Properties

Label 540.2.j.b.377.3
Level $540$
Weight $2$
Character 540.377
Analytic conductor $4.312$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(53,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 377.3
Root \(1.54779 - 1.54779i\) of defining polynomial
Character \(\chi\) \(=\) 540.377
Dual form 540.2.j.b.53.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.87083 - 1.22474i) q^{5} +(-1.79129 - 1.79129i) q^{7} -0.646084i q^{11} +(3.79129 - 3.79129i) q^{13} +(-4.96640 + 4.96640i) q^{17} -6.58258i q^{19} +(-1.87083 - 1.87083i) q^{23} +(2.00000 - 4.58258i) q^{25} +7.99455 q^{29} -0.582576 q^{31} +(-5.54506 - 1.15732i) q^{35} +(3.00000 + 3.00000i) q^{37} +4.25290i q^{41} +(-0.791288 + 0.791288i) q^{43} +(1.93825 - 1.93825i) q^{47} -0.582576i q^{49} +(-5.47764 - 5.47764i) q^{53} +(-0.791288 - 1.20871i) q^{55} +12.8935 q^{59} +6.16515 q^{61} +(2.44949 - 11.7362i) q^{65} +(-7.00000 - 7.00000i) q^{67} +14.3205i q^{71} +(-1.20871 + 1.20871i) q^{73} +(-1.15732 + 1.15732i) q^{77} +6.16515i q^{79} +(1.22474 + 1.22474i) q^{83} +(-3.20871 + 15.3739i) q^{85} -9.42157 q^{89} -13.5826 q^{91} +(-8.06198 - 12.3149i) q^{95} +(7.58258 + 7.58258i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} + 12 q^{13} + 16 q^{25} + 32 q^{31} + 24 q^{37} + 12 q^{43} + 12 q^{55} - 24 q^{61} - 56 q^{67} - 28 q^{73} - 44 q^{85} - 72 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.87083 1.22474i 0.836660 0.547723i
\(6\) 0 0
\(7\) −1.79129 1.79129i −0.677043 0.677043i 0.282287 0.959330i \(-0.408907\pi\)
−0.959330 + 0.282287i \(0.908907\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.646084i 0.194802i −0.995245 0.0974008i \(-0.968947\pi\)
0.995245 0.0974008i \(-0.0310529\pi\)
\(12\) 0 0
\(13\) 3.79129 3.79129i 1.05151 1.05151i 0.0529150 0.998599i \(-0.483149\pi\)
0.998599 0.0529150i \(-0.0168513\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.96640 + 4.96640i −1.20453 + 1.20453i −0.231755 + 0.972774i \(0.574447\pi\)
−0.972774 + 0.231755i \(0.925553\pi\)
\(18\) 0 0
\(19\) 6.58258i 1.51015i −0.655640 0.755073i \(-0.727601\pi\)
0.655640 0.755073i \(-0.272399\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.87083 1.87083i −0.390095 0.390095i 0.484626 0.874721i \(-0.338956\pi\)
−0.874721 + 0.484626i \(0.838956\pi\)
\(24\) 0 0
\(25\) 2.00000 4.58258i 0.400000 0.916515i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 7.99455 1.48455 0.742276 0.670095i \(-0.233747\pi\)
0.742276 + 0.670095i \(0.233747\pi\)
\(30\) 0 0
\(31\) −0.582576 −0.104634 −0.0523168 0.998631i \(-0.516661\pi\)
−0.0523168 + 0.998631i \(0.516661\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.54506 1.15732i −0.937287 0.195623i
\(36\) 0 0
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.25290i 0.664191i 0.943246 + 0.332095i \(0.107756\pi\)
−0.943246 + 0.332095i \(0.892244\pi\)
\(42\) 0 0
\(43\) −0.791288 + 0.791288i −0.120670 + 0.120670i −0.764863 0.644193i \(-0.777193\pi\)
0.644193 + 0.764863i \(0.277193\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.93825 1.93825i 0.282723 0.282723i −0.551471 0.834194i \(-0.685933\pi\)
0.834194 + 0.551471i \(0.185933\pi\)
\(48\) 0 0
\(49\) 0.582576i 0.0832251i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.47764 5.47764i −0.752412 0.752412i 0.222517 0.974929i \(-0.428573\pi\)
−0.974929 + 0.222517i \(0.928573\pi\)
\(54\) 0 0
\(55\) −0.791288 1.20871i −0.106697 0.162983i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.8935 1.67859 0.839297 0.543672i \(-0.182967\pi\)
0.839297 + 0.543672i \(0.182967\pi\)
\(60\) 0 0
\(61\) 6.16515 0.789367 0.394683 0.918817i \(-0.370854\pi\)
0.394683 + 0.918817i \(0.370854\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.44949 11.7362i 0.303822 1.45570i
\(66\) 0 0
\(67\) −7.00000 7.00000i −0.855186 0.855186i 0.135580 0.990766i \(-0.456710\pi\)
−0.990766 + 0.135580i \(0.956710\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.3205i 1.69954i 0.527157 + 0.849768i \(0.323258\pi\)
−0.527157 + 0.849768i \(0.676742\pi\)
\(72\) 0 0
\(73\) −1.20871 + 1.20871i −0.141469 + 0.141469i −0.774294 0.632825i \(-0.781895\pi\)
0.632825 + 0.774294i \(0.281895\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.15732 + 1.15732i −0.131889 + 0.131889i
\(78\) 0 0
\(79\) 6.16515i 0.693634i 0.937933 + 0.346817i \(0.112737\pi\)
−0.937933 + 0.346817i \(0.887263\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.22474 + 1.22474i 0.134433 + 0.134433i 0.771121 0.636688i \(-0.219696\pi\)
−0.636688 + 0.771121i \(0.719696\pi\)
\(84\) 0 0
\(85\) −3.20871 + 15.3739i −0.348034 + 1.66753i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.42157 −0.998684 −0.499342 0.866405i \(-0.666425\pi\)
