Properties

Label 1620.2.x.c.593.3
Level $1620$
Weight $2$
Character 1620.593
Analytic conductor $12.936$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1620,2,Mod(53,1620)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1620, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1620.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1620 = 2^{2} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1620.x (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.9357651274\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: 16.0.162447943996702457856.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 540)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 593.3
Root \(-1.40721 - 0.140577i\) of defining polynomial
Character \(\chi\) \(=\) 1620.593
Dual form 1620.2.x.c.377.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.125246 - 2.23256i) q^{5} +(-0.655657 - 2.44694i) q^{7} +(-0.559525 - 0.323042i) q^{11} +(1.38771 - 5.17900i) q^{13} +(-4.96640 - 4.96640i) q^{17} +6.58258i q^{19} +(2.55560 + 0.684771i) q^{23} +(-4.96863 - 0.559237i) q^{25} +(-3.99728 + 6.92349i) q^{29} +(0.291288 + 0.504525i) q^{31} +(-5.54506 + 1.15732i) q^{35} +(3.00000 - 3.00000i) q^{37} +(-3.68312 + 2.12645i) q^{41} +(1.08092 - 0.289631i) q^{43} +(-2.64770 + 0.709449i) q^{47} +(0.504525 - 0.291288i) q^{49} +(-5.47764 + 5.47764i) q^{53} +(-0.791288 + 1.20871i) q^{55} +(-6.44677 - 11.1661i) q^{59} +(-3.08258 + 5.33918i) q^{61} +(-11.3886 - 3.74678i) q^{65} +(9.56218 + 2.56218i) q^{67} -14.3205i q^{71} +(-1.20871 - 1.20871i) q^{73} +(-0.423609 + 1.58093i) q^{77} +(5.33918 + 3.08258i) q^{79} +(0.448288 + 1.67303i) q^{83} +(-11.7098 + 10.4658i) q^{85} -9.42157 q^{89} -13.5826 q^{91} +(14.6960 + 0.824440i) q^{95} +(2.77542 + 10.3580i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} - 12 q^{13} - 16 q^{25} - 32 q^{31} + 48 q^{37} - 12 q^{43} + 24 q^{55} + 24 q^{61} + 56 q^{67} - 56 q^{73} + 44 q^{85} - 144 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1620\mathbb{Z}\right)^\times\).

\(n\) \(811\) \(1297\) \(1541\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.125246 2.23256i 0.0560116 0.998430i
\(6\) 0 0
\(7\) −0.655657 2.44694i −0.247815 0.924858i −0.971948 0.235197i \(-0.924426\pi\)
0.724133 0.689661i \(-0.242240\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.559525 0.323042i −0.168703 0.0974008i 0.413271 0.910608i \(-0.364386\pi\)
−0.581974 + 0.813207i \(0.697720\pi\)
\(12\) 0 0
\(13\) 1.38771 5.17900i 0.384881 1.43639i −0.453474 0.891270i \(-0.649815\pi\)
0.838355 0.545125i \(-0.183518\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.96640 4.96640i −1.20453 1.20453i −0.972774 0.231755i \(-0.925553\pi\)
−0.231755 0.972774i \(-0.574447\pi\)
\(18\) 0 0
\(19\) 6.58258i 1.51015i 0.655640 + 0.755073i \(0.272399\pi\)
−0.655640 + 0.755073i \(0.727601\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.55560 + 0.684771i 0.532879 + 0.142785i 0.515218 0.857059i \(-0.327711\pi\)
0.0176618 + 0.999844i \(0.494378\pi\)
\(24\) 0 0
\(25\) −4.96863 0.559237i −0.993725 0.111847i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.99728 + 6.92349i −0.742276 + 1.28566i 0.209181 + 0.977877i \(0.432920\pi\)
−0.951457 + 0.307782i \(0.900413\pi\)
\(30\) 0 0
\(31\) 0.291288 + 0.504525i 0.0523168 + 0.0906154i 0.890998 0.454008i \(-0.150006\pi\)
−0.838681 + 0.544623i \(0.816673\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.54506 + 1.15732i −0.937287 + 0.195623i
\(36\) 0 0
\(37\) 3.00000 3.00000i 0.493197 0.493197i −0.416115 0.909312i \(-0.636609\pi\)
0.909312 + 0.416115i \(0.136609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.68312 + 2.12645i −0.575206 + 0.332095i −0.759226 0.650827i \(-0.774422\pi\)
0.184020 + 0.982923i \(0.441089\pi\)
\(42\) 0 0
\(43\) 1.08092 0.289631i 0.164839 0.0441684i −0.175456 0.984487i \(-0.556140\pi\)
0.340294 + 0.940319i \(0.389473\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.64770 + 0.709449i −0.386207 + 0.103484i −0.446698 0.894685i \(-0.647400\pi\)
0.0604909 + 0.998169i \(0.480733\pi\)
\(48\) 0 0
\(49\) 0.504525 0.291288i 0.0720751 0.0416125i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.47764 + 5.47764i −0.752412 + 0.752412i −0.974929 0.222517i \(-0.928573\pi\)
0.222517 + 0.974929i \(0.428573\pi\)
\(54\) 0 0
\(55\) −0.791288 + 1.20871i −0.106697 + 0.162983i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −6.44677 11.1661i −0.839297 1.45371i −0.890483 0.455017i \(-0.849633\pi\)
0.0511854 0.998689i \(-0.483700\pi\)
\(60\) 0 0
\(61\) −3.08258 + 5.33918i −0.394683 + 0.683612i −0.993061 0.117603i \(-0.962479\pi\)
0.598377 + 0.801214i \(0.295812\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −11.3886 3.74678i −1.41258 0.464731i
\(66\) 0 0
\(67\) 9.56218 + 2.56218i 1.16821 + 0.313020i 0.790239 0.612799i \(-0.209957\pi\)
0.377967 + 0.925819i \(0.376623\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.3205i 1.69954i −0.527157 0.849768i \(-0.676742\pi\)
