.62518 0 −1.46410 0
1.4 0 2.90931 0 −2.00000 0 0.779548 0 5.46410 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1313 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.bg 4
4.b odd 2 1 inner 5408.2.a.bg 4
13.b even 2 1 5408.2.a.bk 4
13.f odd 12 2 416.2.w.c 8
52.b odd 2 1 5408.2.a.bk 4
52.l even 12 2 416.2.w.c 8
104.u even 12 2 832.2.w.h 8
104.x odd 12 2 832.2.w.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.c 8 13.f odd 12 2
416.2.w.c 8 52.l even 12 2
832.2.w.h 8 104.u even 12 2
832.2.w.h 8 104.x odd 12 2
5408.2.a.bg 4 1.a even 1 1 trivial
5408.2.a.bg 4 4.b odd 2 1 inner
5408.2.a.bk 4 13.b even 2 1
5408.2.a.bk 4 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5408))S_{2}^{\mathrm{new}}(\Gamma_0(5408)):

T3410T32+13 T_{3}^{4} - 10T_{3}^{2} + 13 Copy content Toggle raw display
T5+2 T_{5} + 2 Copy content Toggle raw display
T7422T72+13 T_{7}^{4} - 22T_{7}^{2} + 13 Copy content Toggle raw display
T372+12T37+33 T_{37}^{2} + 12T_{37} + 33 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T410T2+13 T^{4} - 10T^{2} + 13 Copy content Toggle raw display
55 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
77 T422T2+13 T^{4} - 22T^{2} + 13 Copy content Toggle raw display
1111 T430T2+117 T^{4} - 30T^{2} + 117 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T2+6T3)2 (T^{2} + 6 T - 3)^{2} Copy content Toggle raw display
1919 T422T2+13 T^{4} - 22T^{2} + 13 Copy content Toggle raw display
2323 T482T2+1573 T^{4} - 82T^{2} + 1573 Copy content Toggle raw display
2929 (T3)4 (T - 3)^{4} Copy content Toggle raw display
3131 T488T2+208 T^{4} - 88T^{2} + 208 Copy content Toggle raw display
3737 (T2+12T+33)2 (T^{2} + 12 T + 33)^{2} Copy content Toggle raw display
4141 (T2+4T23)2 (T^{2} + 4 T - 23)^{2} Copy content Toggle raw display
4343 T490T2+1053 T^{4} - 90T^{2} + 1053 Copy content Toggle raw display
4747 T4192T2+7488 T^{4} - 192T^{2} + 7488 Copy content Toggle raw display
5353 (T212T+24)2 (T^{2} - 12 T + 24)^{2} Copy content Toggle raw display
5959 T4246T2+14157 T^{4} - 246 T^{2} + 14157 Copy content Toggle raw display
6161 (T3)4 (T - 3)^{4} Copy content Toggle raw display
6767 T422T2+13 T^{4} - 22T^{2} + 13 Copy content Toggle raw display
7171 T4270T2+9477 T^{4} - 270T^{2} + 9477 Copy content Toggle raw display
7373 (T+6)4 (T + 6)^{4} Copy content Toggle raw display
7979 T4120T2+1872 T^{4} - 120T^{2} + 1872 Copy content Toggle raw display
8383 T4120T2+1872 T^{4} - 120T^{2} + 1872 Copy content Toggle raw display
8989 (T2+8T11)2 (T^{2} + 8 T - 11)^{2} Copy content Toggle raw display
9797 (T2+24T+141)2 (T^{2} + 24 T + 141)^{2} Copy content Toggle raw display
show more
show less