−0.499342 + 0.866405i \(0.666425\pi\)
\(90\) 0 0
\(91\) −13.5826 −1.42384
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.06198 12.3149i −0.827141 1.26348i
\(96\) 0 0
\(97\) 7.58258 + 7.58258i 0.769894 + 0.769894i 0.978088 0.208194i \(-0.0667584\pi\)
−0.208194 + 0.978088i \(0.566758\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.50579i 0.846358i 0.906046 + 0.423179i \(0.139086\pi\)
−0.906046 + 0.423179i \(0.860914\pi\)
\(102\) 0 0
\(103\) −3.58258 + 3.58258i −0.353002 + 0.353002i −0.861225 0.508224i \(-0.830302\pi\)
0.508224 + 0.861225i \(0.330302\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.5396 + 13.5396i −1.30892 + 1.30892i −0.386732 + 0.922192i \(0.626396\pi\)
−0.922192 + 0.386732i \(0.873604\pi\)
\(108\) 0 0
\(109\) 15.7477i 1.50836i 0.656668 + 0.754179i \(0.271965\pi\)
−0.656668 + 0.754179i \(0.728035\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.03383 + 5.03383i 0.473542 + 0.473542i 0.903059 0.429517i \(-0.141316\pi\)
−0.429517 + 0.903059i \(0.641316\pi\)
\(114\) 0 0
\(115\) −5.79129 1.20871i −0.540040 0.112713i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 17.7925 1.63104
\(120\) 0 0
\(121\) 10.5826 0.962052
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.87083 11.0227i −0.167332 0.985901i
\(126\) 0 0
\(127\) 6.58258 + 6.58258i 0.584109 + 0.584109i 0.936030 0.351921i \(-0.114471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.93280i 0.867833i −0.900953 0.433917i \(-0.857131\pi\)
0.900953 0.433917i \(-0.142869\pi\)
\(132\) 0 0
\(133\) −11.7913 + 11.7913i −1.02243 + 1.02243i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.22474 + 1.22474i −0.104637 + 0.104637i −0.757487 0.652850i \(-0.773573\pi\)
0.652850 + 0.757487i \(0.273573\pi\)
\(138\) 0 0
\(139\) 11.1652i 0.947016i 0.880790 + 0.473508i \(0.157012\pi\)
−0.880790 + 0.473508i \(0.842988\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.44949 2.44949i −0.204837 0.204837i
\(144\) 0 0
\(145\) 14.9564 9.79129i 1.24206 0.813122i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.7362 0.961468 0.480734 0.876867i \(-0.340370\pi\)
0.480734 + 0.876867i \(0.340370\pi\)
\(150\) 0 0
\(151\) −17.1652 −1.39688 −0.698440 0.715669i \(-0.746122\pi\)
−0.698440 + 0.715669i \(0.746122\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.08990 + 0.713507i −0.0875428 + 0.0573102i
\(156\) 0 0
\(157\) −3.62614 3.62614i −0.289397 0.289397i 0.547445 0.836842i \(-0.315601\pi\)
−0.836842 + 0.547445i \(0.815601\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.70239i 0.528222i
\(162\) 0 0
\(163\) −8.58258 + 8.58258i −0.672239 + 0.672239i −0.958232 0.285993i \(-0.907677\pi\)
0.285993 + 0.958232i \(0.407677\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −6.76981 + 6.76981i −0.523863 + 0.523863i −0.918736 0.394872i \(-0.870789\pi\)
0.394872 + 0.918736i \(0.370789\pi\)
\(168\) 0 0
\(169\) 15.7477i 1.21136i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.6070 13.6070i −1.03452 1.03452i −0.999382 0.0351417i \(-0.988812\pi\)
−0.0351417 0.999382i \(-0.511188\pi\)
\(174\) 0 0
\(175\) −11.7913 + 4.62614i −0.891338 + 0.349703i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.7646 1.85099 0.925496 0.378757i \(-0.123648\pi\)
0.925496 + 0.378757i \(0.123648\pi\)
\(180\) 0 0
\(181\) −5.41742 −0.402674 −0.201337 0.979522i \(-0.564529\pi\)
−0.201337 + 0.979522i \(0.564529\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 9.28672 + 1.93825i 0.682773 + 0.142503i
\(186\) 0 0
\(187\) 3.20871 + 3.20871i 0.234644 + 0.234644i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.74166i 0.270737i −0.990795 0.135368i \(-0.956778\pi\)
0.990795 0.135368i \(-0.0432218\pi\)
\(192\) 0 0
\(193\) 15.7913 15.7913i 1.13668 1.13668i 0.147641 0.989041i \(-0.452832\pi\)
0.989041 0.147641i \(-0.0471679\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.12372 6.12372i 0.436297 0.436297i −0.454467 0.890764i \(-0.650170\pi\)
0.890764 + 0.454467i \(0.150170\pi\)
\(198\) 0 0
\(199\) 13.5826i 0.962843i −0.876489 0.481422i \(-0.840121\pi\)
0.876489 0.481422i \(-0.159879\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −14.3205 14.3205i −1.00511 1.00511i
\(204\) 0 0
\(205\) 5.20871 + 7.95644i 0.363792 + 0.555702i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.25290 −0.294179
\(210\) 0 0
\(211\) 26.1652 1.80128 0.900642 0.434563i \(-0.143097\pi\)
0.900642 + 0.434563i \(0.143097\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.511238 + 2.44949i −0.0348662 + 0.167054i
\(216\) 0 0
\(217\) 1.04356 + 1.04356i 0.0708415 + 0.0708415i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 37.6581i 2.53316i
