Properties

Label 54.3.f.a.47.3
Level $54$
Weight $3$
Character 54.47
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 47.3
Character \(\chi\) \(=\) 54.47
Dual form 54.3.f.a.23.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.483690 - 1.32893i) q^{2} +(-0.391734 + 2.97431i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(7.52350 - 1.32660i) q^{5} +(4.14212 - 0.918059i) q^{6} +(4.40811 + 3.69885i) q^{7} +(2.44949 + 1.41421i) q^{8} +(-8.69309 - 2.33028i) q^{9} +O(q^{10})\) \(q+(-0.483690 - 1.32893i) q^{2} +(-0.391734 + 2.97431i) q^{3} +(-1.53209 + 1.28558i) q^{4} +(7.52350 - 1.32660i) q^{5} +(4.14212 - 0.918059i) q^{6} +(4.40811 + 3.69885i) q^{7} +(2.44949 + 1.41421i) q^{8} +(-8.69309 - 2.33028i) q^{9} +(-5.40199 - 9.35652i) q^{10} +(8.02644 + 1.41528i) q^{11} +(-3.22353 - 5.06052i) q^{12} +(-22.0464 - 8.02423i) q^{13} +(2.78334 - 7.64715i) q^{14} +(0.998502 + 22.8969i) q^{15} +(0.694593 - 3.93923i) q^{16} +(6.39327 - 3.69115i) q^{17} +(1.10799 + 12.6796i) q^{18} +(-7.80130 + 13.5122i) q^{19} +(-9.82124 + 11.7045i) q^{20} +(-12.7283 + 11.6622i) q^{21} +(-2.00151 - 11.3511i) q^{22} +(-19.9755 - 23.8059i) q^{23} +(-5.16586 + 6.73156i) q^{24} +(31.3510 - 11.4108i) q^{25} +33.1793i q^{26} +(10.3364 - 24.9431i) q^{27} -11.5088 q^{28} +(-9.68546 - 26.6106i) q^{29} +(29.9454 - 12.4019i) q^{30} +(12.2601 - 10.2874i) q^{31} +(-5.57091 + 0.982302i) q^{32} +(-7.35371 + 23.3187i) q^{33} +(-7.99763 - 6.71081i) q^{34} +(38.0714 + 21.9805i) q^{35} +(16.3143 - 7.60542i) q^{36} +(5.99046 + 10.3758i) q^{37} +(21.7302 + 3.83162i) q^{38} +(32.5029 - 62.4295i) q^{39} +(20.3048 + 7.39036i) q^{40} +(2.82625 - 7.76505i) q^{41} +(21.6547 + 11.2742i) q^{42} +(-7.82854 + 44.3978i) q^{43} +(-14.1167 + 8.15026i) q^{44} +(-68.4938 - 5.99965i) q^{45} +(-21.9743 + 38.0606i) q^{46} +(-43.4592 + 51.7927i) q^{47} +(11.4444 + 3.60907i) q^{48} +(-2.75876 - 15.6457i) q^{49} +(-30.3283 - 36.1438i) q^{50} +(8.47419 + 20.4615i) q^{51} +(44.0928 - 16.0485i) q^{52} -16.4115i q^{53} +(-38.1472 - 1.67154i) q^{54} +62.2645 q^{55} +(5.56667 + 15.2943i) q^{56} +(-37.1336 - 28.4967i) q^{57} +(-30.6787 + 25.7425i) q^{58} +(57.3592 - 10.1140i) q^{59} +(-30.9655 - 33.7965i) q^{60} +(54.6605 + 45.8656i) q^{61} +(-19.6013 - 11.3168i) q^{62} +(-29.7008 - 42.4266i) q^{63} +(4.00000 + 6.92820i) q^{64} +(-176.511 - 31.1237i) q^{65} +(34.5458 - 1.50649i) q^{66} +(-47.1688 - 17.1680i) q^{67} +(-5.04980 + 13.8742i) q^{68} +(78.6313 - 50.0879i) q^{69} +(10.7958 - 61.2257i) q^{70} +(35.4363 - 20.4592i) q^{71} +(-17.9981 - 18.0019i) q^{72} +(-49.7692 + 86.2028i) q^{73} +(10.8911 - 12.9795i) q^{74} +(21.6581 + 97.7176i) q^{75} +(-5.41873 - 30.7311i) q^{76} +(30.1466 + 35.9273i) q^{77} +(-98.6855 - 12.9974i) q^{78} +(-72.4061 + 26.3537i) q^{79} -30.5583i q^{80} +(70.1396 + 40.5147i) q^{81} -11.6862 q^{82} +(36.0769 + 99.1205i) q^{83} +(4.50838 - 34.2307i) q^{84} +(43.2031 - 36.2517i) q^{85} +(62.7880 - 11.0712i) q^{86} +(82.9423 - 18.3833i) q^{87} +(17.6592 + 14.8178i) q^{88} +(-0.302200 - 0.174475i) q^{89} +(25.1567 + 93.9252i) q^{90} +(-67.5026 - 116.918i) q^{91} +(61.2085 + 10.7927i) q^{92} +(25.7954 + 40.4953i) q^{93} +(89.8494 + 32.7025i) q^{94} +(-40.7678 + 112.009i) q^{95} +(-0.739359 - 16.9544i) q^{96} +(11.1076 - 62.9944i) q^{97} +(-19.4576 + 11.2338i) q^{98} +(-66.4766 - 31.0070i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.483690 1.32893i −0.241845 0.664463i
\(3\) −0.391734 + 2.97431i −0.130578 + 0.991438i
\(4\) −1.53209 + 1.28558i −0.383022 + 0.321394i
\(5\) 7.52350 1.32660i 1.50470 0.265319i 0.640301 0.768124i \(-0.278810\pi\)
0.864400 + 0.502805i \(0.167699\pi\)
\(6\) 4.14212 0.918059i 0.690354 0.153010i
\(7\) 4.40811 + 3.69885i 0.629731 + 0.528407i 0.900845 0.434140i \(-0.142948\pi\)
−0.271115 + 0.962547i \(0.587392\pi\)
\(8\) 2.44949 + 1.41421i 0.306186 + 0.176777i
\(9\) −8.69309 2.33028i −0.965899 0.258920i
\(10\) −5.40199 9.35652i −0.540199 0.935652i
\(11\) 8.02644 + 1.41528i 0.729677 + 0.128662i 0.526131 0.850404i \(-0.323642\pi\)
0.203546 + 0.979065i \(0.434753\pi\)
\(12\) −3.22353 5.06052i −0.268628 0.421710i
\(13\) −22.0464 8.02423i −1.69588 0.617248i −0.700531 0.713622i \(-0.747053\pi\)
−0.995345 + 0.0963739i \(0.969276\pi\)
\(14\) 2.78334 7.64715i 0.198810 0.546225i
\(15\) 0.998502 + 22.8969i 0.0665668 + 1.52646i
\(16\) 0.694593 3.93923i 0.0434120 0.246202i
\(17\) 6.39327 3.69115i 0.376075 0.217127i −0.300034 0.953928i \(-0.596998\pi\)
0.676109 + 0.736802i \(0.263665\pi\)
\(18\) 1.10799 + 12.6796i 0.0615547 + 0.704422i
\(19\) −7.80130 + 13.5122i −0.410595 + 0.711171i −0.994955 0.100324i \(-0.968012\pi\)
0.584360 + 0.811494i \(0.301346\pi\)
\(20\) −9.82124 + 11.7045i −0.491062 + 0.585225i
\(21\) −12.7283 + 11.6622i −0.606112 + 0.555341i
\(22\) −2.00151 11.3511i −0.0909775 0.515959i
\(23\) −19.9755 23.8059i −0.868500 1.03504i −0.999049 0.0435964i \(-0.986118\pi\)
0.130549 0.991442i \(-0.458326\pi\)
\(24\) −5.16586 + 6.73156i −0.215244 + 0.280482i
\(25\) 31.3510 11.4108i 1.25404 0.456433i
\(26\) 33.1793i 1.27613i
\(27\) 10.3364 24.9431i 0.382828 0.923819i
\(28\) −11.5088 −0.411027
\(29\) −9.68546 26.6106i −0.333981 0.917606i −0.987065 0.160320i \(-0.948747\pi\)
0.653084 0.757286i \(-0.273475\pi\)
\(30\) 29.9454 12.4019i 0.998179 0.413398i
\(31\) 12.2601 10.2874i 0.395487 0.331853i −0.423259 0.906009i \(-0.639114\pi\)
0.818746 + 0.574156i \(0.194670\pi\)
\(32\) −5.57091 + 0.982302i −0.174091 + 0.0306970i
\(33\) −7.35371 + 23.3187i −0.222840 + 0.706629i
\(34\) −7.99763 6.71081i −0.235224 0.197377i
\(35\) 38.0714 + 21.9805i 1.08775 + 0.628014i
\(36\) 16.3143 7.60542i 0.453176 0.211262i
\(37\) 5.99046 + 10.3758i 0.161904 + 0.280427i 0.935552 0.353190i \(-0.114903\pi\)
−0.773647 + 0.633617i \(0.781570\pi\)
\(38\) 21.7302 + 3.83162i 0.571847 + 0.100832i
\(39\) 32.5029 62.4295i 0.833408 1.60076i
\(40\) 20.3048 + 7.39036i 0.507621 + 0.184759i
\(41\) 2.82625 7.76505i 0.0689329 0.189391i −0.900443 0.434975i \(-0.856757\pi\)
0.969375 + 0.245583i \(0.0789795\pi\)
\(42\) 21.6547 + 11.2742i 0.515588 + 0.268433i