0.527157 0.849768i \(-0.323258\pi\)
\(72\) 0 0
\(73\) −1.20871 1.20871i −0.141469 0.141469i 0.632825 0.774294i \(-0.281895\pi\)
−0.774294 + 0.632825i \(0.781895\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.423609 + 1.58093i −0.0482748 + 0.180164i
\(78\) 0 0
\(79\) 5.33918 + 3.08258i 0.600704 + 0.346817i 0.769319 0.638865i \(-0.220596\pi\)
−0.168614 + 0.985682i \(0.553929\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.448288 + 1.67303i 0.0492060 + 0.183639i 0.986155 0.165827i \(-0.0530295\pi\)
−0.936949 + 0.349467i \(0.886363\pi\)
\(84\) 0 0
\(85\) −11.7098 + 10.4658i −1.27011 + 1.13517i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.42157 −0.998684 −0.499342 0.866405i \(-0.666425\pi\)
−0.499342 + 0.866405i \(0.666425\pi\)
\(90\) 0 0
\(91\) −13.5826 −1.42384
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 14.6960 + 0.824440i 1.50778 + 0.0845858i
\(96\) 0 0
\(97\) 2.77542 + 10.3580i 0.281801 + 1.05169i 0.951146 + 0.308743i \(0.0999082\pi\)
−0.669345 + 0.742952i \(0.733425\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.36623 + 4.25290i 0.732967 + 0.423179i 0.819507 0.573069i \(-0.194247\pi\)
−0.0865394 + 0.996248i \(0.527581\pi\)
\(102\) 0 0
\(103\) −1.31131 + 4.89389i −0.129208 + 0.482209i −0.999955 0.00952189i \(-0.996969\pi\)
0.870747 + 0.491731i \(0.163636\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13.5396 13.5396i −1.30892 1.30892i −0.922192 0.386732i \(-0.873604\pi\)
−0.386732 0.922192i \(-0.626396\pi\)
\(108\) 0 0
\(109\) 15.7477i 1.50836i −0.656668 0.754179i \(-0.728035\pi\)
0.656668 0.754179i \(-0.271965\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.87633 1.84251i −0.646871 0.173329i −0.0795572 0.996830i \(-0.525351\pi\)
−0.567314 + 0.823502i \(0.692017\pi\)
\(114\) 0 0
\(115\) 1.84887 5.61976i 0.172408 0.524045i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.89626 + 15.4088i −0.815518 + 1.41252i
\(120\) 0 0
\(121\) −5.29129 9.16478i −0.481026 0.833162i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.87083 + 11.0227i −0.167332 + 0.985901i
\(126\) 0 0
\(127\) 6.58258 6.58258i 0.584109 0.584109i −0.351921 0.936030i \(-0.614471\pi\)
0.936030 + 0.351921i \(0.114471\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.60206 4.96640i 0.751566 0.433917i −0.0746937 0.997207i \(-0.523798\pi\)
0.826259 + 0.563290i \(0.190465\pi\)
\(132\) 0 0
\(133\) 16.1072 4.31591i 1.39667 0.374237i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.67303 0.448288i 0.142937 0.0382998i −0.186641 0.982428i \(-0.559760\pi\)
0.329578 + 0.944128i \(0.393094\pi\)
\(138\) 0 0
\(139\) −9.66930 + 5.58258i −0.820140 + 0.473508i −0.850465 0.526032i \(-0.823679\pi\)
0.0303249 + 0.999540i \(0.490346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.44949 + 2.44949i −0.204837 + 0.204837i
\(144\) 0 0
\(145\) 14.9564 + 9.79129i 1.24206 + 0.813122i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.86811 10.1639i −0.480734 0.832656i 0.519022 0.854761i \(-0.326296\pi\)
−0.999756 + 0.0221055i \(0.992963\pi\)
\(150\) 0 0
\(151\) 8.58258 14.8655i 0.698440 1.20973i −0.270567 0.962701i \(-0.587211\pi\)
0.969007 0.247033i \(-0.0794555\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.16286 0.587127i 0.0934035 0.0471592i
\(156\) 0 0
\(157\) 4.95339 + 1.32726i 0.395324 + 0.105927i 0.451004 0.892522i \(-0.351066\pi\)
−0.0556801 + 0.998449i \(0.517733\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.70239i 0.528222i
\(162\) 0 0
\(163\) −8.58258 8.58258i −0.672239 0.672239i 0.285993 0.958232i \(-0.407677\pi\)
−0.958232 + 0.285993i \(0.907677\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.47792 + 9.24773i −0.191747 + 0.715611i 0.801338 + 0.598212i \(0.204122\pi\)
−0.993085 + 0.117398i \(0.962545\pi\)
\(168\) 0 0
\(169\) −13.6379 7.87386i −1.04907 0.605682i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.98052 18.5876i −0.378662 1.41319i −0.847920 0.530125i \(-0.822145\pi\)
0.469258 0.883061i \(-0.344522\pi\)
\(174\) 0 0
\(175\) 1.88929 + 12.5246i 0.142817 + 0.946773i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 24.7646 1.85099 0.925496 0.378757i \(-0.123648\pi\)
0.925496 + 0.378757i \(0.123648\pi\)
\(180\) 0 0
\(181\) −5.41742 −0.402674 −0.201337 0.979522i \(-0.564529\pi\)
−0.201337 + 0.979522i \(0.564529\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.32194 7.07341i −0.464798 0.520047i
\(186\) 0 0
\(187\) 1.17447 + 4.38318i 0.0858858 + 0.320530i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.24037 1.87083i −0.234465 0.135368i 0.378165 0.925738i \(-0.376555\pi\)
−0.612630 + 0.790370i \(0.709888\pi\)
\(192\) 0 0
\(193\) 5.78001 21.5713i 0.416054 1.55274i −0.366660 0.930355i \(-0.619499\pi\)
0.782714 0.622381i \(-0.213835\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.12372 + 6.12372i 0.436297 + 0.436297i 0.890764 0.454467i \(-0.150170\pi\)
−0.454467 + 0.890764i \(0.650170\pi\)
\(198\) 0 0
\(199\) 13.5826i 0.962843i 0.876489 + 0.481422i \(0.159879\pi\)