\(222\) 0 0
\(223\) 12.1652 12.1652i 0.814639 0.814639i −0.170687 0.985325i \(-0.554599\pi\)
0.985325 + 0.170687i \(0.0545986\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.5453 + 15.5453i −1.03178 + 1.03178i −0.0322989 + 0.999478i \(0.510283\pi\)
−0.999478 + 0.0322989i \(0.989717\pi\)
\(228\) 0 0
\(229\) 15.0000i 0.991228i 0.868543 + 0.495614i \(0.165057\pi\)
−0.868543 + 0.495614i \(0.834943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.38774 4.38774i −0.287450 0.287450i 0.548621 0.836071i \(-0.315153\pi\)
−0.836071 + 0.548621i \(0.815153\pi\)
\(234\) 0 0
\(235\) 1.25227 6.00000i 0.0816893 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −15.1015 −0.976833 −0.488417 0.872611i \(-0.662425\pi\)
−0.488417 + 0.872611i \(0.662425\pi\)
\(240\) 0 0
\(241\) −3.74773 −0.241412 −0.120706 0.992688i \(-0.538516\pi\)
−0.120706 + 0.992688i \(0.538516\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.713507 1.08990i −0.0455843 0.0696311i
\(246\) 0 0
\(247\) −24.9564 24.9564i −1.58794 1.58794i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.3489i 1.72625i −0.504991 0.863124i \(-0.668504\pi\)
0.504991 0.863124i \(-0.331496\pi\)
\(252\) 0 0
\(253\) −1.20871 + 1.20871i −0.0759911 + 0.0759911i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.87083 + 1.87083i −0.116699 + 0.116699i −0.763045 0.646346i \(-0.776296\pi\)
0.646346 + 0.763045i \(0.276296\pi\)
\(258\) 0 0
\(259\) 10.7477i 0.667831i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.7700 + 16.7700i 1.03408 + 1.03408i 0.999398 + 0.0346864i \(0.0110433\pi\)
0.0346864 + 0.999398i \(0.488957\pi\)
\(264\) 0 0
\(265\) −16.9564 3.53901i −1.04163 0.217400i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.8318 0.904310 0.452155 0.891939i \(-0.350655\pi\)
0.452155 + 0.891939i \(0.350655\pi\)
\(270\) 0 0
\(271\) 13.7477 0.835115 0.417557 0.908651i \(-0.362886\pi\)
0.417557 + 0.908651i \(0.362886\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.96073 1.29217i −0.178539 0.0779206i
\(276\) 0 0
\(277\) 0.791288 + 0.791288i 0.0475439 + 0.0475439i 0.730479 0.682935i \(-0.239297\pi\)
−0.682935 + 0.730479i \(0.739297\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.511238i 0.0304979i −0.999884 0.0152490i \(-0.995146\pi\)
0.999884 0.0152490i \(-0.00485408\pi\)
\(282\) 0 0
\(283\) 14.7913 14.7913i 0.879251 0.879251i −0.114206 0.993457i \(-0.536432\pi\)
0.993457 + 0.114206i \(0.0364325\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.61816 7.61816i 0.449686 0.449686i
\(288\) 0 0
\(289\) 32.3303i 1.90178i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.73598 1.73598i −0.101417 0.101417i 0.654578 0.755995i \(-0.272847\pi\)
−0.755995 + 0.654578i \(0.772847\pi\)
\(294\) 0 0
\(295\) 24.1216 15.7913i 1.40441 0.919404i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −14.1857 −0.820380
\(300\) 0 0
\(301\) 2.83485 0.163398
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.5339 7.55074i 0.660432 0.432354i
\(306\) 0 0
\(307\) 15.0000 + 15.0000i 0.856095 + 0.856095i 0.990876 0.134780i \(-0.0430329\pi\)
−0.134780 + 0.990876i \(0.543033\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.2983i 1.49124i −0.666371 0.745620i \(-0.732153\pi\)
0.666371 0.745620i \(-0.267847\pi\)
\(312\) 0 0
\(313\) 9.16515 9.16515i 0.518045 0.518045i −0.398934 0.916979i \(-0.630620\pi\)
0.916979 + 0.398934i \(0.130620\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.22474 + 1.22474i −0.0687885 + 0.0687885i −0.740664 0.671876i \(-0.765489\pi\)
0.671876 + 0.740664i \(0.265489\pi\)
\(318\) 0 0
\(319\) 5.16515i 0.289193i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 32.6917 + 32.6917i 1.81902 + 1.81902i
\(324\) 0 0
\(325\) −9.79129 24.9564i −0.543123 1.38433i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.94393 −0.382831
\(330\) 0 0
\(331\) −9.58258 −0.526706 −0.263353 0.964700i \(-0.584828\pi\)
−0.263353 + 0.964700i \(0.584828\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −21.6690 4.52259i −1.18390 0.247095i
\(336\) 0 0
\(337\) −18.9564 18.9564i −1.03262 1.03262i −0.999450 0.0331734i \(-0.989439\pi\)
−0.0331734 0.999450i \(-0.510561\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.376393i 0.0203828i
\(342\) 0 0
\(343\) −13.5826 + 13.5826i −0.733390 + 0.733390i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.50579 8.50579i 0.456615 0.456615i −0.440928 0.897543i \(-0.645351\pi\)
0.897543 + 0.440928i \(0.145351\pi\)
\(348\) 0 0
\(349\) 0.252273i 0.0135039i −0.999977 0.00675193i \(-0.997851\pi\)
