Properties

Label 54.3.f.a.23.3
Level $54$
Weight $3$
Character 54.23
Analytic conductor $1.471$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,3,Mod(5,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 54.f (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47139342755\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(6\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 23.3
Character \(\chi\) \(=\) 54.23
Dual form 54.3.f.a.47.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.483690 + 1.32893i) q^{2} +(-0.391734 - 2.97431i) q^{3} +(-1.53209 - 1.28558i) q^{4} +(7.52350 + 1.32660i) q^{5} +(4.14212 + 0.918059i) q^{6} +(4.40811 - 3.69885i) q^{7} +(2.44949 - 1.41421i) q^{8} +(-8.69309 + 2.33028i) q^{9} +O(q^{10})\) \(q+(-0.483690 + 1.32893i) q^{2} +(-0.391734 - 2.97431i) q^{3} +(-1.53209 - 1.28558i) q^{4} +(7.52350 + 1.32660i) q^{5} +(4.14212 + 0.918059i) q^{6} +(4.40811 - 3.69885i) q^{7} +(2.44949 - 1.41421i) q^{8} +(-8.69309 + 2.33028i) q^{9} +(-5.40199 + 9.35652i) q^{10} +(8.02644 - 1.41528i) q^{11} +(-3.22353 + 5.06052i) q^{12} +(-22.0464 + 8.02423i) q^{13} +(2.78334 + 7.64715i) q^{14} +(0.998502 - 22.8969i) q^{15} +(0.694593 + 3.93923i) q^{16} +(6.39327 + 3.69115i) q^{17} +(1.10799 - 12.6796i) q^{18} +(-7.80130 - 13.5122i) q^{19} +(-9.82124 - 11.7045i) q^{20} +(-12.7283 - 11.6622i) q^{21} +(-2.00151 + 11.3511i) q^{22} +(-19.9755 + 23.8059i) q^{23} +(-5.16586 - 6.73156i) q^{24} +(31.3510 + 11.4108i) q^{25} -33.1793i q^{26} +(10.3364 + 24.9431i) q^{27} -11.5088 q^{28} +(-9.68546 + 26.6106i) q^{29} +(29.9454 + 12.4019i) q^{30} +(12.2601 + 10.2874i) q^{31} +(-5.57091 - 0.982302i) q^{32} +(-7.35371 - 23.3187i) q^{33} +(-7.99763 + 6.71081i) q^{34} +(38.0714 - 21.9805i) q^{35} +(16.3143 + 7.60542i) q^{36} +(5.99046 - 10.3758i) q^{37} +(21.7302 - 3.83162i) q^{38} +(32.5029 + 62.4295i) q^{39} +(20.3048 - 7.39036i) q^{40} +(2.82625 + 7.76505i) q^{41} +(21.6547 - 11.2742i) q^{42} +(-7.82854 - 44.3978i) q^{43} +(-14.1167 - 8.15026i) q^{44} +(-68.4938 + 5.99965i) q^{45} +(-21.9743 - 38.0606i) q^{46} +(-43.4592 - 51.7927i) q^{47} +(11.4444 - 3.60907i) q^{48} +(-2.75876 + 15.6457i) q^{49} +(-30.3283 + 36.1438i) q^{50} +(8.47419 - 20.4615i) q^{51} +(44.0928 + 16.0485i) q^{52} +16.4115i q^{53} +(-38.1472 + 1.67154i) q^{54} +62.2645 q^{55} +(5.56667 - 15.2943i) q^{56} +(-37.1336 + 28.4967i) q^{57} +(-30.6787 - 25.7425i) q^{58} +(57.3592 + 10.1140i) q^{59} +(-30.9655 + 33.7965i) q^{60} +(54.6605 - 45.8656i) q^{61} +(-19.6013 + 11.3168i) q^{62} +(-29.7008 + 42.4266i) q^{63} +(4.00000 - 6.92820i) q^{64} +(-176.511 + 31.1237i) q^{65} +(34.5458 + 1.50649i) q^{66} +(-47.1688 + 17.1680i) q^{67} +(-5.04980 - 13.8742i) q^{68} +(78.6313 + 50.0879i) q^{69} +(10.7958 + 61.2257i) q^{70} +(35.4363 + 20.4592i) q^{71} +(-17.9981 + 18.0019i) q^{72} +(-49.7692 - 86.2028i) q^{73} +(10.8911 + 12.9795i) q^{74} +(21.6581 - 97.7176i) q^{75} +(-5.41873 + 30.7311i) q^{76} +(30.1466 - 35.9273i) q^{77} +(-98.6855 + 12.9974i) q^{78} +(-72.4061 - 26.3537i) q^{79} +30.5583i q^{80} +(70.1396 - 40.5147i) q^{81} -11.6862 q^{82} +(36.0769 - 99.1205i) q^{83} +(4.50838 + 34.2307i) q^{84} +(43.2031 + 36.2517i) q^{85} +(62.7880 + 11.0712i) q^{86} +(82.9423 + 18.3833i) q^{87} +(17.6592 - 14.8178i) q^{88} +(-0.302200 + 0.174475i) q^{89} +(25.1567 - 93.9252i) q^{90} +(-67.5026 + 116.918i) q^{91} +(61.2085 - 10.7927i) q^{92} +(25.7954 - 40.4953i) q^{93} +(89.8494 - 32.7025i) q^{94} +(-40.7678 - 112.009i) q^{95} +(-0.739359 + 16.9544i) q^{96} +(11.1076 + 62.9944i) q^{97} +(-19.4576 - 11.2338i) q^{98} +(-66.4766 + 31.0070i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 36 q + 18 q^{5} + 12 q^{6} - 12 q^{9} - 18 q^{11} - 12 q^{12} - 36 q^{14} - 18 q^{15} - 48 q^{18} - 72 q^{20} - 228 q^{21} + 36 q^{22} - 180 q^{23} + 18 q^{25} + 54 q^{27} + 144 q^{29} + 144 q^{30} - 90 q^{31} + 324 q^{33} - 72 q^{34} + 486 q^{35} + 168 q^{36} + 180 q^{38} + 102 q^{39} - 90 q^{41} + 48 q^{42} + 90 q^{43} - 378 q^{45} - 378 q^{47} - 24 q^{48} + 72 q^{49} - 54 q^{51} - 36 q^{54} - 72 q^{56} + 72 q^{57} + 252 q^{59} + 36 q^{60} - 144 q^{61} + 318 q^{63} + 144 q^{64} + 18 q^{65} - 432 q^{66} - 594 q^{67} - 180 q^{68} - 522 q^{69} - 360 q^{70} - 648 q^{71} - 192 q^{72} + 126 q^{73} - 504 q^{74} - 438 q^{75} - 72 q^{76} - 342 q^{77} - 288 q^{78} - 72 q^{79} + 324 q^{81} + 594 q^{83} + 216 q^{84} + 360 q^{85} + 540 q^{86} + 1062 q^{87} + 144 q^{88} + 648 q^{89} + 720 q^{90} - 198 q^{91} + 396 q^{92} + 462 q^{93} + 504 q^{94} + 252 q^{95} + 96 q^{96} + 702 q^{97} + 648 q^{98} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.483690 + 1.32893i −0.241845 + 0.664463i
\(3\) −0.391734 2.97431i −0.130578 0.991438i
\(4\) −1.53209 1.28558i −0.383022 0.321394i
\(5\) 7.52350 + 1.32660i 1.50470 + 0.265319i 0.864400 0.502805i \(-0.167699\pi\)
0.640301 + 0.768124i \(0.278810\pi\)
\(6\) 4.14212 + 0.918059i 0.690354 + 0.153010i
\(7\) 4.40811 3.69885i 0.629731 0.528407i −0.271115 0.962547i \(-0.587392\pi\)
0.900845 + 0.434140i \(0.142948\pi\)
\(8\) 2.44949 1.41421i 0.306186 0.176777i
\(9\) −8.69309 + 2.33028i −0.965899 + 0.258920i
\(10\) −5.40199 + 9.35652i −0.540199 + 0.935652i
\(11\) 8.02644 1.41528i 0.729677 0.128662i 0.203546 0.979065i \(-0.434753\pi\)
0.526131 + 0.850404i \(0.323642\pi\)
\(12\) −3.22353 + 5.06052i −0.268628 + 0.421710i
\(13\) −22.0464 + 8.02423i −1.69588 + 0.617248i −0.995345 0.0963739i \(-0.969276\pi\)
−0.700531 + 0.713622i \(0.747053\pi\)
\(14\) 2.78334 + 7.64715i 0.198810 + 0.546225i
\(15\) 0.998502 22.8969i 0.0665668 1.52646i
\(16\) 0.694593 + 3.93923i 0.0434120 + 0.246202i
\(17\) 6.39327 + 3.69115i 0.376075 + 0.217127i 0.676109 0.736802i \(-0.263665\pi\)
−0.300034 + 0.953928i \(0.596998\pi\)
\(18\) 1.10799 12.6796i 0.0615547 0.704422i
\(19\) −7.80130 13.5122i −0.410595 0.711171i 0.584360 0.811494i \(-0.301346\pi\)
−0.994955 + 0.100324i \(0.968012\pi\)
\(20\) −9.82124 11.7045i −0.491062 0.585225i
\(21\) −12.7283 11.6622i −0.606112 0.555341i
\(22\) −2.00151 + 11.3511i −0.0909775 + 0.515959i