−0.876489 + 0.481422i \(0.840121\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 19.5622 + 5.24168i 1.37300 + 0.367894i
\(204\) 0 0
\(205\) 4.28612 + 8.48910i 0.299356 + 0.592904i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.12645 3.68312i 0.147089 0.254766i
\(210\) 0 0
\(211\) −13.0826 22.6597i −0.900642 1.55996i −0.826663 0.562697i \(-0.809764\pi\)
−0.0739786 0.997260i \(-0.523570\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.511238 2.44949i −0.0348662 0.167054i
\(216\) 0 0
\(217\) 1.04356 1.04356i 0.0708415 0.0708415i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −32.6129 + 18.8291i −2.19378 + 1.26658i
\(222\) 0 0
\(223\) −16.6179 + 4.45275i −1.11282 + 0.298178i −0.767974 0.640482i \(-0.778735\pi\)
−0.344844 + 0.938660i \(0.612068\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.2353 5.68997i 1.40943 0.377657i 0.527711 0.849424i \(-0.323050\pi\)
0.881723 + 0.471767i \(0.156384\pi\)
\(228\) 0 0
\(229\) −12.9904 + 7.50000i −0.858429 + 0.495614i −0.863486 0.504373i \(-0.831724\pi\)
0.00505719 + 0.999987i \(0.498390\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.38774 + 4.38774i −0.287450 + 0.287450i −0.836071 0.548621i \(-0.815153\pi\)
0.548621 + 0.836071i \(0.315153\pi\)
\(234\) 0 0
\(235\) 1.25227 + 6.00000i 0.0816893 + 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.55074 + 13.0783i 0.488417 + 0.845962i 0.999911 0.0133241i \(-0.00424132\pi\)
−0.511495 + 0.859286i \(0.670908\pi\)
\(240\) 0 0
\(241\) 1.87386 3.24563i 0.120706 0.209069i −0.799340 0.600879i \(-0.794817\pi\)
0.920046 + 0.391810i \(0.128151\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.587127 1.16286i −0.0375102 0.0742927i
\(246\) 0 0
\(247\) 34.0911 + 9.13469i 2.16917 + 0.581226i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.3489i 1.72625i 0.504991 + 0.863124i \(0.331496\pi\)
−0.504991 + 0.863124i \(0.668504\pi\)
\(252\) 0 0
\(253\) −1.20871 1.20871i −0.0759911 0.0759911i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.684771 + 2.55560i −0.0427148 + 0.159414i −0.983989 0.178229i \(-0.942963\pi\)
0.941274 + 0.337643i \(0.109630\pi\)
\(258\) 0 0
\(259\) −9.30780 5.37386i −0.578359 0.333916i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.13826 + 22.9083i 0.378501 + 1.41259i 0.848161 + 0.529738i \(0.177710\pi\)
−0.469660 + 0.882847i \(0.655623\pi\)
\(264\) 0 0
\(265\) 11.5431 + 12.9152i 0.709087 + 0.793374i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.8318 0.904310 0.452155 0.891939i \(-0.350655\pi\)
0.452155 + 0.891939i \(0.350655\pi\)
\(270\) 0 0
\(271\) 13.7477 0.835115 0.417557 0.908651i \(-0.362886\pi\)
0.417557 + 0.908651i \(0.362886\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.59941 + 1.91798i 0.156751 + 0.115659i
\(276\) 0 0
\(277\) 0.289631 + 1.08092i 0.0174023 + 0.0649461i 0.974081 0.226200i \(-0.0726302\pi\)
−0.956679 + 0.291146i \(0.905964\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −0.442745 0.255619i −0.0264120 0.0152490i 0.486736 0.873549i \(-0.338187\pi\)
−0.513148 + 0.858300i \(0.671521\pi\)
\(282\) 0 0
\(283\) 5.41399 20.2053i 0.321828 1.20108i −0.595634 0.803256i \(-0.703099\pi\)
0.917462 0.397823i \(-0.130234\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.61816 + 7.61816i 0.449686 + 0.449686i
\(288\) 0 0
\(289\) 32.3303i 1.90178i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.37140 + 0.635414i 0.138538 + 0.0371213i 0.327422 0.944878i \(-0.393820\pi\)
−0.188883 + 0.982000i \(0.560487\pi\)
\(294\) 0 0
\(295\) −25.7365 + 12.9943i −1.49843 + 0.756555i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.09285 12.2852i 0.410190 0.710470i
\(300\) 0 0
\(301\) −1.41742 2.45505i −0.0816990 0.141507i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.5339 + 7.55074i 0.660432 + 0.432354i
\(306\) 0 0
\(307\) 15.0000 15.0000i 0.856095 0.856095i −0.134780 0.990876i \(-0.543033\pi\)
0.990876 + 0.134780i \(0.0430329\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 22.7750 13.1492i 1.29145 0.745620i 0.312540 0.949905i \(-0.398820\pi\)
0.978912 + 0.204285i \(0.0654868\pi\)
\(312\) 0 0
\(313\) −12.5198 + 3.35468i −0.707663 + 0.189618i −0.594660 0.803977i \(-0.702713\pi\)
−0.113002 + 0.993595i \(0.536047\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.67303 0.448288i 0.0939669 0.0251783i −0.211529 0.977372i \(-0.567844\pi\)
0.305496 + 0.952193i \(0.401178\pi\)
\(318\) 0 0
\(319\) 4.47315 2.58258i 0.250448 0.144596i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 32.6917 32.6917i 1.81902 1.81902i
\(324\) 0 0
\(325\) −9.79129 + 24.9564i −0.543123 + 1.38433i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.47197 + 6.01362i 0.191416 + 0.331542i
\(330\) 0 0
\(331\) 4.79129 8.29875i 0.263353 0.456141i −0.703778 0.710420i \(-0.748505\pi\)
0.967131 + 0.254279i \(0.0818383\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.91783 21.0272i 0.377962 1.14884i
\(336\) 0 0
\(337\) 25.8950 + 6.93854i 1.41059 + 0.377966i 0.882135 0.470996i \(-0.156105\pi\)