0.999977 0.00675193i \(-0.00214922\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.79796 9.79796i −0.521493 0.521493i 0.396529 0.918022i \(-0.370215\pi\)
−0.918022 + 0.396529i \(0.870215\pi\)
\(354\) 0 0
\(355\) 17.5390 + 26.7913i 0.930874 + 1.42193i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.134846 −0.00711688 −0.00355844 0.999994i \(-0.501133\pi\)
−0.00355844 + 0.999994i \(0.501133\pi\)
\(360\) 0 0
\(361\) −24.3303 −1.28054
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.780929 + 3.74166i −0.0408757 + 0.195847i
\(366\) 0 0
\(367\) 17.7913 + 17.7913i 0.928698 + 0.928698i 0.997622 0.0689242i \(-0.0219567\pi\)
−0.0689242 + 0.997622i \(0.521957\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.6241i 1.01883i
\(372\) 0 0
\(373\) −6.74773 + 6.74773i −0.349384 + 0.349384i −0.859880 0.510496i \(-0.829462\pi\)
0.510496 + 0.859880i \(0.329462\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 30.3097 30.3097i 1.56103 1.56103i
\(378\) 0 0
\(379\) 1.00000i 0.0513665i 0.999670 + 0.0256833i \(0.00817614\pi\)
−0.999670 + 0.0256833i \(0.991824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.3487 + 17.3487i 0.886477 + 0.886477i 0.994183 0.107706i \(-0.0343505\pi\)
−0.107706 + 0.994183i \(0.534350\pi\)
\(384\) 0 0
\(385\) −0.747727 + 3.58258i −0.0381077 + 0.182585i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −39.0851 −1.98169 −0.990847 0.134986i \(-0.956901\pi\)
−0.990847 + 0.134986i \(0.956901\pi\)
\(390\) 0 0
\(391\) 18.5826 0.939761
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.55074 + 11.5339i 0.379919 + 0.580336i
\(396\) 0 0
\(397\) 16.9564 + 16.9564i 0.851019 + 0.851019i 0.990259 0.139239i \(-0.0444658\pi\)
−0.139239 + 0.990259i \(0.544466\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.44949i 0.122322i 0.998128 + 0.0611608i \(0.0194803\pi\)
−0.998128 + 0.0611608i \(0.980520\pi\)
\(402\) 0 0
\(403\) −2.20871 + 2.20871i −0.110024 + 0.110024i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.93825 1.93825i 0.0960756 0.0960756i
\(408\) 0 0
\(409\) 12.1652i 0.601528i 0.953699 + 0.300764i \(0.0972417\pi\)
−0.953699 + 0.300764i \(0.902758\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −23.0960 23.0960i −1.13648 1.13648i
\(414\) 0 0
\(415\) 3.79129 + 0.791288i 0.186107 + 0.0388428i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −15.6127 −0.762731 −0.381365 0.924424i \(-0.624546\pi\)
−0.381365 + 0.924424i \(0.624546\pi\)
\(420\) 0 0
\(421\) −11.4174 −0.556451 −0.278226 0.960516i \(-0.589746\pi\)
−0.278226 + 0.960516i \(0.589746\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.8261 + 32.6917i 0.622158 + 1.58578i
\(426\) 0 0
\(427\) −11.0436 11.0436i −0.534435 0.534435i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.67991i 0.273592i 0.990599 + 0.136796i \(0.0436804\pi\)
−0.990599 + 0.136796i \(0.956320\pi\)
\(432\) 0 0
\(433\) 5.79129 5.79129i 0.278312 0.278312i −0.554123 0.832435i \(-0.686946\pi\)
0.832435 + 0.554123i \(0.186946\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.3149 + 12.3149i −0.589100 + 0.589100i
\(438\) 0 0
\(439\) 26.1652i 1.24879i 0.781107 + 0.624397i \(0.214655\pi\)
−0.781107 + 0.624397i \(0.785345\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.5115 10.5115i −0.499415 0.499415i 0.411841 0.911256i \(-0.364886\pi\)
−0.911256 + 0.411841i \(0.864886\pi\)
\(444\) 0 0
\(445\) −17.6261 + 11.5390i −0.835559 + 0.547002i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.6238 −0.595756 −0.297878 0.954604i \(-0.596279\pi\)
−0.297878 + 0.954604i \(0.596279\pi\)
\(450\) 0 0
\(451\) 2.74773 0.129385
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −25.4107 + 16.6352i −1.19127 + 0.779870i
\(456\) 0 0
\(457\) −22.7477 22.7477i −1.06409 1.06409i −0.997800 0.0662936i \(-0.978883\pi\)
−0.0662936 0.997800i \(-0.521117\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.74166i 0.174266i 0.996197 + 0.0871332i \(0.0277706\pi\)
−0.996197 + 0.0871332i \(0.972229\pi\)
\(462\) 0 0
\(463\) 3.74773 3.74773i 0.174172 0.174172i −0.614638 0.788809i \(-0.710698\pi\)
0.788809 + 0.614638i \(0.210698\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.5678 16.5678i 0.766665 0.766665i −0.210853 0.977518i \(-0.567624\pi\)
0.977518 + 0.210853i \(0.0676241\pi\)
\(468\) 0 0
\(469\) 25.0780i 1.15800i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.511238 + 0.511238i 0.0235068 + 0.0235068i
\(474\) 0 0
\(475\) −30.1652 13.1652i −1.38407 0.604059i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.2981 0.607604 0.303802 0.952735i \(-0.401744\pi\)
0.303802 + 0.952735i \(0.401744\pi\)
\(480\) 0 0
\(481\) 22.7477 1.03721