\(23\) −19.9755 + 23.8059i −0.868500 + 1.03504i 0.130549 + 0.991442i \(0.458326\pi\)
−0.999049 + 0.0435964i \(0.986118\pi\)
\(24\) −5.16586 6.73156i −0.215244 0.280482i
\(25\) 31.3510 + 11.4108i 1.25404 + 0.456433i
\(26\) 33.1793i 1.27613i
\(27\) 10.3364 + 24.9431i 0.382828 + 0.923819i
\(28\) −11.5088 −0.411027
\(29\) −9.68546 + 26.6106i −0.333981 + 0.917606i 0.653084 + 0.757286i \(0.273475\pi\)
−0.987065 + 0.160320i \(0.948747\pi\)
\(30\) 29.9454 + 12.4019i 0.998179 + 0.413398i
\(31\) 12.2601 + 10.2874i 0.395487 + 0.331853i 0.818746 0.574156i \(-0.194670\pi\)
−0.423259 + 0.906009i \(0.639114\pi\)
\(32\) −5.57091 0.982302i −0.174091 0.0306970i
\(33\) −7.35371 23.3187i −0.222840 0.706629i
\(34\) −7.99763 + 6.71081i −0.235224 + 0.197377i
\(35\) 38.0714 21.9805i 1.08775 0.628014i
\(36\) 16.3143 + 7.60542i 0.453176 + 0.211262i
\(37\) 5.99046 10.3758i 0.161904 0.280427i −0.773647 0.633617i \(-0.781570\pi\)
0.935552 + 0.353190i \(0.114903\pi\)
\(38\) 21.7302 3.83162i 0.571847 0.100832i
\(39\) 32.5029 + 62.4295i 0.833408 + 1.60076i
\(40\) 20.3048 7.39036i 0.507621 0.184759i
\(41\) 2.82625 + 7.76505i 0.0689329 + 0.189391i 0.969375 0.245583i \(-0.0789795\pi\)
−0.900443 + 0.434975i \(0.856757\pi\)
\(42\) 21.6547 11.2742i 0.515588 0.268433i
\(43\) −7.82854 44.3978i −0.182059 1.03251i −0.929676 0.368378i \(-0.879913\pi\)
0.747617 0.664130i \(-0.231198\pi\)
\(44\) −14.1167 8.15026i −0.320833 0.185233i
\(45\) −68.4938 + 5.99965i −1.52209 + 0.133326i
\(46\) −21.9743 38.0606i −0.477702 0.827405i
\(47\) −43.4592 51.7927i −0.924664 1.10197i −0.994534 0.104416i \(-0.966703\pi\)
0.0698695 0.997556i \(-0.477742\pi\)
\(48\) 11.4444 3.60907i 0.238425 0.0751889i
\(49\) −2.75876 + 15.6457i −0.0563012 + 0.319300i
\(50\) −30.3283 + 36.1438i −0.606565 + 0.722876i
\(51\) 8.47419 20.4615i 0.166161 0.401207i
\(52\) 44.0928 + 16.0485i 0.847938 + 0.308624i
\(53\) 16.4115i 0.309652i 0.987942 + 0.154826i \(0.0494816\pi\)
−0.987942 + 0.154826i \(0.950518\pi\)
\(54\) −38.1472 + 1.67154i −0.706429 + 0.0309544i
\(55\) 62.2645 1.13208
\(56\) 5.56667 15.2943i 0.0994048 0.273113i
\(57\) −37.1336 + 28.4967i −0.651467 + 0.499943i
\(58\) −30.6787 25.7425i −0.528944 0.443836i
\(59\) 57.3592 + 10.1140i 0.972190 + 0.171423i 0.637115 0.770768i \(-0.280127\pi\)
0.335074 + 0.942192i \(0.391239\pi\)
\(60\) −30.9655 + 33.7965i −0.516092 + 0.563275i
\(61\) 54.6605 45.8656i 0.896073 0.751895i −0.0733455 0.997307i \(-0.523368\pi\)
0.969419 + 0.245412i \(0.0789231\pi\)
\(62\) −19.6013 + 11.3168i −0.316151 + 0.182530i
\(63\) −29.7008 + 42.4266i −0.471441 + 0.673437i
\(64\) 4.00000 6.92820i 0.0625000 0.108253i
\(65\) −176.511 + 31.1237i −2.71555 + 0.478825i
\(66\) 34.5458 + 1.50649i 0.523421 + 0.0228256i
\(67\) −47.1688 + 17.1680i −0.704012 + 0.256239i −0.669123 0.743152i \(-0.733330\pi\)
−0.0348888 + 0.999391i \(0.511108\pi\)
\(68\) −5.04980 13.8742i −0.0742617 0.204032i
\(69\) 78.6313 + 50.0879i 1.13958 + 0.725911i
\(70\) 10.7958 + 61.2257i 0.154225 + 0.874654i
\(71\) 35.4363 + 20.4592i 0.499103 + 0.288157i 0.728343 0.685213i \(-0.240291\pi\)
−0.229240 + 0.973370i \(0.573624\pi\)
\(72\) −17.9981 + 18.0019i −0.249974 + 0.250026i
\(73\) −49.7692 86.2028i −0.681770 1.18086i −0.974440 0.224647i \(-0.927877\pi\)
0.292670 0.956213i \(-0.405456\pi\)
\(74\) 10.8911 + 12.9795i 0.147177 + 0.175399i
\(75\) 21.6581 97.7176i 0.288775 1.30290i
\(76\) −5.41873 + 30.7311i −0.0712990 + 0.404357i
\(77\) 30.1466 35.9273i 0.391514 0.466588i
\(78\) −98.6855 + 12.9974i −1.26520 + 0.166634i
\(79\) −72.4061 26.3537i −0.916533 0.333591i −0.159674 0.987170i \(-0.551044\pi\)
−0.756858 + 0.653579i \(0.773267\pi\)
\(80\) 30.5583i 0.381978i
\(81\) 70.1396 40.5147i 0.865921 0.500181i
\(82\) −11.6862 −0.142515
\(83\) 36.0769 99.1205i 0.434662 1.19422i −0.508259 0.861204i \(-0.669711\pi\)
0.942920 0.333018i \(-0.108067\pi\)
\(84\) 4.50838 + 34.2307i 0.0536712 + 0.407508i
\(85\) 43.2031 + 36.2517i 0.508272 + 0.426491i
\(86\) 62.7880 + 11.0712i 0.730093 + 0.128735i
\(87\) 82.9423 + 18.3833i 0.953360 + 0.211303i
\(88\) 17.6592 14.8178i 0.200673 0.168384i
\(89\) −0.302200 + 0.174475i −0.00339551 + 0.00196040i −0.501697 0.865044i \(-0.667291\pi\)
0.498301 + 0.867004i \(0.333957\pi\)
\(90\) 25.1567 93.9252i 0.279518 1.04361i
\(91\) −67.5026 + 116.918i −0.741787 + 1.28481i
\(92\) 61.2085 10.7927i 0.665310 0.117312i
\(93\) 25.7954 40.4953i 0.277370 0.435434i
\(94\) 89.8494 32.7025i 0.955845 0.347899i
\(95\) −40.7678 112.009i −0.429135 1.17904i
\(96\) −0.739359 + 16.9544i −0.00770165 + 0.176609i
\(97\) 11.1076 + 62.9944i 0.114511 + 0.649427i 0.986991 + 0.160776i \(0.0513997\pi\)
−0.872479 + 0.488651i \(0.837489\pi\)
\(98\) −19.4576 11.2338i −0.198547 0.114631i
\(99\) −66.4766 + 31.0070i −0.671481 + 0.313202i
\(100\) −33.3630 57.7864i −0.333630 0.577864i
\(101\) 107.169 + 127.719i 1.06107 + 1.26454i 0.963040 + 0.269357i \(0.0868111\pi\)
0.0980344 + 0.995183i \(0.468744\pi\)
\(102\) 23.0930 + 21.1586i 0.226402 + 0.207437i
\(103\) −17.4708 + 99.0819i −0.169620 + 0.961960i 0.774553 + 0.632509i \(0.217975\pi\)
−0.944173 + 0.329451i \(0.893136\pi\)
\(104\) −42.6544 + 50.8336i −0.410139 + 0.488784i
\(105\) −80.2908 104.626i −0.764674 0.996435i
\(106\) −21.8097 7.93809i −0.205752 0.0748876i
\(107\) 6.57806i 0.0614772i −0.999527 0.0307386i \(-0.990214\pi\)
0.999527 0.0307386i \(-0.00978594\pi\)
\(108\) 16.2300 51.5033i 0.150278 0.476882i
\(109\) 198.876 1.82455 0.912276 0.409576i \(-0.134323\pi\)
0.912276 + 0.409576i \(0.134323\pi\)
\(110\) −30.1167 + 82.7449i −0.273788 + 0.752226i
\(111\) −33.2075 13.7530i −0.299167 0.123901i
\(112\) 17.6325 + 14.7954i 0.157433 + 0.132102i
\(113\) −5.16749 0.911168i −0.0457300 0.00806344i 0.150736 0.988574i \(-0.451836\pi\)
−0.196466 + 0.980511i \(0.562947\pi\)
\(114\) −19.9089 63.1314i −0.174639 0.553784i
\(115\) −181.867 + 152.604i −1.58145 + 1.32699i
\(116\) 49.0489 28.3184i 0.422835 0.244124i
\(117\) 172.952 121.130i 1.47823 1.03530i
\(118\) −41.1848 + 71.3341i −0.349023 + 0.604526i
\(119\) 41.8353 7.37669i 0.351557 0.0619890i
\(120\) −29.9353 57.4979i −0.249461 0.479149i