0.528454 + 0.848962i \(0.322772\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.376393i 0.0203828i
\(342\) 0 0
\(343\) −13.5826 13.5826i −0.733390 0.733390i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.11334 11.6191i 0.167133 0.623747i −0.830626 0.556831i \(-0.812017\pi\)
0.997759 0.0669166i \(-0.0213162\pi\)
\(348\) 0 0
\(349\) −0.218475 0.126136i −0.0116947 0.00675193i 0.494141 0.869382i \(-0.335483\pi\)
−0.505836 + 0.862630i \(0.668816\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.58630 13.3843i −0.190880 0.712372i −0.993295 0.115607i \(-0.963119\pi\)
0.802415 0.596766i \(-0.203548\pi\)
\(354\) 0 0
\(355\) −31.9714 1.79359i −1.69687 0.0951938i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −0.134846 −0.00711688 −0.00355844 0.999994i \(-0.501133\pi\)
−0.00355844 + 0.999994i \(0.501133\pi\)
\(360\) 0 0
\(361\) −24.3303 −1.28054
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.84991 + 2.54713i −0.149171 + 0.133323i
\(366\) 0 0
\(367\) 6.51206 + 24.3034i 0.339927 + 1.26862i 0.898428 + 0.439121i \(0.144710\pi\)
−0.558501 + 0.829504i \(0.688623\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.9949 + 9.81203i 0.882333 + 0.509415i
\(372\) 0 0
\(373\) −2.46984 + 9.21757i −0.127883 + 0.477268i −0.999926 0.0121625i \(-0.996128\pi\)
0.872043 + 0.489430i \(0.162795\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 30.3097 + 30.3097i 1.56103 + 1.56103i
\(378\) 0 0
\(379\) 1.00000i 0.0513665i −0.999670 0.0256833i \(-0.991824\pi\)
0.999670 0.0256833i \(-0.00817614\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −23.6988 6.35006i −1.21095 0.324473i −0.403815 0.914840i \(-0.632316\pi\)
−0.807135 + 0.590367i \(0.798983\pi\)
\(384\) 0 0
\(385\) 3.47647 + 1.14374i 0.177177 + 0.0582902i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.5426 33.8487i 0.990847 1.71620i 0.378522 0.925592i \(-0.376432\pi\)
0.612325 0.790606i \(-0.290234\pi\)
\(390\) 0 0
\(391\) −9.29129 16.0930i −0.469881 0.813857i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.55074 11.5339i 0.379919 0.580336i
\(396\) 0 0
\(397\) 16.9564 16.9564i 0.851019 0.851019i −0.139239 0.990259i \(-0.544466\pi\)
0.990259 + 0.139239i \(0.0444658\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.12132 + 1.22474i −0.105934 + 0.0611608i −0.552031 0.833824i \(-0.686147\pi\)
0.446097 + 0.894985i \(0.352814\pi\)
\(402\) 0 0
\(403\) 3.01716 0.808445i 0.150295 0.0402715i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.64770 + 0.709449i −0.131242 + 0.0351661i
\(408\) 0 0
\(409\) −10.5353 + 6.08258i −0.520939 + 0.300764i −0.737319 0.675545i \(-0.763908\pi\)
0.216380 + 0.976309i \(0.430575\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −23.0960 + 23.0960i −1.13648 + 1.13648i
\(414\) 0 0
\(415\) 3.79129 0.791288i 0.186107 0.0388428i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 7.80636 + 13.5210i 0.381365 + 0.660544i 0.991258 0.131940i \(-0.0421206\pi\)
−0.609892 + 0.792484i \(0.708787\pi\)
\(420\) 0 0
\(421\) 5.70871 9.88778i 0.278226 0.481901i −0.692718 0.721208i \(-0.743587\pi\)
0.970944 + 0.239307i \(0.0769204\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 21.8988 + 27.4536i 1.06225 + 1.33170i
\(426\) 0 0
\(427\) 15.0858 + 4.04222i 0.730052 + 0.195617i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5.67991i 0.273592i −0.990599 0.136796i \(-0.956320\pi\)
0.990599 0.136796i \(-0.0436804\pi\)
\(432\) 0 0
\(433\) 5.79129 + 5.79129i 0.278312 + 0.278312i 0.832435 0.554123i \(-0.186946\pi\)
−0.554123 + 0.832435i \(0.686946\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.50756 + 16.8224i −0.215626 + 0.804726i
\(438\) 0 0
\(439\) 22.6597 + 13.0826i 1.08149 + 0.624397i 0.931297 0.364260i \(-0.118678\pi\)
0.150190 + 0.988657i \(0.452011\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.84746 14.3589i −0.182799 0.682213i −0.995091 0.0989632i \(-0.968447\pi\)
0.812293 0.583250i \(-0.198219\pi\)
\(444\) 0 0
\(445\) −1.18001 + 21.0342i −0.0559379 + 0.997116i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.6238 −0.595756 −0.297878 0.954604i \(-0.596279\pi\)
−0.297878 + 0.954604i \(0.596279\pi\)
\(450\) 0 0
\(451\) 2.74773 0.129385
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.70116 + 30.3239i −0.0797517 + 1.42161i
\(456\) 0 0
\(457\) −8.32625 31.0740i −0.389485 1.45358i −0.830973 0.556312i \(-0.812216\pi\)
0.441488 0.897267i \(-0.354451\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.24037 + 1.87083i 0.150919 + 0.0871332i 0.573558 0.819165i \(-0.305563\pi\)
−0.422639 + 0.906298i \(0.638896\pi\)
\(462\) 0 0
\(463\) 1.37176 5.11949i 0.0637512 0.237923i −0.926697 0.375810i \(-0.877364\pi\)
0.990448 + 0.137887i \(0.0440312\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.5678 + 16.5678i 0.766665 + 0.766665i 0.977518 0.210853i \(-0.0676241\pi\)
−0.210853 + 0.977518i \(0.567624\pi\)
\(468\) 0 0
\(469\) 25.0780i 1.15800i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −0.698364 0.187126i −0.0321108 0.00860407i