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.4724 + 4.89898i 1.06583 + 0.222451i
\(486\) 0 0
\(487\) 8.37386 + 8.37386i 0.379456 + 0.379456i 0.870906 0.491450i \(-0.163533\pi\)
−0.491450 + 0.870906i \(0.663533\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 27.2141i 1.22815i −0.789246 0.614077i \(-0.789528\pi\)
0.789246 0.614077i \(-0.210472\pi\)
\(492\) 0 0
\(493\) −39.7042 + 39.7042i −1.78819 + 1.78819i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.6522 25.6522i 1.15066 1.15066i
\(498\) 0 0
\(499\) 18.5826i 0.831870i 0.909394 + 0.415935i \(0.136546\pi\)
−0.909394 + 0.415935i \(0.863454\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.9610 + 12.9610i 0.577900 + 0.577900i 0.934324 0.356424i \(-0.116004\pi\)
−0.356424 + 0.934324i \(0.616004\pi\)
\(504\) 0 0
\(505\) 10.4174 + 15.9129i 0.463569 + 0.708114i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −7.21362 −0.319738 −0.159869 0.987138i \(-0.551107\pi\)
−0.159869 + 0.987138i \(0.551107\pi\)
\(510\) 0 0
\(511\) 4.33030 0.191561
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.31464 + 11.0901i −0.101995 + 0.488689i
\(516\) 0 0
\(517\) −1.25227 1.25227i −0.0550749 0.0550749i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.4331i 1.15806i −0.815307 0.579029i \(-0.803432\pi\)
0.815307 0.579029i \(-0.196568\pi\)
\(522\) 0 0
\(523\) −5.04356 + 5.04356i −0.220540 + 0.220540i −0.808726 0.588186i \(-0.799842\pi\)
0.588186 + 0.808726i \(0.299842\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.89331 2.89331i 0.126034 0.126034i
\(528\) 0 0
\(529\) 16.0000i 0.695652i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.1240 + 16.1240i 0.698406 + 0.698406i
\(534\) 0 0
\(535\) −8.74773 + 41.9129i −0.378197 + 1.81205i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.376393 −0.0162124
\(540\) 0 0
\(541\) −41.1652 −1.76983 −0.884914 0.465754i \(-0.845783\pi\)
−0.884914 + 0.465754i \(0.845783\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.2869 + 29.4613i 0.826162 + 1.26198i
\(546\) 0 0
\(547\) 29.5390 + 29.5390i 1.26300 + 1.26300i 0.949633 + 0.313364i \(0.101456\pi\)
0.313364 + 0.949633i \(0.398544\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 52.6248i 2.24189i
\(552\) 0 0
\(553\) 11.0436 11.0436i 0.469620 0.469620i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.6745 + 13.6745i −0.579406 + 0.579406i −0.934739 0.355334i \(-0.884367\pi\)
0.355334 + 0.934739i \(0.384367\pi\)
\(558\) 0 0
\(559\) 6.00000i 0.253773i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.47197 + 3.47197i 0.146326 + 0.146326i 0.776475 0.630149i \(-0.217006\pi\)
−0.630149 + 0.776475i \(0.717006\pi\)
\(564\) 0 0
\(565\) 15.5826 + 3.25227i 0.655564 + 0.136824i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −32.4895 −1.36203 −0.681014 0.732270i \(-0.738461\pi\)
−0.681014 + 0.732270i \(0.738461\pi\)
\(570\) 0 0
\(571\) −14.9129 −0.624085 −0.312042 0.950068i \(-0.601013\pi\)
−0.312042 + 0.950068i \(0.601013\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.3149 + 4.83156i −0.513566 + 0.201490i
\(576\) 0 0
\(577\) −4.37386 4.37386i −0.182086 0.182086i 0.610178 0.792264i \(-0.291098\pi\)
−0.792264 + 0.610178i \(0.791098\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.38774i 0.182034i
\(582\) 0 0
\(583\) −3.53901 + 3.53901i −0.146571 + 0.146571i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.2477 + 22.2477i −0.918260 + 0.918260i −0.996903 0.0786430i \(-0.974941\pi\)
0.0786430 + 0.996903i \(0.474941\pi\)
\(588\) 0 0
\(589\) 3.83485i 0.158012i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.45516 + 4.45516i 0.182952 + 0.182952i 0.792641 0.609689i \(-0.208706\pi\)
−0.609689 + 0.792641i \(0.708706\pi\)
\(594\) 0 0
\(595\) 33.2867 21.7913i 1.36462 0.893356i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.82588 −0.115462 −0.0577312 0.998332i \(-0.518387\pi\)
−0.0577312 + 0.998332i \(0.518387\pi\)
\(600\) 0 0
\(601\) 15.7477 0.642363 0.321182 0.947018i \(-0.395920\pi\)
0.321182 + 0.947018i \(0.395920\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.7982 12.9610i 0.804911 0.526938i
\(606\) 0 0
\(607\) 25.1216 + 25.1216i 1.01965 + 1.01965i 0.999803 + 0.0198510i \(0.00631917\pi\)
0.0198510 + 0.999803i \(0.493681\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6969i 0.594574i
\(612\) 0 0
\(613\) −24.3303 + 24.3303i −0.982692 + 0.982692i −0.999853 0.0171611i \(-0.994537\pi\)
0.0171611 + 0.999853i \(0.494537\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.2702 23.2702i 0.936821 0.936821i −0.0612984 0.998119i \(-0.519524\pi\)
0.998119 + 0.0612984i \(0.0195241\pi\)
\(618\) 0 0
\(619\) 10.7477i 0.431988i 0.976395 + 0.215994i \(0.0692991\pi\)
