Properties

Label 54.3.f
Level $54$
Weight $3$
Character orbit 54.f
Rep. character $\chi_{54}(5,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $36$
Newform subspaces $1$
Sturm bound $27$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(27\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(54, [\chi])\).

Total New Old
Modular forms 120 36 84
Cusp forms 96 36 60
Eisenstein series 24 0 24

Trace form

\( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} + O(q^{10}) \) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(54, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
54.3.f.a 54.f 27.f $36$ $1.471$ None 54.3.f.a \(0\) \(0\) \(18\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{3}^{\mathrm{old}}(54, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)