\(474\) 0 0
\(475\) 3.68122 32.7064i 0.168906 1.50067i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.64903 + 11.5165i −0.303802 + 0.526201i −0.976994 0.213267i \(-0.931590\pi\)
0.673192 + 0.739468i \(0.264923\pi\)
\(480\) 0 0
\(481\) −11.3739 19.7001i −0.518604 0.898248i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23.4724 4.89898i 1.06583 0.222451i
\(486\) 0 0
\(487\) 8.37386 8.37386i 0.379456 0.379456i −0.491450 0.870906i \(-0.663533\pi\)
0.870906 + 0.491450i \(0.163533\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 23.5681 13.6070i 1.06361 0.614077i 0.137183 0.990546i \(-0.456195\pi\)
0.926429 + 0.376469i \(0.122862\pi\)
\(492\) 0 0
\(493\) 54.2369 14.5327i 2.44271 0.654521i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −35.0416 + 9.38936i −1.57183 + 0.421171i
\(498\) 0 0
\(499\) −16.0930 + 9.29129i −0.720421 + 0.415935i −0.814908 0.579591i \(-0.803212\pi\)
0.0944867 + 0.995526i \(0.469879\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.9610 12.9610i 0.577900 0.577900i −0.356424 0.934324i \(-0.616004\pi\)
0.934324 + 0.356424i \(0.116004\pi\)
\(504\) 0 0
\(505\) 10.4174 15.9129i 0.463569 0.708114i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.60681 + 6.24718i 0.159869 + 0.276901i 0.934821 0.355118i \(-0.115559\pi\)
−0.774952 + 0.632020i \(0.782226\pi\)
\(510\) 0 0
\(511\) −2.16515 + 3.75015i −0.0957807 + 0.165897i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.7617 + 3.54052i 0.474215 + 0.156014i
\(516\) 0 0
\(517\) 1.71064 + 0.458364i 0.0752337 + 0.0201588i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.4331i 1.15806i 0.815307 + 0.579029i \(0.196568\pi\)
−0.815307 + 0.579029i \(0.803432\pi\)
\(522\) 0 0
\(523\) −5.04356 5.04356i −0.220540 0.220540i 0.588186 0.808726i \(-0.299842\pi\)
−0.808726 + 0.588186i \(0.799842\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.05902 3.95233i 0.0461318 0.172166i
\(528\) 0 0
\(529\) −13.8564 8.00000i −0.602452 0.347826i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.90178 + 22.0257i 0.255634 + 0.954040i
\(534\) 0 0
\(535\) −31.9238 + 28.5322i −1.38018 + 1.23355i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.376393 −0.0162124
\(540\) 0 0
\(541\) −41.1652 −1.76983 −0.884914 0.465754i \(-0.845783\pi\)
−0.884914 + 0.465754i \(0.845783\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −35.1577 1.97234i −1.50599 0.0844856i
\(546\) 0 0
\(547\) 10.8120 + 40.3510i 0.462289 + 1.72529i 0.665724 + 0.746198i \(0.268123\pi\)
−0.203435 + 0.979088i \(0.565211\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −45.5744 26.3124i −1.94153 1.12094i
\(552\) 0 0
\(553\) 4.04222 15.0858i 0.171893 0.641513i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −13.6745 13.6745i −0.579406 0.579406i 0.355334 0.934739i \(-0.384367\pi\)
−0.934739 + 0.355334i \(0.884367\pi\)
\(558\) 0 0
\(559\) 6.00000i 0.253773i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.74279 1.27083i −0.199885 0.0535590i 0.157487 0.987521i \(-0.449661\pi\)
−0.357372 + 0.933962i \(0.616327\pi\)
\(564\) 0 0
\(565\) −4.97474 + 15.1210i −0.209289 + 0.636147i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.2447 28.1367i 0.681014 1.17955i −0.293657 0.955911i \(-0.594872\pi\)
0.974672 0.223641i \(-0.0717942\pi\)
\(570\) 0 0
\(571\) 7.45644 + 12.9149i 0.312042 + 0.540473i 0.978804 0.204798i \(-0.0656536\pi\)
−0.666762 + 0.745271i \(0.732320\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.3149 4.83156i −0.513566 0.201490i
\(576\) 0 0
\(577\) −4.37386 + 4.37386i −0.182086 + 0.182086i −0.792264 0.610178i \(-0.791098\pi\)
0.610178 + 0.792264i \(0.291098\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.79990 2.19387i 0.157646 0.0910171i
\(582\) 0 0
\(583\) 4.83438 1.29537i 0.200220 0.0536487i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.3909 8.14321i 1.25437 0.336106i 0.430345 0.902665i \(-0.358392\pi\)
0.824022 + 0.566558i \(0.191725\pi\)
\(588\) 0 0
\(589\) −3.32108 + 1.91742i −0.136843 + 0.0790061i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4.45516 4.45516i 0.182952 0.182952i −0.609689 0.792641i \(-0.708706\pi\)
0.792641 + 0.609689i \(0.208706\pi\)
\(594\) 0 0
\(595\) 33.2867 + 21.7913i 1.36462 + 0.893356i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.41294 + 2.44729i 0.0577312 + 0.0999934i 0.893447 0.449169i \(-0.148280\pi\)
−0.835715 + 0.549163i \(0.814947\pi\)
\(600\) 0 0
\(601\) −7.87386 + 13.6379i −0.321182 + 0.556303i −0.980732 0.195357i \(-0.937413\pi\)
0.659551 + 0.751660i \(0.270747\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −21.1236 + 10.6653i −0.858797 + 0.433604i
\(606\) 0 0
\(607\) −34.3167 9.19514i −1.39287 0.373219i −0.517093 0.855929i \(-0.672986\pi\)
−0.875780 + 0.482710i \(0.839653\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6969i 0.594574i
\(612\) 0 0
\(613\) −24.3303 24.3303i −0.982692 0.982692i 0.0171611 0.999853i \(-0.494537\pi\)