−0.976395 + 0.215994i \(0.930701\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 16.8767 + 16.8767i 0.676152 + 0.676152i
\(624\) 0 0
\(625\) −17.0000 18.3303i −0.680000 0.733212i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.7984 −1.18814
\(630\) 0 0
\(631\) −2.16515 −0.0861933 −0.0430967 0.999071i \(-0.513722\pi\)
−0.0430967 + 0.999071i \(0.513722\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 20.3768 + 4.25290i 0.808631 + 0.168771i
\(636\) 0 0
\(637\) −2.20871 2.20871i −0.0875124 0.0875124i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0.269691i 0.0106522i −0.999986 0.00532608i \(-0.998305\pi\)
0.999986 0.00532608i \(-0.00169535\pi\)
\(642\) 0 0
\(643\) 8.53901 8.53901i 0.336746 0.336746i −0.518395 0.855141i \(-0.673470\pi\)
0.855141 + 0.518395i \(0.173470\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.4835 + 17.4835i −0.687349 + 0.687349i −0.961645 0.274296i \(-0.911555\pi\)
0.274296 + 0.961645i \(0.411555\pi\)
\(648\) 0 0
\(649\) 8.33030i 0.326993i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.59001 + 4.59001i 0.179621 + 0.179621i 0.791191 0.611570i \(-0.209462\pi\)
−0.611570 + 0.791191i \(0.709462\pi\)
\(654\) 0 0
\(655\) −12.1652 18.5826i −0.475332 0.726081i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −16.7700 −0.653268 −0.326634 0.945151i \(-0.605914\pi\)
−0.326634 + 0.945151i \(0.605914\pi\)
\(660\) 0 0
\(661\) −31.4955 −1.22503 −0.612516 0.790459i \(-0.709842\pi\)
−0.612516 + 0.790459i \(0.709842\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.61816 + 36.5008i −0.295420 + 1.41544i
\(666\) 0 0
\(667\) −14.9564 14.9564i −0.579116 0.579116i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.98320i 0.153770i
\(672\) 0 0
\(673\) −7.04356 + 7.04356i −0.271509 + 0.271509i −0.829708 0.558198i \(-0.811493\pi\)
0.558198 + 0.829708i \(0.311493\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.05630 6.05630i 0.232763 0.232763i −0.581082 0.813845i \(-0.697371\pi\)
0.813845 + 0.581082i \(0.197371\pi\)
\(678\) 0 0
\(679\) 27.1652i 1.04250i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.4497 12.4497i −0.476375 0.476375i 0.427595 0.903970i \(-0.359361\pi\)
−0.903970 + 0.427595i \(0.859361\pi\)
\(684\) 0 0
\(685\) −0.791288 + 3.79129i −0.0302336 + 0.144858i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −41.5346 −1.58234
\(690\) 0 0
\(691\) 39.6606 1.50876 0.754380 0.656438i \(-0.227938\pi\)
0.754380 + 0.656438i \(0.227938\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 13.6745 + 20.8881i 0.518702 + 0.792330i
\(696\) 0 0
\(697\) −21.1216 21.1216i −0.800037 0.800037i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.2141i 1.02786i 0.857832 + 0.513931i \(0.171811\pi\)
−0.857832 + 0.513931i \(0.828189\pi\)
\(702\) 0 0
\(703\) 19.7477 19.7477i 0.744800 0.744800i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 15.2363 15.2363i 0.573021 0.573021i
\(708\) 0 0
\(709\) 26.0000i 0.976450i −0.872718 0.488225i \(-0.837644\pi\)
0.872718 0.488225i \(-0.162356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.08990 + 1.08990i 0.0408171 + 0.0408171i
\(714\) 0 0
\(715\) −7.58258 1.58258i −0.283572 0.0591850i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −37.0120 −1.38032 −0.690158 0.723659i \(-0.742459\pi\)
−0.690158 + 0.723659i \(0.742459\pi\)
\(720\) 0 0
\(721\) 12.8348 0.477995
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.9891 36.6356i 0.593820 1.36061i
\(726\) 0 0
\(727\) −12.3303 12.3303i −0.457306 0.457306i 0.440464 0.897770i \(-0.354814\pi\)
−0.897770 + 0.440464i \(0.854814\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.85971i 0.290702i
\(732\) 0 0
\(733\) 23.9129 23.9129i 0.883242 0.883242i −0.110620 0.993863i \(-0.535284\pi\)
0.993863 + 0.110620i \(0.0352838\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.52259 + 4.52259i −0.166592 + 0.166592i
\(738\) 0 0
\(739\) 11.4174i 0.419997i −0.977702 0.209998i \(-0.932654\pi\)
0.977702 0.209998i \(-0.0673459\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −19.8656 19.8656i −0.728799 0.728799i 0.241582 0.970380i \(-0.422334\pi\)
−0.970380 + 0.241582i \(0.922334\pi\)
\(744\) 0 0
\(745\) 21.9564 14.3739i 0.804422 0.526618i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 48.5067 1.77240
\(750\) 0 0
\(751\) 15.0000 0.547358 0.273679 0.961821i \(-0.411759\pi\)
0.273679 + 0.961821i \(0.411759\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −32.1131 + 21.0229i −1.16871 + 0.765103i
\(756\) 0 0
\(757\) 15.0000 + 15.0000i 0.545184 + 0.545184i 0.925044 0.379860i \(-0.124028\pi\)