\(43\) −7.82854 + 44.3978i −0.182059 + 1.03251i 0.747617 + 0.664130i \(0.231198\pi\)
−0.929676 + 0.368378i \(0.879913\pi\)
\(44\) −14.1167 + 8.15026i −0.320833 + 0.185233i
\(45\) −68.4938 5.99965i −1.52209 0.133326i
\(46\) −21.9743 + 38.0606i −0.477702 + 0.827405i
\(47\) −43.4592 + 51.7927i −0.924664 + 1.10197i 0.0698695 + 0.997556i \(0.477742\pi\)
−0.994534 + 0.104416i \(0.966703\pi\)
\(48\) 11.4444 + 3.60907i 0.238425 + 0.0751889i
\(49\) −2.75876 15.6457i −0.0563012 0.319300i
\(50\) −30.3283 36.1438i −0.606565 0.722876i
\(51\) 8.47419 + 20.4615i 0.166161 + 0.401207i
\(52\) 44.0928 16.0485i 0.847938 0.308624i
\(53\) 16.4115i 0.309652i −0.987942 0.154826i \(-0.950518\pi\)
0.987942 0.154826i \(-0.0494816\pi\)
\(54\) −38.1472 1.67154i −0.706429 0.0309544i
\(55\) 62.2645 1.13208
\(56\) 5.56667 + 15.2943i 0.0994048 + 0.273113i
\(57\) −37.1336 28.4967i −0.651467 0.499943i
\(58\) −30.6787 + 25.7425i −0.528944 + 0.443836i
\(59\) 57.3592 10.1140i 0.972190 0.171423i 0.335074 0.942192i \(-0.391239\pi\)
0.637115 + 0.770768i \(0.280127\pi\)
\(60\) −30.9655 33.7965i −0.516092 0.563275i
\(61\) 54.6605 + 45.8656i 0.896073 + 0.751895i 0.969419 0.245412i \(-0.0789231\pi\)
−0.0733455 + 0.997307i \(0.523368\pi\)
\(62\) −19.6013 11.3168i −0.316151 0.182530i
\(63\) −29.7008 42.4266i −0.471441 0.673437i
\(64\) 4.00000 + 6.92820i 0.0625000 + 0.108253i
\(65\) −176.511 31.1237i −2.71555 0.478825i
\(66\) 34.5458 1.50649i 0.523421 0.0228256i
\(67\) −47.1688 17.1680i −0.704012 0.256239i −0.0348888 0.999391i \(-0.511108\pi\)
−0.669123 + 0.743152i \(0.733330\pi\)
\(68\) −5.04980 + 13.8742i −0.0742617 + 0.204032i
\(69\) 78.6313 50.0879i 1.13958 0.725911i
\(70\) 10.7958 61.2257i 0.154225 0.874654i
\(71\) 35.4363 20.4592i 0.499103 0.288157i −0.229240 0.973370i \(-0.573624\pi\)
0.728343 + 0.685213i \(0.240291\pi\)
\(72\) −17.9981 18.0019i −0.249974 0.250026i
\(73\) −49.7692 + 86.2028i −0.681770 + 1.18086i 0.292670 + 0.956213i \(0.405456\pi\)
−0.974440 + 0.224647i \(0.927877\pi\)
\(74\) 10.8911 12.9795i 0.147177 0.175399i
\(75\) 21.6581 + 97.7176i 0.288775 + 1.30290i
\(76\) −5.41873 30.7311i −0.0712990 0.404357i
\(77\) 30.1466 + 35.9273i 0.391514 + 0.466588i
\(78\) −98.6855 12.9974i −1.26520 0.166634i
\(79\) −72.4061 + 26.3537i −0.916533 + 0.333591i −0.756858 0.653579i \(-0.773267\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(80\) 30.5583i 0.381978i
\(81\) 70.1396 + 40.5147i 0.865921 + 0.500181i
\(82\) −11.6862 −0.142515
\(83\) 36.0769 + 99.1205i 0.434662 + 1.19422i 0.942920 + 0.333018i \(0.108067\pi\)
−0.508259 + 0.861204i \(0.669711\pi\)
\(84\) 4.50838 34.2307i 0.0536712 0.407508i
\(85\) 43.2031 36.2517i 0.508272 0.426491i
\(86\) 62.7880 11.0712i 0.730093 0.128735i
\(87\) 82.9423 18.3833i 0.953360 0.211303i
\(88\) 17.6592 + 14.8178i 0.200673 + 0.168384i
\(89\) −0.302200 0.174475i −0.00339551 0.00196040i 0.498301 0.867004i \(-0.333957\pi\)
−0.501697 + 0.865044i \(0.667291\pi\)
\(90\) 25.1567 + 93.9252i 0.279518 + 1.04361i
\(91\) −67.5026 116.918i −0.741787 1.28481i
\(92\) 61.2085 + 10.7927i 0.665310 + 0.117312i
\(93\) 25.7954 + 40.4953i 0.277370 + 0.435434i
\(94\) 89.8494 + 32.7025i 0.955845 + 0.347899i
\(95\) −40.7678 + 112.009i −0.429135 + 1.17904i
\(96\) −0.739359 16.9544i −0.00770165 0.176609i
\(97\) 11.1076 62.9944i 0.114511 0.649427i −0.872479 0.488651i \(-0.837489\pi\)
0.986991 0.160776i \(-0.0513997\pi\)
\(98\) −19.4576 + 11.2338i −0.198547 + 0.114631i
\(99\) −66.4766 31.0070i −0.671481 0.313202i
\(100\) −33.3630 + 57.7864i −0.333630 + 0.577864i
\(101\) 107.169 127.719i 1.06107 1.26454i 0.0980344 0.995183i \(-0.468744\pi\)
0.963040 0.269357i \(-0.0868111\pi\)
\(102\) 23.0930 21.1586i 0.226402 0.207437i
\(103\) −17.4708 99.0819i −0.169620 0.961960i −0.944173 0.329451i \(-0.893136\pi\)
0.774553 0.632509i \(-0.217975\pi\)
\(104\) −42.6544 50.8336i −0.410139 0.488784i
\(105\) −80.2908 + 104.626i −0.764674 + 0.996435i
\(106\) −21.8097 + 7.93809i −0.205752 + 0.0748876i
\(107\) 6.57806i 0.0614772i 0.999527 + 0.0307386i \(0.00978594\pi\)
−0.999527 + 0.0307386i \(0.990214\pi\)
\(108\) 16.2300 + 51.5033i 0.150278 + 0.476882i
\(109\) 198.876 1.82455 0.912276 0.409576i \(-0.134323\pi\)
0.912276 + 0.409576i \(0.134323\pi\)
\(110\) −30.1167 82.7449i −0.273788 0.752226i
\(111\) −33.2075 + 13.7530i −0.299167 + 0.123901i
\(112\) 17.6325 14.7954i 0.157433 0.132102i
\(113\) −5.16749 + 0.911168i −0.0457300 + 0.00806344i −0.196466 0.980511i \(-0.562947\pi\)
0.150736 + 0.988574i \(0.451836\pi\)
\(114\) −19.9089 + 63.1314i −0.174639 + 0.553784i
\(115\) −181.867 152.604i −1.58145 1.32699i
\(116\) 49.0489 + 28.3184i 0.422835 + 0.244124i
\(117\) 172.952 + 121.130i 1.47823 + 1.03530i
\(118\) −41.1848 71.3341i −0.349023 0.604526i
\(119\) 41.8353 + 7.37669i 0.351557 + 0.0619890i
\(120\) −29.9353 + 57.4979i −0.249461 + 0.479149i
\(121\) −51.2820 18.6651i −0.423819 0.154257i
\(122\) 34.5133 94.8244i 0.282896 0.777250i
\(123\) 21.9886 + 11.4480i 0.178769 + 0.0930730i
\(124\) −5.55828 + 31.5226i −0.0448248 + 0.254214i
\(125\) 55.3300 31.9448i 0.442640 0.255558i
\(126\) −42.0158 + 59.9914i −0.333459 + 0.476122i
\(127\) −22.2191 + 38.4846i −0.174954 + 0.303029i −0.940145 0.340774i \(-0.889311\pi\)
0.765192 + 0.643803i \(0.222644\pi\)
\(128\) 7.27231 8.66680i 0.0568149 0.0677094i
\(129\) −128.986 40.6767i −0.999895 0.315323i
\(130\) 44.0155 + 249.624i 0.338581 + 1.92019i
\(131\) 25.8274 + 30.7798i 0.197155 + 0.234961i 0.855560 0.517703i \(-0.173213\pi\)
−0.658405 + 0.752664i \(0.728768\pi\)
\(132\) −18.7115 45.1801i −0.141753 0.342274i
\(133\) −84.3688 + 30.7077i −0.634352 + 0.230885i
\(134\) 70.9878i 0.529760i
\(135\) 44.6762 201.372i 0.330935 1.49164i
\(136\) 20.8803 0.153532
\(137\) 17.6267 + 48.4289i 0.128662 + 0.353495i 0.987252 0.159168i \(-0.0508811\pi\)
−0.858590 + 0.512663i \(0.828659\pi\)
\(138\) −104.596 80.2682i −0.757943 0.581653i
\(139\) −82.4641 + 69.1956i −0.593267 + 0.497810i −0.889274 0.457376i \(-0.848789\pi\)
0.296006 + 0.955186i \(0.404345\pi\)
\(140\) −86.5863 + 15.2675i −0.618473 + 0.109054i
\(141\) −137.023 149.550i −0.971796 1.06064i