−0.999853 + 0.0171611i \(0.994537\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.51747 31.7876i 0.342900 1.27972i −0.552146 0.833748i \(-0.686191\pi\)
0.895046 0.445974i \(-0.147143\pi\)
\(618\) 0 0
\(619\) 9.30780 + 5.37386i 0.374112 + 0.215994i 0.675253 0.737586i \(-0.264034\pi\)
−0.301141 + 0.953580i \(0.597368\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.17731 + 23.0541i 0.247489 + 0.923641i
\(624\) 0 0
\(625\) 24.3745 + 5.55728i 0.974980 + 0.222291i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.7984 −1.18814
\(630\) 0 0
\(631\) −2.16515 −0.0861933 −0.0430967 0.999071i \(-0.513722\pi\)
−0.0430967 + 0.999071i \(0.513722\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13.8715 15.5204i −0.550475 0.615909i
\(636\) 0 0
\(637\) −0.808445 3.01716i −0.0320317 0.119544i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −0.233559 0.134846i −0.00922504 0.00532608i 0.495380 0.868676i \(-0.335029\pi\)
−0.504605 + 0.863350i \(0.668362\pi\)
\(642\) 0 0
\(643\) 3.12550 11.6645i 0.123258 0.460003i −0.876514 0.481376i \(-0.840137\pi\)
0.999772 + 0.0213729i \(0.00680372\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −17.4835 17.4835i −0.687349 0.687349i 0.274296 0.961645i \(-0.411555\pi\)
−0.961645 + 0.274296i \(0.911555\pi\)
\(648\) 0 0
\(649\) 8.33030i 0.326993i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.27007 1.68006i −0.245367 0.0657458i 0.134040 0.990976i \(-0.457205\pi\)
−0.379406 + 0.925230i \(0.623872\pi\)
\(654\) 0 0
\(655\) −10.0104 19.8266i −0.391139 0.774690i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.38502 14.5233i 0.326634 0.565747i −0.655208 0.755449i \(-0.727419\pi\)
0.981842 + 0.189702i \(0.0607523\pi\)
\(660\) 0 0
\(661\) 15.7477 + 27.2759i 0.612516 + 1.06091i 0.990815 + 0.135225i \(0.0431757\pi\)
−0.378299 + 0.925683i \(0.623491\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.61816 36.5008i −0.295420 1.41544i
\(666\) 0 0
\(667\) −14.9564 + 14.9564i −0.579116 + 0.579116i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3.44956 1.99160i 0.133169 0.0768850i
\(672\) 0 0
\(673\) 9.62168 2.57812i 0.370889 0.0993793i −0.0685601 0.997647i \(-0.521840\pi\)
0.439449 + 0.898268i \(0.355174\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.27306 + 2.21676i −0.317960 + 0.0851970i −0.414269 0.910154i \(-0.635963\pi\)
0.0963096 + 0.995351i \(0.469296\pi\)
\(678\) 0 0
\(679\) 23.5257 13.5826i 0.902834 0.521251i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.4497 + 12.4497i −0.476375 + 0.476375i −0.903970 0.427595i \(-0.859361\pi\)
0.427595 + 0.903970i \(0.359361\pi\)
\(684\) 0 0
\(685\) −0.791288 3.79129i −0.0302336 0.144858i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.7673 + 35.9700i 0.791172 + 1.37035i
\(690\) 0 0
\(691\) −19.8303 + 34.3471i −0.754380 + 1.30662i 0.191302 + 0.981531i \(0.438729\pi\)
−0.945682 + 0.325094i \(0.894604\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 11.2524 + 22.2865i 0.426827 + 0.845374i
\(696\) 0 0
\(697\) 28.8526 + 7.73104i 1.09287 + 0.292834i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.2141i 1.02786i −0.857832 0.513931i \(-0.828189\pi\)
0.857832 0.513931i \(-0.171811\pi\)
\(702\) 0 0
\(703\) 19.7477 + 19.7477i 0.744800 + 0.744800i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.57688 20.8132i 0.209740 0.782761i
\(708\) 0 0
\(709\) −22.5167 13.0000i −0.845631 0.488225i 0.0135434 0.999908i \(-0.495689\pi\)
−0.859174 + 0.511683i \(0.829022\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.398931 + 1.48883i 0.0149401 + 0.0557571i
\(714\) 0 0
\(715\) 5.16184 + 5.77542i 0.193042 + 0.215988i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −37.0120 −1.38032 −0.690158 0.723659i \(-0.742459\pi\)
−0.690158 + 0.723659i \(0.742459\pi\)
\(720\) 0 0
\(721\) 12.8348 0.477995
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 23.7328 32.1648i 0.881416 1.19457i
\(726\) 0 0
\(727\) −4.51320 16.8435i −0.167385 0.624691i −0.997724 0.0674316i \(-0.978520\pi\)
0.830338 0.557259i \(-0.188147\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.80671 3.92985i −0.251755 0.145351i
\(732\) 0 0
\(733\) 8.75272 32.6656i 0.323289 1.20653i −0.592731 0.805400i \(-0.701950\pi\)
0.916021 0.401131i \(-0.131383\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.52259 4.52259i −0.166592 0.166592i
\(738\) 0 0
\(739\) 11.4174i 0.419997i 0.977702 + 0.209998i \(0.0673459\pi\)
−0.977702 + 0.209998i \(0.932654\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.1369 + 7.27132i 0.995557 + 0.266759i 0.719583 0.694406i \(-0.244333\pi\)
0.275974 + 0.961165i \(0.411000\pi\)
\(744\) 0 0
\(745\) −23.4264 + 11.8279i −0.858275 + 0.433341i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −24.2534 + 42.0080i −0.886198 + 1.53494i
\(750\) 0 0
\(751\) −7.50000 12.9904i −0.273679 0.474026i 0.696122 0.717923i \(-0.254907\pi\)
−0.969801 + 0.243898i \(0.921574\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −32.1131 21.0229i −1.16871 0.765103i