−0.379860 + 0.925044i \(0.624028\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.1523i 1.05677i 0.849005 + 0.528386i \(0.177202\pi\)
−0.849005 + 0.528386i \(0.822798\pi\)
\(762\) 0 0
\(763\) 28.2087 28.2087i 1.02122 1.02122i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 48.8831 48.8831i 1.76507 1.76507i
\(768\) 0 0
\(769\) 23.0000i 0.829401i 0.909958 + 0.414701i \(0.136114\pi\)
−0.909958 + 0.414701i \(0.863886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25.6129 + 25.6129i 0.921233 + 0.921233i 0.997117 0.0758833i \(-0.0241776\pi\)
−0.0758833 + 0.997117i \(0.524178\pi\)
\(774\) 0 0
\(775\) −1.16515 + 2.66970i −0.0418535 + 0.0958984i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 27.9950 1.00303
\(780\) 0 0
\(781\) 9.25227 0.331072
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.2250 2.34279i −0.400636 0.0836177i
\(786\) 0 0
\(787\) −28.7042 28.7042i −1.02319 1.02319i −0.999725 0.0234684i \(-0.992529\pi\)
−0.0234684 0.999725i \(-0.507471\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18.0341i 0.641217i
\(792\) 0 0
\(793\) 23.3739 23.3739i 0.830030 0.830030i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.0849 29.0849i 1.03024 1.03024i 0.0307120 0.999528i \(-0.490223\pi\)
0.999528 0.0307120i \(-0.00977747\pi\)
\(798\) 0 0
\(799\) 19.2523i 0.681096i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.780929 + 0.780929i 0.0275584 + 0.0275584i
\(804\) 0 0
\(805\) 8.20871 + 12.5390i 0.289319 + 0.441942i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.8379 −1.40063 −0.700313 0.713836i \(-0.746956\pi\)
−0.700313 + 0.713836i \(0.746956\pi\)
\(810\) 0 0
\(811\) −16.3303 −0.573434 −0.286717 0.958015i \(-0.592564\pi\)
−0.286717 + 0.958015i \(0.592564\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.54506 + 26.5680i −0.194235 + 0.930636i
\(816\) 0 0
\(817\) 5.20871 + 5.20871i 0.182230 + 0.182230i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.91033i 0.310973i −0.987838 0.155486i \(-0.950306\pi\)
0.987838 0.155486i \(-0.0496944\pi\)
\(822\) 0 0
\(823\) −11.1216 + 11.1216i −0.387674 + 0.387674i −0.873857 0.486183i \(-0.838389\pi\)
0.486183 + 0.873857i \(0.338389\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.16300 3.16300i 0.109988 0.109988i −0.649971 0.759959i \(-0.725219\pi\)
0.759959 + 0.649971i \(0.225219\pi\)
\(828\) 0 0
\(829\) 33.0780i 1.14885i −0.818558 0.574424i \(-0.805226\pi\)
0.818558 0.574424i \(-0.194774\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.89331 + 2.89331i 0.100247 + 0.100247i
\(834\) 0 0
\(835\) −4.37386 + 20.9564i −0.151364 + 0.725227i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 44.3605 1.53149 0.765747 0.643141i \(-0.222369\pi\)
0.765747 + 0.643141i \(0.222369\pi\)
\(840\) 0 0
\(841\) 34.9129 1.20389
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.2869 29.4613i −0.663491 1.01350i
\(846\) 0 0
\(847\) −18.9564 18.9564i −0.651351 0.651351i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2250i 0.384787i
\(852\) 0 0
\(853\) 16.3303 16.3303i 0.559139 0.559139i −0.369923 0.929062i \(-0.620616\pi\)
0.929062 + 0.369923i \(0.120616\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.59001 4.59001i 0.156792 0.156792i −0.624352 0.781143i \(-0.714637\pi\)
0.781143 + 0.624352i \(0.214637\pi\)
\(858\) 0 0
\(859\) 44.9129i 1.53241i −0.642598 0.766204i \(-0.722143\pi\)
0.642598 0.766204i \(-0.277857\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.1800 12.1800i −0.414613 0.414613i 0.468729 0.883342i \(-0.344712\pi\)
−0.883342 + 0.468729i \(0.844712\pi\)
\(864\) 0 0
\(865\) −42.1216 8.79129i −1.43218 0.298913i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.98320 0.135121
\(870\) 0 0
\(871\) −53.0780 −1.79848
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.3936 + 23.0960i −0.554206 + 0.780788i
\(876\) 0 0
\(877\) 17.2087 + 17.2087i 0.581097 + 0.581097i 0.935205 0.354108i \(-0.115215\pi\)
−0.354108 + 0.935205i \(0.615215\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.3319i 0.617617i 0.951124 + 0.308809i \(0.0999303\pi\)
−0.951124 + 0.308809i \(0.900070\pi\)
\(882\) 0 0
\(883\) −17.7913 + 17.7913i −0.598725 + 0.598725i −0.939973 0.341249i \(-0.889150\pi\)
0.341249 + 0.939973i \(0.389150\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −32.0456 + 32.0456i −1.07599 + 1.07599i −0.0791222 + 0.996865i \(0.525212\pi\)
−0.996865 + 0.0791222i \(0.974788\pi\)
\(888\) 0 0
\(889\) 23.5826i 0.790934i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −12.7587 12.7587i −0.426953 0.426953i
\(894\) 0 0
\(895\) 46.3303 30.3303i 1.54865 1.01383i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.65743 −0.155334