\(142\) −44.3289 37.1964i −0.312175 0.261946i
\(143\) −165.598 95.6078i −1.15802 0.668586i
\(144\) −15.2177 + 32.6255i −0.105678 + 0.226566i
\(145\) −108.170 187.356i −0.746001 1.29211i
\(146\) 138.630 + 24.4442i 0.949520 + 0.167426i
\(147\) 47.6159 2.07646i 0.323918 0.0141256i
\(148\) −22.5168 8.19544i −0.152140 0.0553746i
\(149\) −48.2594 + 132.592i −0.323888 + 0.889876i 0.665735 + 0.746189i \(0.268118\pi\)
−0.989623 + 0.143688i \(0.954104\pi\)
\(150\) 119.384 76.0470i 0.795891 0.506980i
\(151\) −22.7795 + 129.189i −0.150858 + 0.855557i 0.811618 + 0.584189i \(0.198587\pi\)
−0.962476 + 0.271368i \(0.912524\pi\)
\(152\) −38.2184 + 22.0654i −0.251437 + 0.145167i
\(153\) −64.1787 + 17.1894i −0.419468 + 0.112349i
\(154\) 33.1631 57.4402i 0.215345 0.372988i
\(155\) 78.5916 93.6618i 0.507043 0.604270i
\(156\) 30.4605 + 137.432i 0.195260 + 0.880978i
\(157\) 33.4745 + 189.844i 0.213214 + 1.20919i 0.883980 + 0.467526i \(0.154854\pi\)
−0.670766 + 0.741669i \(0.734034\pi\)
\(158\) 70.0441 + 83.4753i 0.443317 + 0.528325i
\(159\) 48.8131 + 6.42896i 0.307000 + 0.0404337i
\(160\) −40.6097 + 14.7807i −0.253810 + 0.0923795i
\(161\) 178.825i 1.11072i
\(162\) 19.9152 112.807i 0.122934 0.696339i
\(163\) 80.4819 0.493754 0.246877 0.969047i \(-0.420596\pi\)
0.246877 + 0.969047i \(0.420596\pi\)
\(164\) 5.65249 + 15.5301i 0.0344664 + 0.0946957i
\(165\) −24.3911 + 185.194i −0.147825 + 1.12239i
\(166\) 114.274 95.8871i 0.688396 0.577633i
\(167\) −106.625 + 18.8008i −0.638472 + 0.112580i −0.483508 0.875340i \(-0.660637\pi\)
−0.154964 + 0.987920i \(0.549526\pi\)
\(168\) −47.6707 + 10.5657i −0.283754 + 0.0628912i
\(169\) 292.193 + 245.179i 1.72896 + 1.45077i
\(170\) −69.0727 39.8792i −0.406310 0.234583i
\(171\) 99.3047 99.2839i 0.580729 0.580608i
\(172\) −45.0827 78.0856i −0.262109 0.453986i
\(173\) 83.3770 + 14.7016i 0.481948 + 0.0849804i 0.409343 0.912380i \(-0.365758\pi\)
0.0726044 + 0.997361i \(0.476869\pi\)
\(174\) −64.5484 101.332i −0.370968 0.582370i
\(175\) 180.405 + 65.6622i 1.03089 + 0.375213i
\(176\) 11.1502 30.6350i 0.0633535 0.174062i
\(177\) 7.61258 + 174.566i 0.0430089 + 0.986250i
\(178\) −0.0856938 + 0.485994i −0.000481426 + 0.00273030i
\(179\) −145.291 + 83.8837i −0.811681 + 0.468624i −0.847539 0.530733i \(-0.821917\pi\)
0.0358583 + 0.999357i \(0.488583\pi\)
\(180\) 112.652 78.8620i 0.625843 0.438122i
\(181\) 144.733 250.684i 0.799627 1.38500i −0.120232 0.992746i \(-0.538364\pi\)
0.919859 0.392249i \(-0.128303\pi\)
\(182\) −122.725 + 146.258i −0.674313 + 0.803615i
\(183\) −157.831 + 144.610i −0.862465 + 0.790220i
\(184\) −15.2632 86.5619i −0.0829522 0.470445i
\(185\) 58.8338 + 70.1154i 0.318020 + 0.379002i
\(186\) 41.3383 53.8673i 0.222249 0.289609i
\(187\) 56.5392 20.5786i 0.302349 0.110046i
\(188\) 135.221i 0.719261i
\(189\) 137.825 71.7195i 0.729231 0.379468i
\(190\) 168.570 0.887211
\(191\) −13.7963 37.9051i −0.0722320 0.198456i 0.898323 0.439336i \(-0.144786\pi\)
−0.970555 + 0.240880i \(0.922564\pi\)
\(192\) −22.1736 + 9.18324i −0.115487 + 0.0478294i
\(193\) −185.784 + 155.891i −0.962610 + 0.807726i −0.981376 0.192098i \(-0.938471\pi\)
0.0187656 + 0.999824i \(0.494026\pi\)
\(194\) −89.0875 + 15.7085i −0.459214 + 0.0809718i
\(195\) 161.717 512.807i 0.829318 2.62978i
\(196\) 24.3404 + 20.4240i 0.124186 + 0.104204i
\(197\) −4.72432 2.72758i −0.0239813 0.0138456i 0.487961 0.872865i \(-0.337741\pi\)
−0.511943 + 0.859020i \(0.671074\pi\)
\(198\) −9.05199 + 103.340i −0.0457171 + 0.521920i
\(199\) 71.5073 + 123.854i 0.359333 + 0.622383i 0.987850 0.155413i \(-0.0496708\pi\)
−0.628516 + 0.777796i \(0.716337\pi\)
\(200\) 92.9312 + 16.3863i 0.464656 + 0.0819314i
\(201\) 69.5407 133.569i 0.345974 0.664525i
\(202\) −221.565 80.6430i −1.09686 0.399223i
\(203\) 55.7339 153.127i 0.274551 0.754323i
\(204\) −39.2881 20.4547i −0.192589 0.100268i
\(205\) 10.9622 62.1697i 0.0534741 0.303267i
\(206\) −123.222 + 71.1423i −0.598165 + 0.345351i
\(207\) 118.174 + 253.495i 0.570891 + 1.22461i
\(208\) −46.9226 + 81.2722i −0.225589 + 0.390732i
\(209\) −81.7403 + 97.4143i −0.391102 + 0.466097i
\(210\) 177.876 + 56.0942i 0.847026 + 0.267115i
\(211\) −1.49994 8.50659i −0.00710873 0.0403156i 0.981047 0.193770i \(-0.0620714\pi\)
−0.988156 + 0.153454i \(0.950960\pi\)
\(212\) 21.0983 + 25.1439i 0.0995201 + 0.118603i
\(213\) 46.9704 + 113.413i 0.220518 + 0.532457i
\(214\) 8.74176 3.18174i 0.0408493 0.0148679i
\(215\) 344.413i 1.60192i
\(216\) 60.5937 46.4801i 0.280527 0.215186i
\(217\) 92.0956 0.424404
\(218\) −96.1943 264.292i −0.441258 1.21235i
\(219\) −236.898 181.798i −1.08173 0.830127i
\(220\) −95.3947 + 80.0457i −0.433612 + 0.363844i
\(221\) −170.567 + 30.0756i −0.771797 + 0.136089i
\(222\) 34.3388 + 37.4782i 0.154679 + 0.168821i
\(223\) −235.030 197.214i −1.05395 0.884367i −0.0604441 0.998172i \(-0.519252\pi\)
−0.993503 + 0.113805i \(0.963696\pi\)
\(224\) −28.1906 16.2759i −0.125851 0.0726601i
\(225\) −299.127 + 26.1387i −1.32945 + 0.116172i
\(226\) 3.71034 + 6.42649i 0.0164174 + 0.0284358i
\(227\) 11.7174 + 2.06609i 0.0516185 + 0.00910173i 0.199398 0.979919i \(-0.436101\pi\)
−0.147779 + 0.989020i \(0.547213\pi\)
\(228\) 93.5267 4.07856i 0.410205 0.0178884i
\(229\) 362.125 + 131.803i 1.58133 + 0.575558i 0.975493 0.220029i \(-0.0706153\pi\)
0.605839 + 0.795587i \(0.292837\pi\)
\(230\) −114.833 + 315.500i −0.499273 + 1.37174i
\(231\) −118.668 + 75.5914i −0.513716 + 0.327236i
\(232\) 13.9086 78.8796i 0.0599509 0.339998i
\(233\) −8.31951 + 4.80327i −0.0357060 + 0.0206149i −0.517747 0.855534i \(-0.673229\pi\)
0.482041 + 0.876149i \(0.339896\pi\)
\(234\) 77.3170 288.430i 0.330414 1.23261i
\(235\) −258.258 + 447.315i −1.09897 + 1.90347i
\(236\) −74.8771 + 89.2351i −0.317276 + 0.378115i
\(237\) −50.0201 225.682i −0.211055 0.952245i
\(238\) −10.4322 59.1640i −0.0438328 0.248588i
\(239\) −66.1793 78.8695i −0.276901 0.329998i 0.609613 0.792699i \(-0.291325\pi\)
−0.886514 + 0.462701i \(0.846880\pi\)
\(240\) 90.8899 + 11.9707i 0.378708 + 0.0498780i
\(241\) −100.052 + 36.4160i −0.415154 + 0.151104i −0.541148 0.840927i \(-0.682010\pi\)
0.125994 + 0.992031i \(0.459788\pi\)