\(756\) 0 0
\(757\) 15.0000 15.0000i 0.545184 0.545184i −0.379860 0.925044i \(-0.624028\pi\)
0.925044 + 0.379860i \(0.124028\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.2467 + 14.5762i −0.915191 + 0.528386i −0.882098 0.471067i \(-0.843869\pi\)
−0.0330931 + 0.999452i \(0.510536\pi\)
\(762\) 0 0
\(763\) −38.5338 + 10.3251i −1.39502 + 0.373794i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −66.7755 + 17.8925i −2.41113 + 0.646059i
\(768\) 0 0
\(769\) −19.9186 + 11.5000i −0.718283 + 0.414701i −0.814120 0.580696i \(-0.802780\pi\)
0.0958377 + 0.995397i \(0.469447\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 25.6129 25.6129i 0.921233 0.921233i −0.0758833 0.997117i \(-0.524178\pi\)
0.997117 + 0.0758833i \(0.0241776\pi\)
\(774\) 0 0
\(775\) −1.16515 2.66970i −0.0418535 0.0958984i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13.9975 24.2444i −0.501513 0.868645i
\(780\) 0 0
\(781\) −4.62614 + 8.01270i −0.165536 + 0.286717i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.58357 10.8925i 0.127903 0.388770i
\(786\) 0 0
\(787\) 39.2106 + 10.5065i 1.39771 + 0.374515i 0.877521 0.479538i \(-0.159196\pi\)
0.520187 + 0.854053i \(0.325862\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18.0341i 0.641217i
\(792\) 0 0
\(793\) 23.3739 + 23.3739i 0.830030 + 0.830030i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 10.6458 39.7307i 0.377094 1.40733i −0.473167 0.880973i \(-0.656889\pi\)
0.850261 0.526361i \(-0.176444\pi\)
\(798\) 0 0
\(799\) 16.6730 + 9.62614i 0.589847 + 0.340548i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.285840 + 1.06677i 0.0100871 + 0.0376455i
\(804\) 0 0
\(805\) −14.9635 0.839446i −0.527393 0.0295866i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39.8379 −1.40063 −0.700313 0.713836i \(-0.746956\pi\)
−0.700313 + 0.713836i \(0.746956\pi\)
\(810\) 0 0
\(811\) −16.3303 −0.573434 −0.286717 0.958015i \(-0.592564\pi\)
−0.286717 + 0.958015i \(0.592564\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −20.2360 + 18.0862i −0.708837 + 0.633531i
\(816\) 0 0
\(817\) 1.90652 + 7.11523i 0.0667007 + 0.248930i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.71657 4.45516i −0.269310 0.155486i 0.359264 0.933236i \(-0.383028\pi\)
−0.628574 + 0.777750i \(0.716361\pi\)
\(822\) 0 0
\(823\) −4.07078 + 15.1924i −0.141899 + 0.529573i 0.857975 + 0.513691i \(0.171722\pi\)
−0.999874 + 0.0158819i \(0.994944\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.16300 + 3.16300i 0.109988 + 0.109988i 0.759959 0.649971i \(-0.225219\pi\)
−0.649971 + 0.759959i \(0.725219\pi\)
\(828\) 0 0
\(829\) 33.0780i 1.14885i 0.818558 + 0.574424i \(0.194774\pi\)
−0.818558 + 0.574424i \(0.805226\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.95233 1.05902i −0.136940 0.0366930i
\(834\) 0 0
\(835\) 20.3357 + 6.69034i 0.703747 + 0.231529i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −22.1803 + 38.4173i −0.765747 + 1.32631i 0.174103 + 0.984727i \(0.444297\pi\)
−0.939851 + 0.341586i \(0.889036\pi\)
\(840\) 0 0
\(841\) −17.4564 30.2354i −0.601946 1.04260i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −19.2869 + 29.4613i −0.663491 + 1.01350i
\(846\) 0 0
\(847\) −18.9564 + 18.9564i −0.651351 + 0.651351i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9.72111 5.61249i 0.333235 0.192394i
\(852\) 0 0
\(853\) −22.3076 + 5.97731i −0.763798 + 0.204659i −0.619630 0.784894i \(-0.712717\pi\)
−0.144168 + 0.989553i \(0.546051\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.27007 + 1.68006i −0.214181 + 0.0573898i −0.364314 0.931276i \(-0.618697\pi\)
0.150133 + 0.988666i \(0.452030\pi\)
\(858\) 0 0
\(859\) 38.8957 22.4564i 1.32710 0.766204i 0.342253 0.939608i \(-0.388810\pi\)
0.984851 + 0.173404i \(0.0554766\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.1800 + 12.1800i −0.414613 + 0.414613i −0.883342 0.468729i \(-0.844712\pi\)
0.468729 + 0.883342i \(0.344712\pi\)
\(864\) 0 0
\(865\) −42.1216 + 8.79129i −1.43218 + 0.298913i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.99160 3.44956i −0.0675605 0.117018i
\(870\) 0 0
\(871\) 26.5390 45.9669i 0.899240 1.55753i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 28.1986 2.64930i 0.953286 0.0895626i
\(876\) 0 0
\(877\) −23.5075 6.29883i −0.793793 0.212696i −0.160936 0.986965i \(-0.551451\pi\)
−0.632857 + 0.774269i \(0.718118\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.3319i 0.617617i −0.951124 0.308809i \(-0.900070\pi\)
0.951124 0.308809i \(-0.0999303\pi\)
\(882\) 0 0
\(883\) −17.7913 17.7913i −0.598725 0.598725i 0.341249 0.939973i \(-0.389150\pi\)
−0.939973 + 0.341249i \(0.889150\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −11.7295 + 43.7752i −0.393839 + 1.46983i 0.429911 + 0.902871i \(0.358545\pi\)
−0.823749 + 0.566954i \(0.808122\pi\)
\(888\) 0 0
\(889\) −20.4231 11.7913i −0.684969 0.395467i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.67000 17.4287i −0.156276 0.583229i
\(894\) 0 0