\(121\) −51.2820 + 18.6651i −0.423819 + 0.154257i
\(122\) 34.5133 + 94.8244i 0.282896 + 0.777250i
\(123\) 21.9886 11.4480i 0.178769 0.0930730i
\(124\) −5.55828 31.5226i −0.0448248 0.254214i
\(125\) 55.3300 + 31.9448i 0.442640 + 0.255558i
\(126\) −42.0158 59.9914i −0.333459 0.476122i
\(127\) −22.2191 38.4846i −0.174954 0.303029i 0.765192 0.643803i \(-0.222644\pi\)
−0.940145 + 0.340774i \(0.889311\pi\)
\(128\) 7.27231 + 8.66680i 0.0568149 + 0.0677094i
\(129\) −128.986 + 40.6767i −0.999895 + 0.315323i
\(130\) 44.0155 249.624i 0.338581 1.92019i
\(131\) 25.8274 30.7798i 0.197155 0.234961i −0.658405 0.752664i \(-0.728768\pi\)
0.855560 + 0.517703i \(0.173213\pi\)
\(132\) −18.7115 + 45.1801i −0.141753 + 0.342274i
\(133\) −84.3688 30.7077i −0.634352 0.230885i
\(134\) 70.9878i 0.529760i
\(135\) 44.6762 + 201.372i 0.330935 + 1.49164i
\(136\) 20.8803 0.153532
\(137\) 17.6267 48.4289i 0.128662 0.353495i −0.858590 0.512663i \(-0.828659\pi\)
0.987252 + 0.159168i \(0.0508811\pi\)
\(138\) −104.596 + 80.2682i −0.757943 + 0.581653i
\(139\) −82.4641 69.1956i −0.593267 0.497810i 0.296006 0.955186i \(-0.404345\pi\)
−0.889274 + 0.457376i \(0.848789\pi\)
\(140\) −86.5863 15.2675i −0.618473 0.109054i
\(141\) −137.023 + 149.550i −0.971796 + 1.06064i
\(142\) −44.3289 + 37.1964i −0.312175 + 0.261946i
\(143\) −165.598 + 95.6078i −1.15802 + 0.668586i
\(144\) −15.2177 32.6255i −0.105678 0.226566i
\(145\) −108.170 + 187.356i −0.746001 + 1.29211i
\(146\) 138.630 24.4442i 0.949520 0.167426i
\(147\) 47.6159 + 2.07646i 0.323918 + 0.0141256i
\(148\) −22.5168 + 8.19544i −0.152140 + 0.0553746i
\(149\) −48.2594 132.592i −0.323888 0.889876i −0.989623 0.143688i \(-0.954104\pi\)
0.665735 0.746189i \(-0.268118\pi\)
\(150\) 119.384 + 76.0470i 0.795891 + 0.506980i
\(151\) −22.7795 129.189i −0.150858 0.855557i −0.962476 0.271368i \(-0.912524\pi\)
0.811618 0.584189i \(-0.198587\pi\)
\(152\) −38.2184 22.0654i −0.251437 0.145167i
\(153\) −64.1787 17.1894i −0.419468 0.112349i
\(154\) 33.1631 + 57.4402i 0.215345 + 0.372988i
\(155\) 78.5916 + 93.6618i 0.507043 + 0.604270i
\(156\) 30.4605 137.432i 0.195260 0.880978i
\(157\) 33.4745 189.844i 0.213214 1.20919i −0.670766 0.741669i \(-0.734034\pi\)
0.883980 0.467526i \(-0.154854\pi\)
\(158\) 70.0441 83.4753i 0.443317 0.528325i
\(159\) 48.8131 6.42896i 0.307000 0.0404337i
\(160\) −40.6097 14.7807i −0.253810 0.0923795i
\(161\) 178.825i 1.11072i
\(162\) 19.9152 + 112.807i 0.122934 + 0.696339i
\(163\) 80.4819 0.493754 0.246877 0.969047i \(-0.420596\pi\)
0.246877 + 0.969047i \(0.420596\pi\)
\(164\) 5.65249 15.5301i 0.0344664 0.0946957i
\(165\) −24.3911 185.194i −0.147825 1.12239i
\(166\) 114.274 + 95.8871i 0.688396 + 0.577633i
\(167\) −106.625 18.8008i −0.638472 0.112580i −0.154964 0.987920i \(-0.549526\pi\)
−0.483508 + 0.875340i \(0.660637\pi\)
\(168\) −47.6707 10.5657i −0.283754 0.0628912i
\(169\) 292.193 245.179i 1.72896 1.45077i
\(170\) −69.0727 + 39.8792i −0.406310 + 0.234583i
\(171\) 99.3047 + 99.2839i 0.580729 + 0.580608i
\(172\) −45.0827 + 78.0856i −0.262109 + 0.453986i
\(173\) 83.3770 14.7016i 0.481948 0.0849804i 0.0726044 0.997361i \(-0.476869\pi\)
0.409343 + 0.912380i \(0.365758\pi\)
\(174\) −64.5484 + 101.332i −0.370968 + 0.582370i
\(175\) 180.405 65.6622i 1.03089 0.375213i
\(176\) 11.1502 + 30.6350i 0.0633535 + 0.174062i
\(177\) 7.61258 174.566i 0.0430089 0.986250i
\(178\) −0.0856938 0.485994i −0.000481426 0.00273030i
\(179\) −145.291 83.8837i −0.811681 0.468624i 0.0358583 0.999357i \(-0.488583\pi\)
−0.847539 + 0.530733i \(0.821917\pi\)
\(180\) 112.652 + 78.8620i 0.625843 + 0.438122i
\(181\) 144.733 + 250.684i 0.799627 + 1.38500i 0.919859 + 0.392249i \(0.128303\pi\)
−0.120232 + 0.992746i \(0.538364\pi\)
\(182\) −122.725 146.258i −0.674313 0.803615i
\(183\) −157.831 144.610i −0.862465 0.790220i
\(184\) −15.2632 + 86.5619i −0.0829522 + 0.470445i
\(185\) 58.8338 70.1154i 0.318020 0.379002i
\(186\) 41.3383 + 53.8673i 0.222249 + 0.289609i
\(187\) 56.5392 + 20.5786i 0.302349 + 0.110046i
\(188\) 135.221i 0.719261i
\(189\) 137.825 + 71.7195i 0.729231 + 0.379468i
\(190\) 168.570 0.887211
\(191\) −13.7963 + 37.9051i −0.0722320 + 0.198456i −0.970555 0.240880i \(-0.922564\pi\)
0.898323 + 0.439336i \(0.144786\pi\)
\(192\) −22.1736 9.18324i −0.115487 0.0478294i
\(193\) −185.784 155.891i −0.962610 0.807726i 0.0187656 0.999824i \(-0.494026\pi\)
−0.981376 + 0.192098i \(0.938471\pi\)
\(194\) −89.0875 15.7085i −0.459214 0.0809718i
\(195\) 161.717 + 512.807i 0.829318 + 2.62978i
\(196\) 24.3404 20.4240i 0.124186 0.104204i
\(197\) −4.72432 + 2.72758i −0.0239813 + 0.0138456i −0.511943 0.859020i \(-0.671074\pi\)
0.487961 + 0.872865i \(0.337741\pi\)
\(198\) −9.05199 103.340i −0.0457171 0.521920i
\(199\) 71.5073 123.854i 0.359333 0.622383i −0.628516 0.777796i \(-0.716337\pi\)
0.987850 + 0.155413i \(0.0496708\pi\)
\(200\) 92.9312 16.3863i 0.464656 0.0819314i
\(201\) 69.5407 + 133.569i 0.345974 + 0.664525i
\(202\) −221.565 + 80.6430i −1.09686 + 0.399223i
\(203\) 55.7339 + 153.127i 0.274551 + 0.754323i
\(204\) −39.2881 + 20.4547i −0.192589 + 0.100268i
\(205\) 10.9622 + 62.1697i 0.0534741 + 0.303267i
\(206\) −123.222 71.1423i −0.598165 0.345351i
\(207\) 118.174 253.495i 0.570891 1.22461i
\(208\) −46.9226 81.2722i −0.225589 0.390732i
\(209\) −81.7403 97.4143i −0.391102 0.466097i
\(210\) 177.876 56.0942i 0.847026 0.267115i
\(211\) −1.49994 + 8.50659i −0.00710873 + 0.0403156i −0.988156 0.153454i \(-0.950960\pi\)
0.981047 + 0.193770i \(0.0620714\pi\)
\(212\) 21.0983 25.1439i 0.0995201 0.118603i
\(213\) 46.9704 113.413i 0.220518 0.532457i
\(214\) 8.74176 + 3.18174i 0.0408493 + 0.0148679i
\(215\) 344.413i 1.60192i
\(216\) 60.5937 + 46.4801i 0.280527 + 0.215186i
\(217\) 92.0956 0.424404
\(218\) −96.1943 + 264.292i −0.441258 + 1.21235i
\(219\) −236.898 + 181.798i −1.08173 + 0.830127i
\(220\) −95.3947 80.0457i −0.433612 0.363844i
\(221\) −170.567 30.0756i −0.771797 0.136089i
\(222\) 34.3388 37.4782i 0.154679 0.168821i
\(223\) −235.030 + 197.214i −1.05395 + 0.884367i −0.993503 0.113805i \(-0.963696\pi\)
−0.0604441 + 0.998172i \(0.519252\pi\)