\(242\) 77.1782i 0.318918i
\(243\) −147.979 + 192.746i −0.608969 + 0.793194i
\(244\) −142.708 −0.584870
\(245\) −41.5111 114.051i −0.169433 0.465513i
\(246\) 4.57789 34.7584i 0.0186093 0.141294i
\(247\) 280.416 235.297i 1.13529 0.952619i
\(248\) 44.5796 7.86059i 0.179757 0.0316959i
\(249\) −308.948 + 68.4752i −1.24076 + 0.275001i
\(250\) −69.2148 58.0781i −0.276859 0.232312i
\(251\) 70.6683 + 40.8004i 0.281547 + 0.162551i 0.634124 0.773232i \(-0.281361\pi\)
−0.352577 + 0.935783i \(0.614694\pi\)
\(252\) 100.047 + 26.8187i 0.397011 + 0.106423i
\(253\) −126.640 219.347i −0.500555 0.866986i
\(254\) 61.8904 + 10.9129i 0.243663 + 0.0429643i
\(255\) 90.8998 + 142.701i 0.356470 + 0.559610i
\(256\) −15.0351 5.47232i −0.0587308 0.0213763i
\(257\) 150.247 412.801i 0.584620 1.60623i −0.195572 0.980689i \(-0.562656\pi\)
0.780192 0.625541i \(-0.215122\pi\)
\(258\) 8.33308 + 191.088i 0.0322988 + 0.740652i
\(259\) −11.9718 + 67.8955i −0.0462232 + 0.262145i
\(260\) 310.442 179.234i 1.19401 0.689361i
\(261\) 22.1864 + 253.898i 0.0850055 + 0.972789i
\(262\) 28.4117 49.2105i 0.108442 0.187826i
\(263\) 289.840 345.418i 1.10205 1.31338i 0.156584 0.987665i \(-0.449952\pi\)
0.945469 0.325711i \(-0.105604\pi\)
\(264\) −50.9905 + 46.7193i −0.193146 + 0.176967i
\(265\) −21.7715 123.472i −0.0821566 0.465933i
\(266\) 81.6166 + 97.2668i 0.306829 + 0.365665i
\(267\) 0.637327 0.830491i 0.00238699 0.00311045i
\(268\) 94.3375 34.3361i 0.352006 0.128120i
\(269\) 363.566i 1.35155i −0.737110 0.675773i \(-0.763810\pi\)
0.737110 0.675773i \(-0.236190\pi\)
\(270\) −289.218 + 38.0301i −1.07118 + 0.140852i
\(271\) −70.6655 −0.260758 −0.130379 0.991464i \(-0.541619\pi\)
−0.130379 + 0.991464i \(0.541619\pi\)
\(272\) −10.0996 27.7484i −0.0371309 0.102016i
\(273\) 374.194 154.973i 1.37067 0.567667i
\(274\) 55.8326 46.8491i 0.203768 0.170982i
\(275\) 267.786 47.2179i 0.973768 0.171701i
\(276\) −56.0784 + 177.825i −0.203182 + 0.644295i
\(277\) −178.872 150.091i −0.645746 0.541845i 0.260031 0.965600i \(-0.416267\pi\)
−0.905777 + 0.423755i \(0.860712\pi\)
\(278\) 131.843 + 76.1195i 0.474255 + 0.273811i
\(279\) −130.551 + 60.8602i −0.467924 + 0.218137i
\(280\) 62.1703 + 107.682i 0.222037 + 0.384579i
\(281\) −284.922 50.2394i −1.01396 0.178788i −0.358108 0.933680i \(-0.616578\pi\)
−0.655849 + 0.754892i \(0.727689\pi\)
\(282\) −132.465 + 254.430i −0.469733 + 0.902233i
\(283\) −144.152 52.4669i −0.509370 0.185395i 0.0745339 0.997218i \(-0.476253\pi\)
−0.583903 + 0.811823i \(0.698475\pi\)
\(284\) −27.9898 + 76.9013i −0.0985556 + 0.270779i
\(285\) −317.179 165.134i −1.11291 0.579417i
\(286\) −46.9579 + 266.311i −0.164188 + 0.931159i
\(287\) 41.1802 23.7754i 0.143485 0.0828410i
\(288\) 50.7175 + 4.44255i 0.176102 + 0.0154255i
\(289\) −117.251 + 203.084i −0.405712 + 0.702714i
\(290\) −196.662 + 234.372i −0.678144 + 0.808180i
\(291\) 183.014 + 57.7146i 0.628914 + 0.198332i
\(292\) −34.5693 196.052i −0.118388 0.671412i
\(293\) 104.985 + 125.117i 0.358311 + 0.427019i 0.914844 0.403807i \(-0.132313\pi\)
−0.556533 + 0.830826i \(0.687869\pi\)
\(294\) −25.7908 62.2737i −0.0877237 0.211815i
\(295\) 418.125 152.185i 1.41737 0.515882i
\(296\) 33.8872i 0.114484i
\(297\) 118.266 185.576i 0.398201 0.624834i
\(298\) 199.547 0.669621
\(299\) 249.364 + 685.122i 0.833993 + 2.29138i
\(300\) −158.805 121.869i −0.529351 0.406230i
\(301\) −198.730 + 166.754i −0.660232 + 0.554001i
\(302\) 182.701 32.2151i 0.604970 0.106673i
\(303\) 337.893 + 368.785i 1.11516 + 1.21711i
\(304\) 47.8091 + 40.1166i 0.157267 + 0.131963i
\(305\) 472.084 + 272.558i 1.54781 + 0.893631i
\(306\) 53.8860 + 76.9744i 0.176098 + 0.251550i
\(307\) 163.324 + 282.886i 0.532000 + 0.921452i 0.999302 + 0.0373539i \(0.0118929\pi\)
−0.467302 + 0.884098i \(0.654774\pi\)
\(308\) −92.3745 16.2881i −0.299917 0.0528835i
\(309\) 301.545 13.1499i 0.975873 0.0425564i
\(310\) −162.484 59.1392i −0.524141 0.190772i
\(311\) 159.228 437.476i 0.511988 1.40668i −0.367173 0.930152i \(-0.619674\pi\)
0.879162 0.476524i \(-0.158103\pi\)
\(312\) 167.904 106.954i 0.538154 0.342803i
\(313\) 38.0827 215.978i 0.121670 0.690025i −0.861560 0.507655i \(-0.830512\pi\)
0.983230 0.182369i \(-0.0583766\pi\)
\(314\) 236.097 136.311i 0.751901 0.434110i
\(315\) −279.737 279.795i −0.888054 0.888239i
\(316\) 77.0529 133.460i 0.243838 0.422341i
\(317\) −81.8800 + 97.5807i −0.258296 + 0.307826i −0.879571 0.475767i \(-0.842171\pi\)
0.621275 + 0.783593i \(0.286615\pi\)
\(318\) −15.0668 67.9786i −0.0473797 0.213769i
\(319\) −40.0784 227.296i −0.125638 0.712526i
\(320\) 39.2850 + 46.8180i 0.122765 + 0.146306i
\(321\) −19.5652 2.57685i −0.0609508 0.00802757i
\(322\) −237.646 + 86.4960i −0.738030 + 0.268621i
\(323\) 115.183i 0.356604i
\(324\) −159.545 + 28.0976i −0.492422 + 0.0867211i
\(325\) −782.738 −2.40843
\(326\) −38.9282 106.954i −0.119412 0.328081i
\(327\) −77.9066 + 591.520i −0.238246 + 1.80893i
\(328\) 17.9043 15.0235i 0.0545863 0.0458033i
\(329\) −383.146 + 67.5591i −1.16458 + 0.205347i
\(330\) 257.907 57.1625i 0.781536 0.173220i
\(331\) 208.107 + 174.623i 0.628723 + 0.527561i 0.900532 0.434790i \(-0.143177\pi\)
−0.271809 + 0.962351i \(0.587622\pi\)
\(332\) −182.700 105.482i −0.550301 0.317716i
\(333\) −27.8971 104.157i −0.0837752 0.312784i
\(334\) 76.5582 + 132.603i 0.229216 + 0.397014i
\(335\) −377.650 66.5898i −1.12731 0.198776i
\(336\) 37.0989 + 58.2403i 0.110413 + 0.173334i
\(337\) −482.379 175.572i −1.43139 0.520984i −0.494061 0.869427i \(-0.664488\pi\)
−0.937330 + 0.348443i \(0.886710\pi\)
\(338\) 184.494 506.894i 0.545841 1.49969i
\(339\) −0.685818 15.7267i −0.00202306 0.0463914i
\(340\) −19.5867 + 111.082i −0.0576079 + 0.326711i
\(341\) 112.965 65.2201i 0.331274 0.191261i
\(342\) −179.974 83.9460i −0.526239 0.245456i
\(343\) 186.693 323.361i 0.544293 0.942743i
\(344\) −81.9639 + 97.6808i −0.238267 + 0.283956i
\(345\) 525.136 481.148i 1.52213 1.39463i
\(346\) −20.7912 117.913i −0.0600902 0.340789i
\(347\) −115.155 137.237i −0.331859 0.395494i 0.574152 0.818749i \(-0.305332\pi\)
−0.906011 + 0.423255i \(0.860888\pi\)