\(900\) 0 0
\(901\) 54.4083 1.81260
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10.1351 + 6.63496i −0.336901 + 0.220554i
\(906\) 0 0
\(907\) −18.7477 18.7477i −0.622508 0.622508i 0.323664 0.946172i \(-0.395085\pi\)
−0.946172 + 0.323664i \(0.895085\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.01703i 0.298748i 0.988781 + 0.149374i \(0.0477258\pi\)
−0.988781 + 0.149374i \(0.952274\pi\)
\(912\) 0 0
\(913\) 0.791288 0.791288i 0.0261878 0.0261878i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.7925 + 17.7925i −0.587561 + 0.587561i
\(918\) 0 0
\(919\) 16.0000i 0.527791i −0.964551 0.263896i \(-0.914993\pi\)
0.964551 0.263896i \(-0.0850075\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 54.2933 + 54.2933i 1.78709 + 1.78709i
\(924\) 0 0
\(925\) 19.7477 7.74773i 0.649301 0.254744i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −21.8039 −0.715361 −0.357681 0.933844i \(-0.616432\pi\)
−0.357681 + 0.933844i \(0.616432\pi\)
\(930\) 0 0
\(931\) −3.83485 −0.125682
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.93280 + 2.07310i 0.324837 + 0.0677975i
\(936\) 0 0
\(937\) 27.0780 + 27.0780i 0.884601 + 0.884601i 0.993998 0.109397i \(-0.0348921\pi\)
−0.109397 + 0.993998i \(0.534892\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 28.7759i 0.938069i −0.883180 0.469034i \(-0.844602\pi\)
0.883180 0.469034i \(-0.155398\pi\)
\(942\) 0 0
\(943\) 7.95644 7.95644i 0.259097 0.259097i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.7644 14.7644i 0.479777 0.479777i −0.425283 0.905060i \(-0.639825\pi\)
0.905060 + 0.425283i \(0.139825\pi\)
\(948\) 0 0
\(949\) 9.16515i 0.297513i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.5342 21.5342i −0.697560 0.697560i 0.266324 0.963884i \(-0.414191\pi\)
−0.963884 + 0.266324i \(0.914191\pi\)
\(954\) 0 0
\(955\) −4.58258 7.00000i −0.148289 0.226515i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.38774 0.141688
\(960\) 0 0
\(961\) −30.6606 −0.989052
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 10.2025 48.8831i 0.328430 1.57360i
\(966\) 0 0
\(967\) −0.252273 0.252273i −0.00811255 0.00811255i 0.703039 0.711151i \(-0.251826\pi\)
−0.711151 + 0.703039i \(0.751826\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.6073i 0.757593i 0.925480 + 0.378797i \(0.123662\pi\)
−0.925480 + 0.378797i \(0.876338\pi\)
\(972\) 0 0
\(973\) 20.0000 20.0000i 0.641171 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.02248 1.02248i 0.0327119 0.0327119i −0.690562 0.723274i \(-0.742637\pi\)
0.723274 + 0.690562i \(0.242637\pi\)
\(978\) 0 0
\(979\) 6.08712i 0.194545i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.30352 + 8.30352i 0.264841 + 0.264841i 0.827017 0.562176i \(-0.190036\pi\)
−0.562176 + 0.827017i \(0.690036\pi\)
\(984\) 0 0
\(985\) 3.95644 18.9564i 0.126063 0.604002i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.96073 0.0941457
\(990\) 0 0
\(991\) 13.0000 0.412959 0.206479 0.978451i \(-0.433799\pi\)
0.206479 + 0.978451i \(0.433799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −16.6352 25.4107i −0.527371 0.805572i
\(996\) 0 0
\(997\) −10.0436 10.0436i −0.318083 0.318083i 0.529948 0.848030i \(-0.322212\pi\)
−0.848030 + 0.529948i \(0.822212\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.j.b.377.3 yes 8
3.2 odd 2 inner 540.2.j.b.377.2 yes 8
4.3 odd 2 2160.2.w.c.1457.3 8
5.2 odd 4 2700.2.j.i.593.3 8
5.3 odd 4 inner 540.2.j.b.53.1 8
5.4 even 2 2700.2.j.i.1457.3 8
9.2 odd 6 1620.2.x.c.377.2 16
9.4 even 3 1620.2.x.c.917.1 16
9.5 odd 6 1620.2.x.c.917.4 16
9.7 even 3 1620.2.x.c.377.3 16
12.11 even 2 2160.2.w.c.1457.2 8
15.2 even 4 2700.2.j.i.593.4 8
15.8 even 4 inner 540.2.j.b.53.4 yes 8
15.14 odd 2 2700.2.j.i.1457.4 8
20.3 even 4 2160.2.w.c.593.1 8
45.13 odd 12 1620.2.x.c.593.2 16
45.23 even 12 1620.2.x.c.593.3 16
45.38 even 12 1620.2.x.c.53.1 16
45.43 odd 12 1620.2.x.c.53.4 16
60.23 odd 4 2160.2.w.c.593.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.2.j.b.53.1 8 5.3 odd 4 inner
540.2.j.b.53.4 yes 8 15.8 even 4 inner
540.2.j.b.377.2 yes 8 3.2 odd 2 inner
540.2.j.b.377.3 yes 8 1.1 even 1 trivial
1620.2.x.c.53.1 16 45.38 even 12
1620.2.x.c.53.4 16 45.43 odd 12
1620.2.x.c.377.2 16 9.2 odd 6
1620.2.x.c.377.3 16 9.7 even 3
1620.2.x.c.593.2 16 45.13 odd 12
1620.2.x.c.593.3 16 45.23 even 12
1620.2.x.c.917.1 16 9.4 even 3
1620.2.x.c.917.4 16 9.5 odd 6
2160.2.w.c.593.1 8 20.3 even 4
2160.2.w.c.593.4 8 60.23 odd 4
2160.2.w.c.1457.2 8 12.11 even 2
2160.2.w.c.1457.3 8 4.3 odd 2
2700.2.j.i.593.3 8 5.2 odd 4
2700.2.j.i.593.4 8 15.2 even 4
2700.2.j.i.1457.3 8 5.4 even 2
2700.2.j.i.1457.4 8 15.14 odd 2