\(224\) −28.1906 + 16.2759i −0.125851 + 0.0726601i
\(225\) −299.127 26.1387i −1.32945 0.116172i
\(226\) 3.71034 6.42649i 0.0164174 0.0284358i
\(227\) 11.7174 2.06609i 0.0516185 0.00910173i −0.147779 0.989020i \(-0.547213\pi\)
0.199398 + 0.979919i \(0.436101\pi\)
\(228\) 93.5267 + 4.07856i 0.410205 + 0.0178884i
\(229\) 362.125 131.803i 1.58133 0.575558i 0.605839 0.795587i \(-0.292837\pi\)
0.975493 + 0.220029i \(0.0706153\pi\)
\(230\) −114.833 315.500i −0.499273 1.37174i
\(231\) −118.668 75.5914i −0.513716 0.327236i
\(232\) 13.9086 + 78.8796i 0.0599509 + 0.339998i
\(233\) −8.31951 4.80327i −0.0357060 0.0206149i 0.482041 0.876149i \(-0.339896\pi\)
−0.517747 + 0.855534i \(0.673229\pi\)
\(234\) 77.3170 + 288.430i 0.330414 + 1.23261i
\(235\) −258.258 447.315i −1.09897 1.90347i
\(236\) −74.8771 89.2351i −0.317276 0.378115i
\(237\) −50.0201 + 225.682i −0.211055 + 0.952245i
\(238\) −10.4322 + 59.1640i −0.0438328 + 0.248588i
\(239\) −66.1793 + 78.8695i −0.276901 + 0.329998i −0.886514 0.462701i \(-0.846880\pi\)
0.609613 + 0.792699i \(0.291325\pi\)
\(240\) 90.8899 11.9707i 0.378708 0.0498780i
\(241\) −100.052 36.4160i −0.415154 0.151104i 0.125994 0.992031i \(-0.459788\pi\)
−0.541148 + 0.840927i \(0.682010\pi\)
\(242\) 77.1782i 0.318918i
\(243\) −147.979 192.746i −0.608969 0.793194i
\(244\) −142.708 −0.584870
\(245\) −41.5111 + 114.051i −0.169433 + 0.465513i
\(246\) 4.57789 + 34.7584i 0.0186093 + 0.141294i
\(247\) 280.416 + 235.297i 1.13529 + 0.952619i
\(248\) 44.5796 + 7.86059i 0.179757 + 0.0316959i
\(249\) −308.948 68.4752i −1.24076 0.275001i
\(250\) −69.2148 + 58.0781i −0.276859 + 0.232312i
\(251\) 70.6683 40.8004i 0.281547 0.162551i −0.352577 0.935783i \(-0.614694\pi\)
0.634124 + 0.773232i \(0.281361\pi\)
\(252\) 100.047 26.8187i 0.397011 0.106423i
\(253\) −126.640 + 219.347i −0.500555 + 0.866986i
\(254\) 61.8904 10.9129i 0.243663 0.0429643i
\(255\) 90.8998 142.701i 0.356470 0.559610i
\(256\) −15.0351 + 5.47232i −0.0587308 + 0.0213763i
\(257\) 150.247 + 412.801i 0.584620 + 1.60623i 0.780192 + 0.625541i \(0.215122\pi\)
−0.195572 + 0.980689i \(0.562656\pi\)
\(258\) 8.33308 191.088i 0.0322988 0.740652i
\(259\) −11.9718 67.8955i −0.0462232 0.262145i
\(260\) 310.442 + 179.234i 1.19401 + 0.689361i
\(261\) 22.1864 253.898i 0.0850055 0.972789i
\(262\) 28.4117 + 49.2105i 0.108442 + 0.187826i
\(263\) 289.840 + 345.418i 1.10205 + 1.31338i 0.945469 + 0.325711i \(0.105604\pi\)
0.156584 + 0.987665i \(0.449952\pi\)
\(264\) −50.9905 46.7193i −0.193146 0.176967i
\(265\) −21.7715 + 123.472i −0.0821566 + 0.465933i
\(266\) 81.6166 97.2668i 0.306829 0.365665i
\(267\) 0.637327 + 0.830491i 0.00238699 + 0.00311045i
\(268\) 94.3375 + 34.3361i 0.352006 + 0.128120i
\(269\) 363.566i 1.35155i 0.737110 + 0.675773i \(0.236190\pi\)
−0.737110 + 0.675773i \(0.763810\pi\)
\(270\) −289.218 38.0301i −1.07118 0.140852i
\(271\) −70.6655 −0.260758 −0.130379 0.991464i \(-0.541619\pi\)
−0.130379 + 0.991464i \(0.541619\pi\)
\(272\) −10.0996 + 27.7484i −0.0371309 + 0.102016i
\(273\) 374.194 + 154.973i 1.37067 + 0.567667i
\(274\) 55.8326 + 46.8491i 0.203768 + 0.170982i
\(275\) 267.786 + 47.2179i 0.973768 + 0.171701i
\(276\) −56.0784 177.825i −0.203182 0.644295i
\(277\) −178.872 + 150.091i −0.645746 + 0.541845i −0.905777 0.423755i \(-0.860712\pi\)
0.260031 + 0.965600i \(0.416267\pi\)
\(278\) 131.843 76.1195i 0.474255 0.273811i
\(279\) −130.551 60.8602i −0.467924 0.218137i
\(280\) 62.1703 107.682i 0.222037 0.384579i
\(281\) −284.922 + 50.2394i −1.01396 + 0.178788i −0.655849 0.754892i \(-0.727689\pi\)
−0.358108 + 0.933680i \(0.616578\pi\)
\(282\) −132.465 254.430i −0.469733 0.902233i
\(283\) −144.152 + 52.4669i −0.509370 + 0.185395i −0.583903 0.811823i \(-0.698475\pi\)
0.0745339 + 0.997218i \(0.476253\pi\)
\(284\) −27.9898 76.9013i −0.0985556 0.270779i
\(285\) −317.179 + 165.134i −1.11291 + 0.579417i
\(286\) −46.9579 266.311i −0.164188 0.931159i
\(287\) 41.1802 + 23.7754i 0.143485 + 0.0828410i
\(288\) 50.7175 4.44255i 0.176102 0.0154255i
\(289\) −117.251 203.084i −0.405712 0.702714i
\(290\) −196.662 234.372i −0.678144 0.808180i
\(291\) 183.014 57.7146i 0.628914 0.198332i
\(292\) −34.5693 + 196.052i −0.118388 + 0.671412i
\(293\) 104.985 125.117i 0.358311 0.427019i −0.556533 0.830826i \(-0.687869\pi\)
0.914844 + 0.403807i \(0.132313\pi\)
\(294\) −25.7908 + 62.2737i −0.0877237 + 0.211815i
\(295\) 418.125 + 152.185i 1.41737 + 0.515882i
\(296\) 33.8872i 0.114484i
\(297\) 118.266 + 185.576i 0.398201 + 0.624834i
\(298\) 199.547 0.669621
\(299\) 249.364 685.122i 0.833993 2.29138i
\(300\) −158.805 + 121.869i −0.529351 + 0.406230i
\(301\) −198.730 166.754i −0.660232 0.554001i
\(302\) 182.701 + 32.2151i 0.604970 + 0.106673i
\(303\) 337.893 368.785i 1.11516 1.21711i
\(304\) 47.8091 40.1166i 0.157267 0.131963i
\(305\) 472.084 272.558i 1.54781 0.893631i
\(306\) 53.8860 76.9744i 0.176098 0.251550i
\(307\) 163.324 282.886i 0.532000 0.921452i −0.467302 0.884098i \(-0.654774\pi\)
0.999302 0.0373539i \(-0.0118929\pi\)
\(308\) −92.3745 + 16.2881i −0.299917 + 0.0528835i
\(309\) 301.545 + 13.1499i 0.975873 + 0.0425564i
\(310\) −162.484 + 59.1392i −0.524141 + 0.190772i
\(311\) 159.228 + 437.476i 0.511988 + 1.40668i 0.879162 + 0.476524i \(0.158103\pi\)
−0.367173 + 0.930152i \(0.619674\pi\)
\(312\) 167.904 + 106.954i 0.538154 + 0.342803i
\(313\) 38.0827 + 215.978i 0.121670 + 0.690025i 0.983230 + 0.182369i \(0.0583766\pi\)
−0.861560 + 0.507655i \(0.830512\pi\)
\(314\) 236.097 + 136.311i 0.751901 + 0.434110i
\(315\) −279.737 + 279.795i −0.888054 + 0.888239i
\(316\) 77.0529 + 133.460i 0.243838 + 0.422341i
\(317\) −81.8800 97.5807i −0.258296 0.307826i 0.621275 0.783593i \(-0.286615\pi\)
−0.879571 + 0.475767i \(0.842171\pi\)
\(318\) −15.0668 + 67.9786i −0.0473797 + 0.213769i
\(319\) −40.0784 + 227.296i −0.125638 + 0.712526i
\(320\) 39.2850 46.8180i 0.122765 0.146306i
\(321\) −19.5652 + 2.57685i −0.0609508 + 0.00802757i
\(322\) −237.646 86.4960i −0.738030 0.268621i
\(323\) 115.183i 0.356604i
\(324\) −159.545 28.0976i −0.492422 0.0867211i
\(325\) −782.738 −2.40843