\(348\) −103.442 + 134.793i −0.297247 + 0.387338i
\(349\) 324.668 118.170i 0.930281 0.338595i 0.167960 0.985794i \(-0.446282\pi\)
0.762321 + 0.647199i \(0.224060\pi\)
\(350\) 271.506i 0.775730i
\(351\) −428.029 + 466.964i −1.21946 + 1.33038i
\(352\) −46.1048 −0.130980
\(353\) 84.0412 + 230.901i 0.238077 + 0.654112i 0.999979 + 0.00641959i \(0.00204343\pi\)
−0.761902 + 0.647692i \(0.775734\pi\)
\(354\) 228.304 94.5524i 0.644925 0.267097i
\(355\) 239.464 200.934i 0.674547 0.566012i
\(356\) 0.687299 0.121189i 0.00193062 0.000340420i
\(357\) −38.3289 + 121.542i −0.107364 + 0.340452i
\(358\) 181.751 + 152.507i 0.507684 + 0.425998i
\(359\) −481.215 277.830i −1.34043 0.773899i −0.353562 0.935411i \(-0.615030\pi\)
−0.986871 + 0.161512i \(0.948363\pi\)
\(360\) −159.290 111.561i −0.442473 0.309892i
\(361\) 58.7794 + 101.809i 0.162824 + 0.282019i
\(362\) −403.146 71.0856i −1.11366 0.196369i
\(363\) 75.6049 145.217i 0.208278 0.400047i
\(364\) 253.727 + 92.3490i 0.697052 + 0.253706i
\(365\) −260.082 + 714.571i −0.712555 + 1.95773i
\(366\) 268.518 + 139.799i 0.733655 + 0.381965i
\(367\) 69.2101 392.510i 0.188583 1.06951i −0.732681 0.680572i \(-0.761731\pi\)
0.921264 0.388937i \(-0.127158\pi\)
\(368\) −107.652 + 62.1527i −0.292532 + 0.168893i
\(369\) −42.6636 + 60.9163i −0.115619 + 0.165085i
\(370\) 64.7209 112.100i 0.174921 0.302972i
\(371\) 60.7038 72.3439i 0.163622 0.194997i
\(372\) −91.5806 28.8805i −0.246184 0.0776358i
\(373\) 71.1393 + 403.451i 0.190722 + 1.08164i 0.918381 + 0.395698i \(0.129497\pi\)
−0.727659 + 0.685939i \(0.759392\pi\)
\(374\) −54.6948 65.1828i −0.146243 0.174285i
\(375\) 73.3392 + 177.083i 0.195571 + 0.472220i
\(376\) −179.699 + 65.4050i −0.477922 + 0.173950i
\(377\) 664.385i 1.76230i
\(378\) −161.974 148.469i −0.428503 0.392775i
\(379\) −61.5139 −0.162306 −0.0811529 0.996702i \(-0.525860\pi\)
−0.0811529 + 0.996702i \(0.525860\pi\)
\(380\) −81.5356 224.017i −0.214567 0.589519i
\(381\) −105.761 81.1623i −0.277589 0.213025i
\(382\) −43.6999 + 36.6686i −0.114398 + 0.0959910i
\(383\) 200.252 35.3098i 0.522851 0.0921927i 0.0940074 0.995572i \(-0.470032\pi\)
0.428844 + 0.903379i \(0.358921\pi\)
\(384\) 22.9290 + 25.0252i 0.0597109 + 0.0651698i
\(385\) 274.469 + 230.307i 0.712906 + 0.598199i
\(386\) 297.029 + 171.490i 0.769506 + 0.444275i
\(387\) 171.514 367.712i 0.443188 0.950159i
\(388\) 63.9662 + 110.793i 0.164861 + 0.285548i
\(389\) −251.130 44.2810i −0.645579 0.113833i −0.158734 0.987321i \(-0.550741\pi\)
−0.486845 + 0.873488i \(0.661852\pi\)
\(390\) −759.703 + 33.1296i −1.94796 + 0.0849476i
\(391\) −215.580 78.4647i −0.551355 0.200677i
\(392\) 15.3688 42.2254i 0.0392061 0.107718i
\(393\) −101.666 + 64.7612i −0.258693 + 0.164787i
\(394\) −1.33966 + 7.59757i −0.00340014 + 0.0192832i
\(395\) −509.787 + 294.326i −1.29060 + 0.745128i
\(396\) 141.710 37.9552i 0.357853 0.0958463i
\(397\) 13.8139 23.9264i 0.0347957 0.0602679i −0.848103 0.529831i \(-0.822255\pi\)
0.882899 + 0.469563i \(0.155589\pi\)
\(398\) 130.006 154.935i 0.326648 0.389284i
\(399\) −58.2843 262.968i −0.146076 0.659069i
\(400\) −23.1737 131.425i −0.0579342 0.328561i
\(401\) −240.702 286.857i −0.600254 0.715354i 0.377288 0.926096i \(-0.376857\pi\)
−0.977542 + 0.210741i \(0.932412\pi\)
\(402\) −211.140 27.8083i −0.525224 0.0691750i
\(403\) −352.840 + 128.423i −0.875533 + 0.318668i
\(404\) 333.449i 0.825370i
\(405\) 581.442 + 211.765i 1.43566 + 0.522878i
\(406\) −230.453 −0.567618
\(407\) 33.3975 + 91.7588i 0.0820577 + 0.225452i
\(408\) −8.17954 + 62.1046i −0.0200479 + 0.152217i
\(409\) 156.992 131.732i 0.383843 0.322082i −0.430366 0.902654i \(-0.641616\pi\)
0.814209 + 0.580572i \(0.197171\pi\)
\(410\) −87.9212 + 15.5029i −0.214442 + 0.0378119i
\(411\) −150.948 + 33.4560i −0.367269 + 0.0814015i
\(412\) 154.144 + 129.342i 0.374136 + 0.313937i
\(413\) 290.256 + 167.579i 0.702799 + 0.405761i
\(414\) 279.717 279.658i 0.675644 0.675503i
\(415\) 402.918 + 697.874i 0.970886 + 1.68162i
\(416\) 130.701 + 23.0461i 0.314184 + 0.0553992i
\(417\) −173.505 272.380i −0.416080 0.653191i
\(418\) 168.993 + 61.5085i 0.404290 + 0.147150i
\(419\) 81.7427 224.586i 0.195090 0.536005i −0.803120 0.595818i \(-0.796828\pi\)
0.998210 + 0.0598126i \(0.0190503\pi\)
\(420\) −11.4915 263.516i −0.0273608 0.627418i
\(421\) 34.6408 196.458i 0.0822821 0.466645i −0.915628 0.402027i \(-0.868306\pi\)
0.997910 0.0646183i \(-0.0205830\pi\)
\(422\) −10.5791 + 6.10786i −0.0250690 + 0.0144736i
\(423\) 498.486 348.966i 1.17845 0.824979i
\(424\) 23.2094 40.1999i 0.0547392 0.0948111i
\(425\) 158.316 188.674i 0.372508 0.443938i
\(426\) 127.999 117.277i 0.300467 0.275298i
\(427\) 71.2998 + 404.362i 0.166979 + 0.946983i
\(428\) −8.45659 10.0782i −0.0197584 0.0235471i
\(429\) 349.238 455.086i 0.814074 1.06081i
\(430\) 457.699 166.589i 1.06442 0.387416i
\(431\) 235.094i 0.545461i 0.962090 + 0.272731i \(0.0879267\pi\)
−0.962090 + 0.272731i \(0.912073\pi\)
\(432\) −91.0772 58.0427i −0.210827 0.134358i
\(433\) −391.650 −0.904504 −0.452252 0.891890i \(-0.649379\pi\)
−0.452252 + 0.891890i \(0.649379\pi\)
\(434\) −44.5457 122.388i −0.102640 0.282001i
\(435\) 599.630 248.338i 1.37846 0.570892i
\(436\) −304.696 + 255.670i −0.698844 + 0.586400i
\(437\) 477.506 84.1972i 1.09269 0.192671i
\(438\) −127.011 + 402.753i −0.289979 + 0.919528i
\(439\) 62.2561 + 52.2391i 0.141813 + 0.118996i 0.710935 0.703258i \(-0.248272\pi\)
−0.569121 + 0.822254i \(0.692717\pi\)
\(440\) 152.516 + 88.0553i 0.346628 + 0.200126i
\(441\) −12.4767 + 142.438i −0.0282919 + 0.322989i
\(442\) 122.470 + 212.124i 0.277081 + 0.479918i
\(443\) 519.689 + 91.6352i 1.17311 + 0.206851i 0.726044 0.687648i \(-0.241357\pi\)
0.447069 + 0.894500i \(0.352468\pi\)
\(444\) 33.1964 63.7615i 0.0747667 0.143607i
\(445\) −2.50506 0.911769i −0.00562936 0.00204892i
\(446\) −148.401 + 407.728i −0.332737 + 0.914188i
\(447\) −375.464 195.479i −0.839965 0.437314i
\(448\) −7.99391 + 45.3357i −0.0178435 + 0.101196i
\(449\) −104.119 + 60.1132i −0.231891 + 0.133882i −0.611444 0.791288i \(-0.709411\pi\)
0.379553 + 0.925170i \(0.376078\pi\)
\(450\) 179.421 + 384.875i 0.398713 + 0.855277i