\(895\) 3.10166 55.2884i 0.103677 1.84809i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.65743 −0.155334
\(900\) 0 0
\(901\) 54.4083 1.81260
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.678510 + 12.0947i −0.0225544 + 0.402042i
\(906\) 0 0
\(907\) −6.86214 25.6099i −0.227854 0.850362i −0.981241 0.192785i \(-0.938248\pi\)
0.753387 0.657577i \(-0.228419\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 7.80898 + 4.50851i 0.258723 + 0.149374i 0.623752 0.781622i \(-0.285608\pi\)
−0.365029 + 0.930996i \(0.618941\pi\)
\(912\) 0 0
\(913\) 0.289631 1.08092i 0.00958540 0.0357732i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −17.7925 17.7925i −0.587561 0.587561i
\(918\) 0 0
\(919\) 16.0000i 0.527791i 0.964551 + 0.263896i \(0.0850075\pi\)
−0.964551 + 0.263896i \(0.914993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −74.1660 19.8727i −2.44121 0.654119i
\(924\) 0 0
\(925\) −16.5836 + 13.2282i −0.545265 + 0.434940i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.9019 18.8827i 0.357681 0.619521i −0.629892 0.776683i \(-0.716901\pi\)
0.987573 + 0.157161i \(0.0502343\pi\)
\(930\) 0 0
\(931\) 1.91742 + 3.32108i 0.0628410 + 0.108844i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 9.93280 2.07310i 0.324837 0.0677975i
\(936\) 0 0
\(937\) 27.0780 27.0780i 0.884601 0.884601i −0.109397 0.993998i \(-0.534892\pi\)
0.993998 + 0.109397i \(0.0348921\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 24.9207 14.3880i 0.812391 0.469034i −0.0353943 0.999373i \(-0.511269\pi\)
0.847786 + 0.530339i \(0.177935\pi\)
\(942\) 0 0
\(943\) −10.8687 + 2.91226i −0.353934 + 0.0948362i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.1685 + 5.40413i −0.655388 + 0.175611i −0.571164 0.820836i \(-0.693508\pi\)
−0.0842242 + 0.996447i \(0.526841\pi\)
\(948\) 0 0
\(949\) −7.93725 + 4.58258i −0.257654 + 0.148757i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −21.5342 + 21.5342i −0.697560 + 0.697560i −0.963884 0.266324i \(-0.914191\pi\)
0.266324 + 0.963884i \(0.414191\pi\)
\(954\) 0 0
\(955\) −4.58258 + 7.00000i −0.148289 + 0.226515i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.19387 3.79990i −0.0708438 0.122705i
\(960\) 0 0
\(961\) 15.3303 26.5529i 0.494526 0.856544i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −47.4352 15.6059i −1.52699 0.502373i
\(966\) 0 0
\(967\) 0.344611 + 0.0923383i 0.0110819 + 0.00296940i 0.264356 0.964425i \(-0.414841\pi\)
−0.253274 + 0.967395i \(0.581507\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.6073i 0.757593i −0.925480 0.378797i \(-0.876338\pi\)
0.925480 0.378797i \(-0.123662\pi\)
\(972\) 0 0
\(973\) 20.0000 + 20.0000i 0.641171 + 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0.374252 1.39673i 0.0119734 0.0446853i −0.959681 0.281092i \(-0.909303\pi\)
0.971654 + 0.236407i \(0.0759699\pi\)
\(978\) 0 0
\(979\) 5.27160 + 3.04356i 0.168481 + 0.0972726i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.03930 + 11.3428i 0.0969386 + 0.361780i 0.997306 0.0733502i \(-0.0233691\pi\)
−0.900368 + 0.435130i \(0.856702\pi\)
\(984\) 0 0
\(985\) 14.4385 12.9046i 0.460050 0.411175i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.96073 0.0941457
\(990\) 0 0
\(991\) 13.0000 0.412959 0.206479 0.978451i \(-0.433799\pi\)
0.206479 + 0.978451i \(0.433799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 30.3239 + 1.70116i 0.961332 + 0.0539304i
\(996\) 0 0
\(997\) −3.67620 13.7198i −0.116426 0.434509i 0.882963 0.469442i \(-0.155545\pi\)
−0.999390 + 0.0349329i \(0.988878\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1620.2.x.c.593.3 16
3.2 odd 2 inner 1620.2.x.c.593.2 16
5.2 odd 4 inner 1620.2.x.c.917.4 16
9.2 odd 6 540.2.j.b.53.1 8
9.4 even 3 inner 1620.2.x.c.53.1 16
9.5 odd 6 inner 1620.2.x.c.53.4 16
9.7 even 3 540.2.j.b.53.4 yes 8
15.2 even 4 inner 1620.2.x.c.917.1 16
36.7 odd 6 2160.2.w.c.593.4 8
36.11 even 6 2160.2.w.c.593.1 8
45.2 even 12 540.2.j.b.377.3 yes 8
45.7 odd 12 540.2.j.b.377.2 yes 8
45.22 odd 12 inner 1620.2.x.c.377.2 16
45.29 odd 6 2700.2.j.i.593.3 8
45.32 even 12 inner 1620.2.x.c.377.3 16
45.34 even 6 2700.2.j.i.593.4 8
45.38 even 12 2700.2.j.i.1457.3 8
45.43 odd 12 2700.2.j.i.1457.4 8
180.7 even 12 2160.2.w.c.1457.2 8
180.47 odd 12 2160.2.w.c.1457.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.2.j.b.53.1 8 9.2 odd 6
540.2.j.b.53.4 yes 8 9.7 even 3
540.2.j.b.377.2 yes 8 45.7 odd 12
540.2.j.b.377.3 yes 8 45.2 even 12
1620.2.x.c.53.1 16 9.4 even 3 inner
1620.2.x.c.53.4 16 9.5 odd 6 inner
1620.2.x.c.377.2 16 45.22 odd 12 inner
1620.2.x.c.377.3 16 45.32 even 12 inner
1620.2.x.c.593.2 16 3.2 odd 2 inner
1620.2.x.c.593.3 16 1.1 even 1 trivial
1620.2.x.c.917.1 16 15.2 even 4 inner
1620.2.x.c.917.4 16 5.2 odd 4 inner
2160.2.w.c.593.1 8 36.11 even 6
2160.2.w.c.593.4 8 36.7 odd 6
2160.2.w.c.1457.2 8 180.7 even 12
2160.2.w.c.1457.3 8 180.47 odd 12
2700.2.j.i.593.3 8 45.29 odd 6
2700.2.j.i.593.4 8 45.34 even 6
2700.2.j.i.1457.3 8 45.38 even 12
2700.2.j.i.1457.4 8 45.43 odd 12