\(326\) −38.9282 + 106.954i −0.119412 + 0.328081i
\(327\) −77.9066 591.520i −0.238246 1.80893i
\(328\) 17.9043 + 15.0235i 0.0545863 + 0.0458033i
\(329\) −383.146 67.5591i −1.16458 0.205347i
\(330\) 257.907 + 57.1625i 0.781536 + 0.173220i
\(331\) 208.107 174.623i 0.628723 0.527561i −0.271809 0.962351i \(-0.587622\pi\)
0.900532 + 0.434790i \(0.143177\pi\)
\(332\) −182.700 + 105.482i −0.550301 + 0.317716i
\(333\) −27.8971 + 104.157i −0.0837752 + 0.312784i
\(334\) 76.5582 132.603i 0.229216 0.397014i
\(335\) −377.650 + 66.5898i −1.12731 + 0.198776i
\(336\) 37.0989 58.2403i 0.110413 0.173334i
\(337\) −482.379 + 175.572i −1.43139 + 0.520984i −0.937330 0.348443i \(-0.886710\pi\)
−0.494061 + 0.869427i \(0.664488\pi\)
\(338\) 184.494 + 506.894i 0.545841 + 1.49969i
\(339\) −0.685818 + 15.7267i −0.00202306 + 0.0463914i
\(340\) −19.5867 111.082i −0.0576079 0.326711i
\(341\) 112.965 + 65.2201i 0.331274 + 0.191261i
\(342\) −179.974 + 83.9460i −0.526239 + 0.245456i
\(343\) 186.693 + 323.361i 0.544293 + 0.942743i
\(344\) −81.9639 97.6808i −0.238267 0.283956i
\(345\) 525.136 + 481.148i 1.52213 + 1.39463i
\(346\) −20.7912 + 117.913i −0.0600902 + 0.340789i
\(347\) −115.155 + 137.237i −0.331859 + 0.395494i −0.906011 0.423255i \(-0.860888\pi\)
0.574152 + 0.818749i \(0.305332\pi\)
\(348\) −103.442 134.793i −0.297247 0.387338i
\(349\) 324.668 + 118.170i 0.930281 + 0.338595i 0.762321 0.647199i \(-0.224060\pi\)
0.167960 + 0.985794i \(0.446282\pi\)
\(350\) 271.506i 0.775730i
\(351\) −428.029 466.964i −1.21946 1.33038i
\(352\) −46.1048 −0.130980
\(353\) 84.0412 230.901i 0.238077 0.654112i −0.761902 0.647692i \(-0.775734\pi\)
0.999979 0.00641959i \(-0.00204343\pi\)
\(354\) 228.304 + 94.5524i 0.644925 + 0.267097i
\(355\) 239.464 + 200.934i 0.674547 + 0.566012i
\(356\) 0.687299 + 0.121189i 0.00193062 + 0.000340420i
\(357\) −38.3289 121.542i −0.107364 0.340452i
\(358\) 181.751 152.507i 0.507684 0.425998i
\(359\) −481.215 + 277.830i −1.34043 + 0.773899i −0.986871 0.161512i \(-0.948363\pi\)
−0.353562 + 0.935411i \(0.615030\pi\)
\(360\) −159.290 + 111.561i −0.442473 + 0.309892i
\(361\) 58.7794 101.809i 0.162824 0.282019i
\(362\) −403.146 + 71.0856i −1.11366 + 0.196369i
\(363\) 75.6049 + 145.217i 0.208278 + 0.400047i
\(364\) 253.727 92.3490i 0.697052 0.253706i
\(365\) −260.082 714.571i −0.712555 1.95773i
\(366\) 268.518 139.799i 0.733655 0.381965i
\(367\) 69.2101 + 392.510i 0.188583 + 1.06951i 0.921264 + 0.388937i \(0.127158\pi\)
−0.732681 + 0.680572i \(0.761731\pi\)
\(368\) −107.652 62.1527i −0.292532 0.168893i
\(369\) −42.6636 60.9163i −0.115619 0.165085i
\(370\) 64.7209 + 112.100i 0.174921 + 0.302972i
\(371\) 60.7038 + 72.3439i 0.163622 + 0.194997i
\(372\) −91.5806 + 28.8805i −0.246184 + 0.0776358i
\(373\) 71.1393 403.451i 0.190722 1.08164i −0.727659 0.685939i \(-0.759392\pi\)
0.918381 0.395698i \(-0.129497\pi\)
\(374\) −54.6948 + 65.1828i −0.146243 + 0.174285i
\(375\) 73.3392 177.083i 0.195571 0.472220i
\(376\) −179.699 65.4050i −0.477922 0.173950i
\(377\) 664.385i 1.76230i
\(378\) −161.974 + 148.469i −0.428503 + 0.392775i
\(379\) −61.5139 −0.162306 −0.0811529 0.996702i \(-0.525860\pi\)
−0.0811529 + 0.996702i \(0.525860\pi\)
\(380\) −81.5356 + 224.017i −0.214567 + 0.589519i
\(381\) −105.761 + 81.1623i −0.277589 + 0.213025i
\(382\) −43.6999 36.6686i −0.114398 0.0959910i
\(383\) 200.252 + 35.3098i 0.522851 + 0.0921927i 0.428844 0.903379i \(-0.358921\pi\)
0.0940074 + 0.995572i \(0.470032\pi\)
\(384\) 22.9290 25.0252i 0.0597109 0.0651698i
\(385\) 274.469 230.307i 0.712906 0.598199i
\(386\) 297.029 171.490i 0.769506 0.444275i
\(387\) 171.514 + 367.712i 0.443188 + 0.950159i
\(388\) 63.9662 110.793i 0.164861 0.285548i
\(389\) −251.130 + 44.2810i −0.645579 + 0.113833i −0.486845 0.873488i \(-0.661852\pi\)
−0.158734 + 0.987321i \(0.550741\pi\)
\(390\) −759.703 33.1296i −1.94796 0.0849476i
\(391\) −215.580 + 78.4647i −0.551355 + 0.200677i
\(392\) 15.3688 + 42.2254i 0.0392061 + 0.107718i
\(393\) −101.666 64.7612i −0.258693 0.164787i
\(394\) −1.33966 7.59757i −0.00340014 0.0192832i
\(395\) −509.787 294.326i −1.29060 0.745128i
\(396\) 141.710 + 37.9552i 0.357853 + 0.0958463i
\(397\) 13.8139 + 23.9264i 0.0347957 + 0.0602679i 0.882899 0.469563i \(-0.155589\pi\)
−0.848103 + 0.529831i \(0.822255\pi\)
\(398\) 130.006 + 154.935i 0.326648 + 0.389284i
\(399\) −58.2843 + 262.968i −0.146076 + 0.659069i
\(400\) −23.1737 + 131.425i −0.0579342 + 0.328561i
\(401\) −240.702 + 286.857i −0.600254 + 0.715354i −0.977542 0.210741i \(-0.932412\pi\)
0.377288 + 0.926096i \(0.376857\pi\)
\(402\) −211.140 + 27.8083i −0.525224 + 0.0691750i
\(403\) −352.840 128.423i −0.875533 0.318668i
\(404\) 333.449i 0.825370i
\(405\) 581.442 211.765i 1.43566 0.522878i
\(406\) −230.453 −0.567618
\(407\) 33.3975 91.7588i 0.0820577 0.225452i
\(408\) −8.17954 62.1046i −0.0200479 0.152217i
\(409\) 156.992 + 131.732i 0.383843 + 0.322082i 0.814209 0.580572i \(-0.197171\pi\)
−0.430366 + 0.902654i \(0.641616\pi\)
\(410\) −87.9212 15.5029i −0.214442 0.0378119i
\(411\) −150.948 33.4560i −0.367269 0.0814015i
\(412\) 154.144 129.342i 0.374136 0.313937i
\(413\) 290.256 167.579i 0.702799 0.405761i
\(414\) 279.717 + 279.658i 0.675644 + 0.675503i
\(415\) 402.918 697.874i 0.970886 1.68162i
\(416\) 130.701 23.0461i 0.314184 0.0553992i
\(417\) −173.505 + 272.380i −0.416080 + 0.653191i
\(418\) 168.993 61.5085i 0.404290 0.147150i
\(419\) 81.7427 + 224.586i 0.195090 + 0.536005i 0.998210 0.0598126i \(-0.0190503\pi\)
−0.803120 + 0.595818i \(0.796828\pi\)
\(420\) −11.4915 + 263.516i −0.0273608 + 0.627418i
\(421\) 34.6408 + 196.458i 0.0822821 + 0.466645i 0.997910 + 0.0646183i \(0.0205830\pi\)
−0.915628 + 0.402027i \(0.868306\pi\)
\(422\) −10.5791 6.10786i −0.0250690 0.0144736i
\(423\) 498.486 + 348.966i 1.17845 + 0.824979i
\(424\) 23.2094 + 40.1999i 0.0547392 + 0.0948111i
\(425\) 158.316 + 188.674i 0.372508 + 0.443938i
\(426\) 127.999 + 117.277i 0.300467 + 0.275298i
\(427\) 71.2998 404.362i 0.166979 0.946983i
\(428\) −8.45659 + 10.0782i −0.0197584 + 0.0235471i