\(451\) 33.6744 58.3258i 0.0746661 0.129326i
\(452\) 6.74568 8.03919i 0.0149241 0.0177858i
\(453\) −375.325 118.361i −0.828533 0.261283i
\(454\) −2.92190 16.5709i −0.00643590 0.0364998i
\(455\) −662.959 790.084i −1.45705 1.73645i
\(456\) −50.6580 122.317i −0.111092 0.268240i
\(457\) 134.507 48.9566i 0.294326 0.107126i −0.190637 0.981661i \(-0.561055\pi\)
0.484963 + 0.874535i \(0.338833\pi\)
\(458\) 544.989i 1.18993i
\(459\) −25.9858 197.621i −0.0566139 0.430547i
\(460\) 474.820 1.03222
\(461\) −80.7643 221.898i −0.175194 0.481341i 0.820753 0.571283i \(-0.193554\pi\)
−0.995947 + 0.0899422i \(0.971332\pi\)
\(462\) 157.854 + 121.139i 0.341676 + 0.262205i
\(463\) 113.622 95.3405i 0.245405 0.205919i −0.511786 0.859113i \(-0.671016\pi\)
0.757191 + 0.653194i \(0.226571\pi\)
\(464\) −111.553 + 19.6697i −0.240415 + 0.0423917i
\(465\) 247.793 + 270.447i 0.532888 + 0.581606i
\(466\) 10.4073 + 8.73272i 0.0223332 + 0.0187397i
\(467\) −78.1166 45.1006i −0.167273 0.0965752i 0.414026 0.910265i \(-0.364122\pi\)
−0.581299 + 0.813690i \(0.697456\pi\)
\(468\) −420.700 + 36.7621i −0.898931 + 0.0785515i
\(469\) −144.423 250.149i −0.307939 0.533366i
\(470\) 719.366 + 126.844i 1.53056 + 0.269880i
\(471\) −577.767 + 25.1956i −1.22668 + 0.0534938i
\(472\) 154.804 + 56.3441i 0.327975 + 0.119373i
\(473\) −125.671 + 345.277i −0.265688 + 0.729973i
\(474\) −275.721 + 175.633i −0.581689 + 0.370534i
\(475\) −90.3924 + 512.641i −0.190300 + 1.07924i
\(476\) −73.5786 + 42.4806i −0.154577 + 0.0892451i
\(477\) −38.2435 + 142.667i −0.0801750 + 0.299092i
\(478\) −72.8014 + 126.096i −0.152304 + 0.263799i
\(479\) −165.915 + 197.730i −0.346378 + 0.412797i −0.910904 0.412618i \(-0.864614\pi\)
0.564526 + 0.825415i \(0.309059\pi\)
\(480\) −28.0543 126.576i −0.0584464 0.263700i
\(481\) −48.8104 276.818i −0.101477 0.575504i
\(482\) 96.7883 + 115.348i 0.200806 + 0.239311i
\(483\) 531.883 + 70.0520i 1.10121 + 0.145035i
\(484\) 102.564 37.3303i 0.211909 0.0771287i
\(485\) 488.674i 1.00758i
\(486\) 327.722 + 103.424i 0.674324 + 0.212807i
\(487\) −103.107 −0.211718 −0.105859 0.994381i \(-0.533759\pi\)
−0.105859 + 0.994381i \(0.533759\pi\)
\(488\) 69.0265 + 189.649i 0.141448 + 0.388625i
\(489\) −31.5275 + 239.378i −0.0644734 + 0.489526i
\(490\) −131.486 + 110.330i −0.268340 + 0.225164i
\(491\) −753.133 + 132.798i −1.53388 + 0.270464i −0.875870 0.482548i \(-0.839711\pi\)
−0.658007 + 0.753012i \(0.728600\pi\)
\(492\) −48.4057 + 10.7286i −0.0983855 + 0.0218061i
\(493\) −160.145 134.378i −0.324839 0.272572i
\(494\) −448.326 258.841i −0.907543 0.523970i
\(495\) −541.271 145.094i −1.09348 0.293119i
\(496\) −32.0088 55.4409i −0.0645340 0.111776i
\(497\) 231.883 + 40.8872i 0.466565 + 0.0822679i
\(498\) 240.433 + 377.448i 0.482798 + 0.757928i
\(499\) 675.618 + 245.905i 1.35394 + 0.492795i 0.914176 0.405317i \(-0.132839\pi\)
0.439767 + 0.898112i \(0.355061\pi\)
\(500\) −43.7030 + 120.073i −0.0874061 + 0.240146i
\(501\) −14.1510 324.501i −0.0282455 0.647706i
\(502\) 20.0391 113.648i 0.0399186 0.226390i
\(503\) 506.649 292.514i 1.00725 0.581538i 0.0968675 0.995297i \(-0.469118\pi\)
0.910386 + 0.413759i \(0.135784\pi\)
\(504\) −12.7515 145.927i −0.0253007 0.289537i
\(505\) 636.852 1103.06i 1.26109 2.18428i
\(506\) −230.242 + 274.392i −0.455024 + 0.542276i
\(507\) −843.703 + 773.030i −1.66411 + 1.52471i
\(508\) −15.4332 87.5262i −0.0303804 0.172296i
\(509\) 567.862 + 676.751i 1.11564 + 1.32957i 0.938458 + 0.345393i \(0.112254\pi\)
0.177184 + 0.984178i \(0.443301\pi\)
\(510\) 145.671 189.822i 0.285630 0.372200i
\(511\) −538.239 + 195.903i −1.05331 + 0.383372i
\(512\) 22.6274i 0.0441942i
\(513\) 256.401 + 334.256i 0.499806 + 0.651572i
\(514\) −621.255 −1.20867
\(515\) −262.884 722.266i −0.510453 1.40246i
\(516\) 249.912 103.501i 0.484325 0.200584i
\(517\) −422.124 + 354.204i −0.816487 + 0.685114i
\(518\) 96.0187 16.9307i 0.185364 0.0326847i
\(519\) −76.3888 + 242.230i −0.147185 + 0.466725i
\(520\) −388.346 325.861i −0.746820 0.626656i
\(521\) 22.5511 + 13.0199i 0.0432843 + 0.0249902i 0.521486 0.853260i \(-0.325378\pi\)
−0.478202 + 0.878250i \(0.658711\pi\)
\(522\) 326.680 152.292i 0.625824 0.291747i
\(523\) −289.411 501.274i −0.553366 0.958458i −0.998029 0.0627602i \(-0.980010\pi\)
0.444662 0.895698i \(-0.353324\pi\)
\(524\) −79.1396 13.9545i −0.151030 0.0266306i
\(525\) −265.971 + 510.860i −0.506611 + 0.973067i
\(526\) −599.227 218.101i −1.13922 0.414641i
\(527\) 40.4095 111.024i 0.0766784 0.210672i
\(528\) 86.7501 + 45.1650i 0.164299 + 0.0855398i
\(529\) −75.8392 + 430.106i −0.143363 + 0.813054i
\(530\) −153.555 + 88.6550i −0.289726 + 0.167274i
\(531\) −522.197 45.7414i −0.983422 0.0861419i
\(532\) 89.7834 155.509i 0.168766 0.292311i
\(533\) −124.617 + 148.513i −0.233803 + 0.278636i
\(534\) −1.41193 0.445261i −0.00264406 0.000833822i
\(535\) 8.72643 + 49.4901i 0.0163111 + 0.0925048i
\(536\) −91.2602 108.760i −0.170262 0.202910i
\(537\) −192.581 465.001i −0.358624 0.865923i
\(538\) −483.152 + 175.853i −0.898053 + 0.326864i
\(539\) 129.484i 0.240229i
\(540\) 190.431 + 365.954i 0.352650 + 0.677693i
\(541\) −84.9565 −0.157036 −0.0785180 0.996913i \(-0.525019\pi\)
−0.0785180 + 0.996913i \(0.525019\pi\)
\(542\) 34.1801 + 93.9092i 0.0630630 + 0.173264i
\(543\) 688.917 + 528.682i 1.26872 + 0.973631i
\(544\) −31.9905 + 26.8432i −0.0588061 + 0.0493442i
\(545\) 1496.25 263.828i 2.74540 0.484089i
\(546\) −386.942 422.317i −0.708684 0.773474i
\(547\) −662.004 555.487i −1.21025 1.01552i −0.999277 0.0380234i \(-0.987894\pi\)
−0.210968 0.977493i \(-0.567662\pi\)
\(548\) −89.2646 51.5369i −0.162892 0.0940455i
\(549\) −368.289 526.088i −0.670836 0.958266i
\(550\) −192.274 333.029i −0.349590 0.605507i
\(551\) 435.128 + 76.7248i 0.789706 + 0.139246i
\(552\) 263.441 11.4883i 0.477249 0.0208121i
\(553\) −416.652 151.649i −0.753440 0.274230i
\(554\) −112.942 + 310.305i −0.203866 + 0.560117i
\(555\) −231.592 + 147.524i −0.417283 + 0.265808i
\(556\) 37.3862 212.028i 0.0672414 0.381345i
\(557\) −226.376 + 130.698i −0.406420 + 0.234647i −0.689250 0.724523i \(-0.742060\pi\)
