Properties

Label 5408.2.a.bg
Level $5408$
Weight $2$
Character orbit 5408.a
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.7488.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - 2 q^{5} + (\beta_{3} + \beta_1) q^{7} + ( - 2 \beta_{2} + 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{3} - 2 q^{5} + (\beta_{3} + \beta_1) q^{7} + ( - 2 \beta_{2} + 2) q^{9} + (\beta_{3} - \beta_1) q^{11} - 2 \beta_1 q^{15} + (2 \beta_{2} - 3) q^{17} + ( - \beta_{3} - \beta_1) q^{19} + (\beta_{2} + 4) q^{21} + ( - 2 \beta_{3} + \beta_1) q^{23} - q^{25} + ( - 2 \beta_{3} + \beta_1) q^{27} + 3 q^{29} + ( - 2 \beta_{3} - 2 \beta_1) q^{31} + (5 \beta_{2} - 6) q^{33} + ( - 2 \beta_{3} - 2 \beta_1) q^{35} + ( - \beta_{2} - 6) q^{37} + ( - 3 \beta_{2} - 2) q^{41} - 3 \beta_1 q^{43} + (4 \beta_{2} - 4) q^{45} + ( - 2 \beta_{3} - 4 \beta_1) q^{47} + (6 \beta_{2} + 4) q^{49} + (2 \beta_{3} - 5 \beta_1) q^{51} + ( - 2 \beta_{2} + 6) q^{53} + ( - 2 \beta_{3} + 2 \beta_1) q^{55} + ( - \beta_{2} - 4) q^{57} + (\beta_{3} + 5 \beta_1) q^{59} + 3 q^{61} - 2 \beta_{3} q^{63} + ( - \beta_{3} - \beta_1) q^{67} + ( - 8 \beta_{2} + 7) q^{69} + (3 \beta_{3} - 3 \beta_1) q^{71} - 6 q^{73} - \beta_1 q^{75} + (4 \beta_{2} + 3) q^{77} + (2 \beta_{3} - 2 \beta_1) q^{79} + ( - 2 \beta_{2} + 1) q^{81} + (2 \beta_{3} - 2 \beta_1) q^{83} + ( - 4 \beta_{2} + 6) q^{85} + 3 \beta_1 q^{87} + (3 \beta_{2} - 4) q^{89} + ( - 2 \beta_{2} - 8) q^{93} + (2 \beta_{3} + 2 \beta_1) q^{95} + ( - \beta_{2} - 12) q^{97} + (2 \beta_{3} - 8 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{5} + 8 q^{9} - 12 q^{17} + 16 q^{21} - 4 q^{25} + 12 q^{29} - 24 q^{33} - 24 q^{37} - 8 q^{41} - 16 q^{45} + 16 q^{49} + 24 q^{53} - 16 q^{57} + 12 q^{61} + 28 q^{69} - 24 q^{73} + 12 q^{77} + 4 q^{81} + 24 q^{85} - 16 q^{89} - 32 q^{93} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 4x^{2} + 2x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} - 2\nu^{2} - 3\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 2\nu^{2} + 5\nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{3} + 9\beta_{2} + 4\beta _1 + 13 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.698857
−0.326909
3.05896
−1.43091
0 −2.90931 0 −2.00000 0 −0.779548 0 5.46410 0
1.2 0 −1.23931 0 −2.00000 0 −4.62518 0 −1.46410 0
1.3 0 1.23931 0 −2.00000 0 4.62518 0 −1.46410 0
1.4 0 2.90931 0 −2.00000 0 0.779548 0 5.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.bg 4
4.b odd 2 1 inner 5408.2.a.bg 4
13.b even 2 1 5408.2.a.bk 4
13.f odd 12 2 416.2.w.c 8
52.b odd 2 1 5408.2.a.bk 4
52.l even 12 2 416.2.w.c 8
104.u even 12 2 832.2.w.h 8
104.x odd 12 2 832.2.w.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.c 8 13.f odd 12 2
416.2.w.c 8 52.l even 12 2
832.2.w.h 8 104.u even 12 2
832.2.w.h 8 104.x odd 12 2
5408.2.a.bg 4 1.a even 1 1 trivial
5408.2.a.bg 4 4.b odd 2 1 inner
5408.2.a.bk 4 13.b even 2 1
5408.2.a.bk 4 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5408))\):

\( T_{3}^{4} - 10T_{3}^{2} + 13 \) Copy content Toggle raw display
\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 22T_{7}^{2} + 13 \) Copy content Toggle raw display
\( T_{37}^{2} + 12T_{37} + 33 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 10T^{2} + 13 \) Copy content Toggle raw display
$5$ \( (T + 2)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 22T^{2} + 13 \) Copy content Toggle raw display
$11$ \( T^{4} - 30T^{2} + 117 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 22T^{2} + 13 \) Copy content Toggle raw display
$23$ \( T^{4} - 82T^{2} + 1573 \) Copy content Toggle raw display
$29$ \( (T - 3)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 88T^{2} + 208 \) Copy content Toggle raw display
$37$ \( (T^{2} + 12 T + 33)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 23)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 90T^{2} + 1053 \) Copy content Toggle raw display
$47$ \( T^{4} - 192T^{2} + 7488 \) Copy content Toggle raw display
$53$ \( (T^{2} - 12 T + 24)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 246 T^{2} + 14157 \) Copy content Toggle raw display
$61$ \( (T - 3)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 22T^{2} + 13 \) Copy content Toggle raw display
$71$ \( T^{4} - 270T^{2} + 9477 \) Copy content Toggle raw display
$73$ \( (T + 6)^{4} \) Copy content Toggle raw display
$79$ \( T^{4} - 120T^{2} + 1872 \) Copy content Toggle raw display
$83$ \( T^{4} - 120T^{2} + 1872 \) Copy content Toggle raw display
$89$ \( (T^{2} + 8 T - 11)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 24 T + 141)^{2} \) Copy content Toggle raw display
show more
show less