\(429\) 349.238 + 455.086i 0.814074 + 1.06081i
\(430\) 457.699 + 166.589i 1.06442 + 0.387416i
\(431\) 235.094i 0.545461i −0.962090 0.272731i \(-0.912073\pi\)
0.962090 0.272731i \(-0.0879267\pi\)
\(432\) −91.0772 + 58.0427i −0.210827 + 0.134358i
\(433\) −391.650 −0.904504 −0.452252 0.891890i \(-0.649379\pi\)
−0.452252 + 0.891890i \(0.649379\pi\)
\(434\) −44.5457 + 122.388i −0.102640 + 0.282001i
\(435\) 599.630 + 248.338i 1.37846 + 0.570892i
\(436\) −304.696 255.670i −0.698844 0.586400i
\(437\) 477.506 + 84.1972i 1.09269 + 0.192671i
\(438\) −127.011 402.753i −0.289979 0.919528i
\(439\) 62.2561 52.2391i 0.141813 0.118996i −0.569121 0.822254i \(-0.692717\pi\)
0.710935 + 0.703258i \(0.248272\pi\)
\(440\) 152.516 88.0553i 0.346628 0.200126i
\(441\) −12.4767 142.438i −0.0282919 0.322989i
\(442\) 122.470 212.124i 0.277081 0.479918i
\(443\) 519.689 91.6352i 1.17311 0.206851i 0.447069 0.894500i \(-0.352468\pi\)
0.726044 + 0.687648i \(0.241357\pi\)
\(444\) 33.1964 + 63.7615i 0.0747667 + 0.143607i
\(445\) −2.50506 + 0.911769i −0.00562936 + 0.00204892i
\(446\) −148.401 407.728i −0.332737 0.914188i
\(447\) −375.464 + 195.479i −0.839965 + 0.437314i
\(448\) −7.99391 45.3357i −0.0178435 0.101196i
\(449\) −104.119 60.1132i −0.231891 0.133882i 0.379553 0.925170i \(-0.376078\pi\)
−0.611444 + 0.791288i \(0.709411\pi\)
\(450\) 179.421 384.875i 0.398713 0.855277i
\(451\) 33.6744 + 58.3258i 0.0746661 + 0.129326i
\(452\) 6.74568 + 8.03919i 0.0149241 + 0.0177858i
\(453\) −375.325 + 118.361i −0.828533 + 0.261283i
\(454\) −2.92190 + 16.5709i −0.00643590 + 0.0364998i
\(455\) −662.959 + 790.084i −1.45705 + 1.73645i
\(456\) −50.6580 + 122.317i −0.111092 + 0.268240i
\(457\) 134.507 + 48.9566i 0.294326 + 0.107126i 0.484963 0.874535i \(-0.338833\pi\)
−0.190637 + 0.981661i \(0.561055\pi\)
\(458\) 544.989i 1.18993i
\(459\) −25.9858 + 197.621i −0.0566139 + 0.430547i
\(460\) 474.820 1.03222
\(461\) −80.7643 + 221.898i −0.175194 + 0.481341i −0.995947 0.0899422i \(-0.971332\pi\)
0.820753 + 0.571283i \(0.193554\pi\)
\(462\) 157.854 121.139i 0.341676 0.262205i
\(463\) 113.622 + 95.3405i 0.245405 + 0.205919i 0.757191 0.653194i \(-0.226571\pi\)
−0.511786 + 0.859113i \(0.671016\pi\)
\(464\) −111.553 19.6697i −0.240415 0.0423917i
\(465\) 247.793 270.447i 0.532888 0.581606i
\(466\) 10.4073 8.73272i 0.0223332 0.0187397i
\(467\) −78.1166 + 45.1006i −0.167273 + 0.0965752i −0.581299 0.813690i \(-0.697456\pi\)
0.414026 + 0.910265i \(0.364122\pi\)
\(468\) −420.700 36.7621i −0.898931 0.0785515i
\(469\) −144.423 + 250.149i −0.307939 + 0.533366i
\(470\) 719.366 126.844i 1.53056 0.269880i
\(471\) −577.767 25.1956i −1.22668 0.0534938i
\(472\) 154.804 56.3441i 0.327975 0.119373i
\(473\) −125.671 345.277i −0.265688 0.729973i
\(474\) −275.721 175.633i −0.581689 0.370534i
\(475\) −90.3924 512.641i −0.190300 1.07924i
\(476\) −73.5786 42.4806i −0.154577 0.0892451i
\(477\) −38.2435 142.667i −0.0801750 0.299092i
\(478\) −72.8014 126.096i −0.152304 0.263799i
\(479\) −165.915 197.730i −0.346378 0.412797i 0.564526 0.825415i \(-0.309059\pi\)
−0.910904 + 0.412618i \(0.864614\pi\)
\(480\) −28.0543 + 126.576i −0.0584464 + 0.263700i
\(481\) −48.8104 + 276.818i −0.101477 + 0.575504i
\(482\) 96.7883 115.348i 0.200806 0.239311i
\(483\) 531.883 70.0520i 1.10121 0.145035i
\(484\) 102.564 + 37.3303i 0.211909 + 0.0771287i
\(485\) 488.674i 1.00758i
\(486\) 327.722 103.424i 0.674324 0.212807i
\(487\) −103.107 −0.211718 −0.105859 0.994381i \(-0.533759\pi\)
−0.105859 + 0.994381i \(0.533759\pi\)
\(488\) 69.0265 189.649i 0.141448 0.388625i
\(489\) −31.5275 239.378i −0.0644734 0.489526i
\(490\) −131.486 110.330i −0.268340 0.225164i
\(491\) −753.133 132.798i −1.53388 0.270464i −0.658007 0.753012i \(-0.728600\pi\)
−0.875870 + 0.482548i \(0.839711\pi\)
\(492\) −48.4057 10.7286i −0.0983855 0.0218061i
\(493\) −160.145 + 134.378i −0.324839 + 0.272572i
\(494\) −448.326 + 258.841i −0.907543 + 0.523970i
\(495\) −541.271 + 145.094i −1.09348 + 0.293119i
\(496\) −32.0088 + 55.4409i −0.0645340 + 0.111776i
\(497\) 231.883 40.8872i 0.466565 0.0822679i
\(498\) 240.433 377.448i 0.482798 0.757928i
\(499\) 675.618 245.905i 1.35394 0.492795i 0.439767 0.898112i \(-0.355061\pi\)
0.914176 + 0.405317i \(0.132839\pi\)
\(500\) −43.7030 120.073i −0.0874061 0.240146i
\(501\) −14.1510 + 324.501i −0.0282455 + 0.647706i
\(502\) 20.0391 + 113.648i 0.0399186 + 0.226390i
\(503\) 506.649 + 292.514i 1.00725 + 0.581538i 0.910386 0.413759i \(-0.135784\pi\)
0.0968675 + 0.995297i \(0.469118\pi\)
\(504\) −12.7515 + 145.927i −0.0253007 + 0.289537i
\(505\) 636.852 + 1103.06i 1.26109 + 2.18428i
\(506\) −230.242 274.392i −0.455024 0.542276i
\(507\) −843.703 773.030i −1.66411 1.52471i
\(508\) −15.4332 + 87.5262i −0.0303804 + 0.172296i
\(509\) 567.862 676.751i 1.11564 1.32957i 0.177184 0.984178i \(-0.443301\pi\)
0.938458 0.345393i \(-0.112254\pi\)
\(510\) 145.671 + 189.822i 0.285630 + 0.372200i
\(511\) −538.239 195.903i −1.05331 0.383372i
\(512\) 22.6274i 0.0441942i
\(513\) 256.401 334.256i 0.499806 0.651572i
\(514\) −621.255 −1.20867
\(515\) −262.884 + 722.266i −0.510453 + 1.40246i
\(516\) 249.912 + 103.501i 0.484325 + 0.200584i
\(517\) −422.124 354.204i −0.816487 0.685114i
\(518\) 96.0187 + 16.9307i 0.185364 + 0.0326847i
\(519\) −76.3888 242.230i −0.147185 0.466725i
\(520\) −388.346 + 325.861i −0.746820 + 0.626656i
\(521\) 22.5511 13.0199i 0.0432843 0.0249902i −0.478202 0.878250i \(-0.658711\pi\)
0.521486 + 0.853260i \(0.325378\pi\)
\(522\) 326.680 + 152.292i 0.625824 + 0.291747i
\(523\) −289.411 + 501.274i −0.553366 + 0.958458i 0.444662 + 0.895698i \(0.353324\pi\)
−0.998029 + 0.0627602i \(0.980010\pi\)
\(524\) −79.1396 + 13.9545i −0.151030 + 0.0266306i
\(525\) −265.971 510.860i −0.506611 0.973067i
\(526\) −599.227 + 218.101i −1.13922 + 0.414641i
\(527\) 40.4095 + 111.024i 0.0766784 + 0.210672i
\(528\) 86.7501 45.1650i 0.164299 0.0855398i
\(529\) −75.8392 430.106i −0.143363 0.813054i
\(530\) −153.555 88.6550i −0.289726 0.167274i
\(531\) −522.197 + 45.7414i −0.983422 + 0.0861419i
\(532\) 89.7834 + 155.509i 0.168766 + 0.292311i