0.282830 + 0.959170i \(0.408727\pi\)
\(558\) 144.025 + 144.055i 0.258109 + 0.258163i
\(559\) 528.849 915.994i 0.946063 1.63863i
\(560\) 113.030 134.704i 0.201840 0.240543i
\(561\) 39.0588 + 176.227i 0.0696236 + 0.314130i
\(562\) 71.0493 + 402.940i 0.126422 + 0.716976i
\(563\) 505.895 + 602.902i 0.898570 + 1.07087i 0.997127 + 0.0757425i \(0.0241327\pi\)
−0.0985575 + 0.995131i \(0.531423\pi\)
\(564\) 402.190 + 52.9707i 0.713103 + 0.0939197i
\(565\) −37.6689 + 13.7104i −0.0666706 + 0.0242661i
\(566\) 216.944i 0.383294i
\(567\) 159.326 + 438.029i 0.280998 + 0.772538i
\(568\) 115.735 0.203758
\(569\) 90.4364 + 248.472i 0.158939 + 0.436682i 0.993444 0.114319i \(-0.0364684\pi\)
−0.834505 + 0.551001i \(0.814246\pi\)
\(570\) −66.0347 + 501.381i −0.115850 + 0.879615i
\(571\) −48.7960 + 40.9447i −0.0854572 + 0.0717071i −0.684515 0.728998i \(-0.739986\pi\)
0.599058 + 0.800705i \(0.295542\pi\)
\(572\) 376.621 66.4085i 0.658429 0.116099i
\(573\) 118.146 26.1859i 0.206189 0.0456996i
\(574\) −51.5141 43.2255i −0.0897459 0.0753057i
\(575\) −897.896 518.400i −1.56156 0.901566i
\(576\) −18.6277 69.5486i −0.0323397 0.120744i
\(577\) 485.361 + 840.670i 0.841180 + 1.45697i 0.888898 + 0.458106i \(0.151472\pi\)
−0.0477175 + 0.998861i \(0.515195\pi\)
\(578\) 326.597 + 57.5879i 0.565047 + 0.0996330i
\(579\) −390.891 613.647i −0.675114 1.05984i
\(580\) 406.587 + 147.985i 0.701011 + 0.255147i
\(581\) −207.600 + 570.377i −0.357316 + 0.981717i
\(582\) −11.8235 271.128i −0.0203153 0.465856i
\(583\) 23.2269 131.726i 0.0398403 0.225946i
\(584\) −243.818 + 140.769i −0.417497 + 0.241042i
\(585\) 1461.90 + 681.881i 2.49897 + 1.16561i
\(586\) 115.490 200.035i 0.197083 0.341357i
\(587\) 65.3472 77.8778i 0.111324 0.132671i −0.707505 0.706708i \(-0.750179\pi\)
0.818829 + 0.574038i \(0.194624\pi\)
\(588\) −70.2824 + 64.3952i −0.119528 + 0.109516i
\(589\) 43.3618 + 245.917i 0.0736193 + 0.417516i
\(590\) −404.485 482.047i −0.685568 0.817029i
\(591\) 9.96337 12.9831i 0.0168585 0.0219680i
\(592\) 45.0336 16.3909i 0.0760702 0.0276873i
\(593\) 926.755i 1.56282i −0.624016 0.781412i \(-0.714500\pi\)
0.624016 0.781412i \(-0.285500\pi\)
\(594\) −303.820 67.4054i −0.511482 0.113477i
\(595\) 324.534 0.545435
\(596\) −96.5188 265.183i −0.161944 0.444938i
\(597\) −396.393 + 164.167i −0.663976 + 0.274987i
\(598\) 789.861 662.772i 1.32084 1.10831i
\(599\) −553.736 + 97.6386i −0.924434 + 0.163003i −0.615551 0.788097i \(-0.711066\pi\)
−0.308883 + 0.951100i \(0.599955\pi\)
\(600\) −85.1422 + 269.987i −0.141904 + 0.449979i
\(601\) 291.320 + 244.447i 0.484726 + 0.406733i 0.852132 0.523327i \(-0.175310\pi\)
−0.367406 + 0.930061i \(0.619754\pi\)
\(602\) 317.728 + 183.440i 0.527787 + 0.304718i
\(603\) 370.036 + 259.160i 0.613658 + 0.429784i
\(604\) −131.182 227.214i −0.217189 0.376182i
\(605\) −410.582 72.3967i −0.678648 0.119664i
\(606\) 326.652 627.413i 0.539030 1.03533i
\(607\) 1056.66 + 384.593i 1.74079 + 0.633597i 0.999302 0.0373651i \(-0.0118965\pi\)
0.741492 + 0.670962i \(0.234119\pi\)
\(608\) 30.1873 82.9388i 0.0496501 0.136413i
\(609\) 433.616 + 225.755i 0.712014 + 0.370698i
\(610\) 133.867 759.197i 0.219454 1.24459i
\(611\) 1373.72 793.115i 2.24831 1.29806i
\(612\) 76.2291 108.842i 0.124557 0.177847i
\(613\) −313.409 + 542.840i −0.511270 + 0.885546i 0.488644 + 0.872483i \(0.337492\pi\)
−0.999915 + 0.0130631i \(0.995842\pi\)
\(614\) 296.936 353.875i 0.483609 0.576343i
\(615\) 180.618 + 56.9590i 0.293688 + 0.0926163i
\(616\) 23.0349 + 130.637i 0.0373943 + 0.212073i
\(617\) 113.319 + 135.049i 0.183662 + 0.218880i 0.850018 0.526754i \(-0.176591\pi\)
−0.666356 + 0.745634i \(0.732147\pi\)
\(618\) −163.329 394.370i −0.264287 0.638139i
\(619\) −873.825 + 318.046i −1.41167 + 0.513807i −0.931620 0.363434i \(-0.881604\pi\)
−0.480052 + 0.877240i \(0.659382\pi\)
\(620\) 244.534i 0.394409i
\(621\) −800.267 + 252.185i −1.28868 + 0.406095i
\(622\) −658.391 −1.05851
\(623\) −0.686776 1.88690i −0.00110237 0.00302873i
\(624\) −223.348 171.400i −0.357930 0.274679i
\(625\) −265.041 + 222.395i −0.424065 + 0.355833i
\(626\) −305.439 + 53.8571i −0.487921 + 0.0860337i
\(627\) −257.720 281.282i −0.411037 0.448615i
\(628\) −295.344 247.823i −0.470293 0.394623i
\(629\) 76.5973 + 44.2235i 0.121776 + 0.0703076i
\(630\) −236.522 + 507.084i −0.375431 + 0.804895i
\(631\) 327.053 + 566.473i 0.518309 + 0.897738i 0.999774 + 0.0212724i \(0.00677172\pi\)
−0.481464 + 0.876466i \(0.659895\pi\)
\(632\) −214.628 37.8446i −0.339601 0.0598808i
\(633\) 25.8889 1.12898i 0.0408987 0.00178353i
\(634\) 169.282 + 61.6136i 0.267006 + 0.0971824i
\(635\) −116.112 + 319.015i −0.182854 + 0.502386i
\(636\) −83.0509 + 52.9031i −0.130583 + 0.0831810i
\(637\) −64.7240 + 367.068i −0.101608 + 0.576245i
\(638\) −282.674 + 163.202i −0.443063 + 0.255802i
\(639\) −355.727 + 95.2768i −0.556693 + 0.149103i
\(640\) 43.2159 74.8522i 0.0675249 0.116957i
\(641\) 473.126 563.850i 0.738106 0.879641i −0.258149 0.966105i \(-0.583112\pi\)
0.996255 + 0.0864644i \(0.0275569\pi\)
\(642\) 6.03905 + 27.2471i 0.00940661 + 0.0424410i
\(643\) −123.683 701.440i −0.192353 1.09089i −0.916139 0.400862i \(-0.868711\pi\)
0.723786 0.690025i \(-0.242400\pi\)
\(644\) 229.893 + 273.976i 0.356977 + 0.425429i
\(645\) −1024.39 134.918i −1.58820 0.209176i
\(646\) 153.070 55.7129i 0.236950 0.0862429i
\(647\) 291.136i 0.449978i −0.974361 0.224989i \(-0.927765\pi\)
0.974361 0.224989i \(-0.0722346\pi\)
\(648\) 114.510 + 198.433i 0.176713 + 0.306223i
\(649\) 474.704 0.731440
\(650\) 378.602 + 1040.20i 0.582465 + 1.60031i
\(651\) −36.0770 + 273.921i −0.0554178 + 0.420770i
\(652\) −123.305 + 103.465i −0.189119 + 0.158689i
\(653\) −1145.26 + 201.940i −1.75384 + 0.309250i −0.955946 0.293542i \(-0.905166\pi\)
−0.797898 + 0.602792i \(0.794055\pi\)
\(654\) 823.769 182.580i 1.25959 0.279174i
\(655\) 235.145 + 197.310i 0.359000 + 0.301236i
\(656\) −28.6252 16.5268i −0.0436360 0.0251933i
\(657\) 633.525 633.392i 0.964269 0.964067i
\(658\) 275.105 + 476.496i 0.418093 + 0.724158i
\(659\) 521.251 + 91.9106i 0.790972 + 0.139470i 0.554517 0.832173i \(-0.312903\pi\)
