Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.f (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(27\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(54, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 36 | 84 |
Cusp forms | 96 | 36 | 60 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(54, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
54.3.f.a | $36$ | $1.471$ | None | \(0\) | \(0\) | \(18\) | \(0\) |
Decomposition of \(S_{3}^{\mathrm{old}}(54, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)