\(533\) −124.617 148.513i −0.233803 0.278636i
\(534\) −1.41193 + 0.445261i −0.00264406 + 0.000833822i
\(535\) 8.72643 49.4901i 0.0163111 0.0925048i
\(536\) −91.2602 + 108.760i −0.170262 + 0.202910i
\(537\) −192.581 + 465.001i −0.358624 + 0.865923i
\(538\) −483.152 175.853i −0.898053 0.326864i
\(539\) 129.484i 0.240229i
\(540\) 190.431 365.954i 0.352650 0.677693i
\(541\) −84.9565 −0.157036 −0.0785180 0.996913i \(-0.525019\pi\)
−0.0785180 + 0.996913i \(0.525019\pi\)
\(542\) 34.1801 93.9092i 0.0630630 0.173264i
\(543\) 688.917 528.682i 1.26872 0.973631i
\(544\) −31.9905 26.8432i −0.0588061 0.0493442i
\(545\) 1496.25 + 263.828i 2.74540 + 0.484089i
\(546\) −386.942 + 422.317i −0.708684 + 0.773474i
\(547\) −662.004 + 555.487i −1.21025 + 1.01552i −0.210968 + 0.977493i \(0.567662\pi\)
−0.999277 + 0.0380234i \(0.987894\pi\)
\(548\) −89.2646 + 51.5369i −0.162892 + 0.0940455i
\(549\) −368.289 + 526.088i −0.670836 + 0.958266i
\(550\) −192.274 + 333.029i −0.349590 + 0.605507i
\(551\) 435.128 76.7248i 0.789706 0.139246i
\(552\) 263.441 + 11.4883i 0.477249 + 0.0208121i
\(553\) −416.652 + 151.649i −0.753440 + 0.274230i
\(554\) −112.942 310.305i −0.203866 0.560117i
\(555\) −231.592 147.524i −0.417283 0.265808i
\(556\) 37.3862 + 212.028i 0.0672414 + 0.381345i
\(557\) −226.376 130.698i −0.406420 0.234647i 0.282830 0.959170i \(-0.408727\pi\)
−0.689250 + 0.724523i \(0.742060\pi\)
\(558\) 144.025 144.055i 0.258109 0.258163i
\(559\) 528.849 + 915.994i 0.946063 + 1.63863i
\(560\) 113.030 + 134.704i 0.201840 + 0.240543i
\(561\) 39.0588 176.227i 0.0696236 0.314130i
\(562\) 71.0493 402.940i 0.126422 0.716976i
\(563\) 505.895 602.902i 0.898570 1.07087i −0.0985575 0.995131i \(-0.531423\pi\)
0.997127 0.0757425i \(-0.0241327\pi\)
\(564\) 402.190 52.9707i 0.713103 0.0939197i
\(565\) −37.6689 13.7104i −0.0666706 0.0242661i
\(566\) 216.944i 0.383294i
\(567\) 159.326 438.029i 0.280998 0.772538i
\(568\) 115.735 0.203758
\(569\) 90.4364 248.472i 0.158939 0.436682i −0.834505 0.551001i \(-0.814246\pi\)
0.993444 + 0.114319i \(0.0364684\pi\)
\(570\) −66.0347 501.381i −0.115850 0.879615i
\(571\) −48.7960 40.9447i −0.0854572 0.0717071i 0.599058 0.800705i \(-0.295542\pi\)
−0.684515 + 0.728998i \(0.739986\pi\)
\(572\) 376.621 + 66.4085i 0.658429 + 0.116099i
\(573\) 118.146 + 26.1859i 0.206189 + 0.0456996i
\(574\) −51.5141 + 43.2255i −0.0897459 + 0.0753057i
\(575\) −897.896 + 518.400i −1.56156 + 0.901566i
\(576\) −18.6277 + 69.5486i −0.0323397 + 0.120744i
\(577\) 485.361 840.670i 0.841180 1.45697i −0.0477175 0.998861i \(-0.515195\pi\)
0.888898 0.458106i \(-0.151472\pi\)
\(578\) 326.597 57.5879i 0.565047 0.0996330i
\(579\) −390.891 + 613.647i −0.675114 + 1.05984i
\(580\) 406.587 147.985i 0.701011 0.255147i
\(581\) −207.600 570.377i −0.357316 0.981717i
\(582\) −11.8235 + 271.128i −0.0203153 + 0.465856i
\(583\) 23.2269 + 131.726i 0.0398403 + 0.225946i
\(584\) −243.818 140.769i −0.417497 0.241042i
\(585\) 1461.90 681.881i 2.49897 1.16561i
\(586\) 115.490 + 200.035i 0.197083 + 0.341357i
\(587\) 65.3472 + 77.8778i 0.111324 + 0.132671i 0.818829 0.574038i \(-0.194624\pi\)
−0.707505 + 0.706708i \(0.750179\pi\)
\(588\) −70.2824 64.3952i −0.119528 0.109516i
\(589\) 43.3618 245.917i 0.0736193 0.417516i
\(590\) −404.485 + 482.047i −0.685568 + 0.817029i
\(591\) 9.96337 + 12.9831i 0.0168585 + 0.0219680i
\(592\) 45.0336 + 16.3909i 0.0760702 + 0.0276873i
\(593\) 926.755i 1.56282i 0.624016 + 0.781412i \(0.285500\pi\)
−0.624016 + 0.781412i \(0.714500\pi\)
\(594\) −303.820 + 67.4054i −0.511482 + 0.113477i
\(595\) 324.534 0.545435
\(596\) −96.5188 + 265.183i −0.161944 + 0.444938i
\(597\) −396.393 164.167i −0.663976 0.274987i
\(598\) 789.861 + 662.772i 1.32084 + 1.10831i
\(599\) −553.736 97.6386i −0.924434 0.163003i −0.308883 0.951100i \(-0.599955\pi\)
−0.615551 + 0.788097i \(0.711066\pi\)
\(600\) −85.1422 269.987i −0.141904 0.449979i
\(601\) 291.320 244.447i 0.484726 0.406733i −0.367406 0.930061i \(-0.619754\pi\)
0.852132 + 0.523327i \(0.175310\pi\)
\(602\) 317.728 183.440i 0.527787 0.304718i
\(603\) 370.036 259.160i 0.613658 0.429784i
\(604\) −131.182 + 227.214i −0.217189 + 0.376182i
\(605\) −410.582 + 72.3967i −0.678648 + 0.119664i
\(606\) 326.652 + 627.413i 0.539030 + 1.03533i
\(607\) 1056.66 384.593i 1.74079 0.633597i 0.741492 0.670962i \(-0.234119\pi\)
0.999302 + 0.0373651i \(0.0118965\pi\)
\(608\) 30.1873 + 82.9388i 0.0496501 + 0.136413i
\(609\) 433.616 225.755i 0.712014 0.370698i
\(610\) 133.867 + 759.197i 0.219454 + 1.24459i
\(611\) 1373.72 + 793.115i 2.24831 + 1.29806i
\(612\) 76.2291 + 108.842i 0.124557 + 0.177847i
\(613\) −313.409 542.840i −0.511270 0.885546i −0.999915 0.0130631i \(-0.995842\pi\)
0.488644 0.872483i \(-0.337492\pi\)
\(614\) 296.936 + 353.875i 0.483609 + 0.576343i
\(615\) 180.618 56.9590i 0.293688 0.0926163i
\(616\) 23.0349 130.637i 0.0373943 0.212073i
\(617\) 113.319 135.049i 0.183662 0.218880i −0.666356 0.745634i \(-0.732147\pi\)
0.850018 + 0.526754i \(0.176591\pi\)
\(618\) −163.329 + 394.370i −0.264287 + 0.638139i
\(619\) −873.825 318.046i −1.41167 0.513807i −0.480052 0.877240i \(-0.659382\pi\)
−0.931620 + 0.363434i \(0.881604\pi\)
\(620\) 244.534i 0.394409i
\(621\) −800.267 252.185i −1.28868 0.406095i
\(622\) −658.391 −1.05851
\(623\) −0.686776 + 1.88690i −0.00110237 + 0.00302873i
\(624\) −223.348 + 171.400i −0.357930 + 0.274679i
\(625\) −265.041 222.395i −0.424065 0.355833i
\(626\) −305.439 53.8571i −0.487921 0.0860337i
\(627\) −257.720 + 281.282i −0.411037 + 0.448615i
\(628\) −295.344 + 247.823i −0.470293 + 0.394623i
\(629\) 76.5973 44.2235i 0.121776 0.0703076i
\(630\) −236.522 507.084i −0.375431 0.804895i
\(631\) 327.053 566.473i 0.518309 0.897738i −0.481464 0.876466i \(-0.659895\pi\)
0.999774 0.0212724i \(-0.00677172\pi\)
\(632\) −214.628 + 37.8446i −0.339601 + 0.0598808i
\(633\) 25.8889 + 1.12898i 0.0408987 + 0.00178353i
\(634\) 169.282 61.6136i 0.267006 0.0971824i
\(635\) −116.112 319.015i −0.182854 0.502386i
\(636\) −83.0509 52.9031i −0.130583 0.0831810i
\(637\) −64.7240 367.068i −0.101608 0.576245i