0.236455 + 0.971642i \(0.424014\pi\)
\(660\) −200.712 315.090i −0.304108 0.477410i
\(661\) −3.61822 1.31693i −0.00547386 0.00199232i 0.339282 0.940685i \(-0.389816\pi\)
−0.344756 + 0.938692i \(0.612038\pi\)
\(662\) 131.401 361.022i 0.198492 0.545351i
\(663\) −22.6373 519.102i −0.0341437 0.782959i
\(664\) −51.8075 + 293.815i −0.0780234 + 0.442493i
\(665\) −594.012 + 342.953i −0.893251 + 0.515719i
\(666\) −124.924 + 87.4529i −0.187573 + 0.131311i
\(667\) −440.016 + 762.131i −0.659695 + 1.14262i
\(668\) 139.189 165.879i 0.208366 0.248322i
\(669\) 678.645 621.798i 1.01442 0.929444i
\(670\) 94.1722 + 534.077i 0.140556 + 0.797130i
\(671\) 373.817 + 445.497i 0.557104 + 0.663930i
\(672\) 59.4527 77.4719i 0.0884713 0.115286i
\(673\) 389.797 141.874i 0.579193 0.210809i −0.0357768 0.999360i \(-0.511391\pi\)
0.614970 + 0.788551i \(0.289168\pi\)
\(674\) 725.968i 1.07710i
\(675\) 39.4336 899.937i 0.0584201 1.33324i
\(676\) −762.863 −1.12850
\(677\) −406.146 1115.88i −0.599921 1.64827i −0.751430 0.659813i \(-0.770636\pi\)
0.151509 0.988456i \(-0.451587\pi\)
\(678\) −20.5679 + 8.51823i −0.0303361 + 0.0125638i
\(679\) 281.970 236.601i 0.415273 0.348455i
\(680\) 157.093 27.6998i 0.231019 0.0407350i
\(681\) −10.7353 + 34.0419i −0.0157640 + 0.0499881i
\(682\) −141.312 118.575i −0.207203 0.173864i
\(683\) 444.994 + 256.917i 0.651528 + 0.376160i 0.789041 0.614340i \(-0.210578\pi\)
−0.137513 + 0.990500i \(0.543911\pi\)
\(684\) −24.5067 + 279.776i −0.0358285 + 0.409029i
\(685\) 196.860 + 340.971i 0.287387 + 0.497768i
\(686\) −520.024 91.6943i −0.758053 0.133665i
\(687\) −533.880 + 1025.44i −0.777117 + 1.49264i
\(688\) 169.456 + 61.6768i 0.246302 + 0.0896466i
\(689\) −131.690 + 361.815i −0.191132 + 0.525131i
\(690\) −893.413 465.141i −1.29480 0.674117i
\(691\) 91.9225 521.318i 0.133028 0.754440i −0.843184 0.537625i \(-0.819322\pi\)
0.976213 0.216816i \(-0.0695671\pi\)
\(692\) −146.641 + 84.6632i −0.211909 + 0.122346i
\(693\) −178.346 382.569i −0.257354 0.552048i
\(694\) −126.678 + 219.413i −0.182533 + 0.316156i
\(695\) −528.625 + 629.990i −0.760611 + 0.906461i
\(696\) 229.164 + 72.2684i 0.329259 + 0.103834i
\(697\) −10.5930 60.0762i −0.0151981 0.0861925i
\(698\) −314.077 374.303i −0.449967 0.536250i
\(699\) −11.0274 26.6264i −0.0157760 0.0380922i
\(700\) −360.811 + 131.324i −0.515444 + 0.187606i
\(701\) 13.0718i 0.0186474i −0.999957 0.00932369i \(-0.997032\pi\)
0.999957 0.00932369i \(-0.00296787\pi\)
\(702\) 827.594 + 342.953i 1.17891 + 0.488537i
\(703\) −186.934 −0.265908
\(704\) 22.3004 + 61.2699i 0.0316768 + 0.0870312i
\(705\) −1229.29 943.368i −1.74367 1.33811i
\(706\) 266.201 223.369i 0.377055 0.316387i
\(707\) 944.823 166.598i 1.33638 0.235640i
\(708\) −236.081 257.664i −0.333448 0.363933i
\(709\) −584.480 490.437i −0.824372 0.691730i 0.129620 0.991564i \(-0.458624\pi\)
−0.953992 + 0.299834i \(0.903069\pi\)
\(710\) −382.853 221.040i −0.539230 0.311325i
\(711\) 690.844 60.3682i 0.971651 0.0849060i
\(712\) −0.493491 0.854752i −0.000693105 0.00120049i
\(713\) −489.803 86.3655i −0.686961 0.121130i
\(714\) 180.059 7.85211i 0.252183 0.0109974i
\(715\) −1372.71 499.624i −1.91987 0.698775i
\(716\) 114.760 315.300i 0.160279 0.440363i
\(717\) 260.507 165.942i 0.363330 0.231440i
\(718\) −136.456 + 773.883i −0.190051 + 1.07783i
\(719\) −782.468 + 451.758i −1.08827 + 0.628315i −0.933116 0.359575i \(-0.882922\pi\)
−0.155157 + 0.987890i \(0.549588\pi\)
\(720\) −71.2093 + 265.646i −0.0989019 + 0.368952i
\(721\) 289.476 501.386i 0.401492 0.695404i
\(722\) 106.866 127.357i 0.148013 0.176395i
\(723\) −69.1188 311.852i −0.0955999 0.431330i
\(724\) 100.530 + 570.135i 0.138854 + 0.787479i
\(725\) −607.297 723.748i −0.837650 0.998273i
\(726\) −229.552 30.2333i −0.316188 0.0416437i
\(727\) 906.427 329.912i 1.24680 0.453800i 0.367484 0.930030i \(-0.380219\pi\)
0.879321 + 0.476230i \(0.157997\pi\)
\(728\) 381.852i 0.524523i
\(729\) −515.319 515.643i −0.706885 0.707329i
\(730\) 1075.41 1.47317
\(731\) 113.829 + 312.744i 0.155717 + 0.427830i
\(732\) 55.9037 424.460i 0.0763712 0.579863i
\(733\) 421.118 353.360i 0.574513 0.482074i −0.308627 0.951183i \(-0.599869\pi\)
0.883140 + 0.469109i \(0.155425\pi\)
\(734\) −555.093 + 97.8778i −0.756257 + 0.133349i
\(735\) 355.484 78.7894i 0.483652 0.107196i
\(736\) 134.666 + 112.999i 0.182971 + 0.153531i
\(737\) −354.300 204.555i −0.480733 0.277551i
\(738\) 101.589 + 27.2321i 0.137655 + 0.0368999i
\(739\) −261.308 452.598i −0.353596 0.612446i 0.633281 0.773922i \(-0.281708\pi\)
−0.986877 + 0.161476i \(0.948375\pi\)
\(740\) −180.277 31.7877i −0.243618 0.0429564i
\(741\) 589.998 + 926.219i 0.796219 + 1.24996i
\(742\) −125.502 45.6788i −0.169140 0.0615618i
\(743\) −170.432 + 468.259i −0.229384 + 0.630227i −0.999975 0.00710282i \(-0.997739\pi\)
0.770591 + 0.637330i \(0.219961\pi\)
\(744\) 5.91650 + 135.673i 0.00795229 + 0.182356i
\(745\) −187.184 + 1061.57i −0.251254 + 1.42493i
\(746\) 501.747 289.684i 0.672583 0.388316i
\(747\) −82.6412 945.733i −0.110631 1.26604i
\(748\) −60.1678 + 104.214i −0.0804382 + 0.139323i
\(749\) −24.3312 + 28.9968i −0.0324850 + 0.0387141i
\(750\) 199.856 183.115i 0.266475 0.244154i
\(751\) 69.7868 + 395.781i 0.0929252 + 0.527005i 0.995363 + 0.0961857i \(0.0306643\pi\)
−0.902438 + 0.430819i \(0.858225\pi\)
\(752\) 173.837 + 207.171i 0.231166 + 0.275493i
\(753\) −149.036 + 194.207i −0.197923 + 0.257911i
\(754\) 882.919 321.356i 1.17098 0.426202i
\(755\) 1002.17i 1.32738i
\(756\) −118.959 + 287.065i −0.157353 + 0.379715i
\(757\) 564.958 0.746312 0.373156 0.927769i \(-0.378276\pi\)
0.373156 + 0.927769i \(0.378276\pi\)
\(758\) 29.7536 + 81.7474i 0.0392528 + 0.107846i
\(759\) 702.017 290.742i 0.924924 0.383059i
\(760\) −258.264 + 216.710i −0.339822 + 0.285144i
\(761\) −353.849 + 62.3930i −0.464978 + 0.0819882i −0.401229 0.915978i \(-0.631417\pi\)
−0.0637492 + 0.997966i \(0.520306\pi\)
\(762\) −56.7031 + 179.806i −0.0744135 + 0.235966i
\(763\) 876.669 + 735.612i 1.14898 + 0.964105i
\(764\) 69.8670 + 40.3377i 0.0914489 + 0.0527981i
\(765\) −460.045 + 214.464i −0.601366 + 0.280345i
\(766\) −143.784 249.041i