\(638\) −282.674 163.202i −0.443063 0.255802i
\(639\) −355.727 95.2768i −0.556693 0.149103i
\(640\) 43.2159 + 74.8522i 0.0675249 + 0.116957i
\(641\) 473.126 + 563.850i 0.738106 + 0.879641i 0.996255 0.0864644i \(-0.0275569\pi\)
−0.258149 + 0.966105i \(0.583112\pi\)
\(642\) 6.03905 27.2471i 0.00940661 0.0424410i
\(643\) −123.683 + 701.440i −0.192353 + 1.09089i 0.723786 + 0.690025i \(0.242400\pi\)
−0.916139 + 0.400862i \(0.868711\pi\)
\(644\) 229.893 273.976i 0.356977 0.425429i
\(645\) −1024.39 + 134.918i −1.58820 + 0.209176i
\(646\) 153.070 + 55.7129i 0.236950 + 0.0862429i
\(647\) 291.136i 0.449978i 0.974361 + 0.224989i \(0.0722346\pi\)
−0.974361 + 0.224989i \(0.927765\pi\)
\(648\) 114.510 198.433i 0.176713 0.306223i
\(649\) 474.704 0.731440
\(650\) 378.602 1040.20i 0.582465 1.60031i
\(651\) −36.0770 273.921i −0.0554178 0.420770i
\(652\) −123.305 103.465i −0.189119 0.158689i
\(653\) −1145.26 201.940i −1.75384 0.309250i −0.797898 0.602792i \(-0.794055\pi\)
−0.955946 + 0.293542i \(0.905166\pi\)
\(654\) 823.769 + 182.580i 1.25959 + 0.279174i
\(655\) 235.145 197.310i 0.359000 0.301236i
\(656\) −28.6252 + 16.5268i −0.0436360 + 0.0251933i
\(657\) 633.525 + 633.392i 0.964269 + 0.964067i
\(658\) 275.105 476.496i 0.418093 0.724158i
\(659\) 521.251 91.9106i 0.790972 0.139470i 0.236455 0.971642i \(-0.424014\pi\)
0.554517 + 0.832173i \(0.312903\pi\)
\(660\) −200.712 + 315.090i −0.304108 + 0.477410i
\(661\) −3.61822 + 1.31693i −0.00547386 + 0.00199232i −0.344756 0.938692i \(-0.612038\pi\)
0.339282 + 0.940685i \(0.389816\pi\)
\(662\) 131.401 + 361.022i 0.198492 + 0.545351i
\(663\) −22.6373 + 519.102i −0.0341437 + 0.782959i
\(664\) −51.8075 293.815i −0.0780234 0.442493i
\(665\) −594.012 342.953i −0.893251 0.515719i
\(666\) −124.924 87.4529i −0.187573 0.131311i
\(667\) −440.016 762.131i −0.659695 1.14262i
\(668\) 139.189 + 165.879i 0.208366 + 0.248322i
\(669\) 678.645 + 621.798i 1.01442 + 0.929444i
\(670\) 94.1722 534.077i 0.140556 0.797130i
\(671\) 373.817 445.497i 0.557104 0.663930i
\(672\) 59.4527 + 77.4719i 0.0884713 + 0.115286i
\(673\) 389.797 + 141.874i 0.579193 + 0.210809i 0.614970 0.788551i \(-0.289168\pi\)
−0.0357768 + 0.999360i \(0.511391\pi\)
\(674\) 725.968i 1.07710i
\(675\) 39.4336 + 899.937i 0.0584201 + 1.33324i
\(676\) −762.863 −1.12850
\(677\) −406.146 + 1115.88i −0.599921 + 1.64827i 0.151509 + 0.988456i \(0.451587\pi\)
−0.751430 + 0.659813i \(0.770636\pi\)
\(678\) −20.5679 8.51823i −0.0303361 0.0125638i
\(679\) 281.970 + 236.601i 0.415273 + 0.348455i
\(680\) 157.093 + 27.6998i 0.231019 + 0.0407350i
\(681\) −10.7353 34.0419i −0.0157640 0.0499881i
\(682\) −141.312 + 118.575i −0.207203 + 0.173864i
\(683\) 444.994 256.917i 0.651528 0.376160i −0.137513 0.990500i \(-0.543911\pi\)
0.789041 + 0.614340i \(0.210578\pi\)
\(684\) −24.5067 279.776i −0.0358285 0.409029i
\(685\) 196.860 340.971i 0.287387 0.497768i
\(686\) −520.024 + 91.6943i −0.758053 + 0.133665i
\(687\) −533.880 1025.44i −0.777117 1.49264i
\(688\) 169.456 61.6768i 0.246302 0.0896466i
\(689\) −131.690 361.815i −0.191132 0.525131i
\(690\) −893.413 + 465.141i −1.29480 + 0.674117i
\(691\) 91.9225 + 521.318i 0.133028 + 0.754440i 0.976213 + 0.216816i \(0.0695671\pi\)
−0.843184 + 0.537625i \(0.819322\pi\)
\(692\) −146.641 84.6632i −0.211909 0.122346i
\(693\) −178.346 + 382.569i −0.257354 + 0.552048i
\(694\) −126.678 219.413i −0.182533 0.316156i
\(695\) −528.625 629.990i −0.760611 0.906461i
\(696\) 229.164 72.2684i 0.329259 0.103834i
\(697\) −10.5930 + 60.0762i −0.0151981 + 0.0861925i
\(698\) −314.077 + 374.303i −0.449967 + 0.536250i
\(699\) −11.0274 + 26.6264i −0.0157760 + 0.0380922i
\(700\) −360.811 131.324i −0.515444 0.187606i
\(701\) 13.0718i 0.0186474i 0.999957 + 0.00932369i \(0.00296787\pi\)
−0.999957 + 0.00932369i \(0.997032\pi\)
\(702\) 827.594 342.953i 1.17891 0.488537i
\(703\) −186.934 −0.265908
\(704\) 22.3004 61.2699i 0.0316768 0.0870312i
\(705\) −1229.29 + 943.368i −1.74367 + 1.33811i
\(706\) 266.201 + 223.369i 0.377055 + 0.316387i
\(707\) 944.823 + 166.598i 1.33638 + 0.235640i
\(708\) −236.081 + 257.664i −0.333448 + 0.363933i
\(709\) −584.480 + 490.437i −0.824372 + 0.691730i −0.953992 0.299834i \(-0.903069\pi\)
0.129620 + 0.991564i \(0.458624\pi\)
\(710\) −382.853 + 221.040i −0.539230 + 0.311325i
\(711\) 690.844 + 60.3682i 0.971651 + 0.0849060i
\(712\) −0.493491 + 0.854752i −0.000693105 + 0.00120049i
\(713\) −489.803 + 86.3655i −0.686961 + 0.121130i
\(714\) 180.059 + 7.85211i 0.252183 + 0.0109974i
\(715\) −1372.71 + 499.624i −1.91987 + 0.698775i
\(716\) 114.760 + 315.300i 0.160279 + 0.440363i
\(717\) 260.507 + 165.942i 0.363330 + 0.231440i
\(718\) −136.456 773.883i −0.190051 1.07783i
\(719\) −782.468 451.758i −1.08827 0.628315i −0.155157 0.987890i \(-0.549588\pi\)
−0.933116 + 0.359575i \(0.882922\pi\)
\(720\) −71.2093 265.646i −0.0989019 0.368952i
\(721\) 289.476 + 501.386i 0.401492 + 0.695404i
\(722\) 106.866 + 127.357i 0.148013 + 0.176395i
\(723\) −69.1188 + 311.852i −0.0955999 + 0.431330i
\(724\) 100.530 570.135i 0.138854 0.787479i
\(725\) −607.297 + 723.748i −0.837650 + 0.998273i
\(726\) −229.552 + 30.2333i −0.316188 + 0.0416437i
\(727\) 906.427 + 329.912i 1.24680 + 0.453800i 0.879321 0.476230i \(-0.157997\pi\)
0.367484 + 0.930030i \(0.380219\pi\)
\(728\) 381.852i 0.524523i
\(729\) −515.319 + 515.643i −0.706885 + 0.707329i
\(730\) 1075.41 1.47317
\(731\) 113.829 312.744i 0.155717 0.427830i
\(732\) 55.9037 + 424.460i 0.0763712 + 0.579863i
\(733\) 421.118 + 353.360i 0.574513 + 0.482074i 0.883140 0.469109i \(-0.155425\pi\)
−0.308627 + 0.951183i \(0.599869\pi\)
\(734\) −555.093 97.8778i −0.756257 0.133349i
\(735\) 355.484 + 78.7894i 0.483652 + 0.107196i
\(736\) 134.666 112.999i 0.182971 0.153531i
\(737\) −354.300 + 204.555i −0.480733 + 0.277551i
\(738\) 101.589 27.2321i 0.137655 0.0368999i
\(739\) −261.308 + 452.598i −0.353596 + 0.612446i −0.986877 0.161476i \(-0.948375\pi\)
0.633281 + 0.773922i \(0.281708\pi\)
\(740\) −180.277 + 31.7877i −0.243618 + 0.0429564i
\(741\) 589.998 926.219i 0.796219 1.24996i
\(742\) −125.502 + 45.6788i −0.169140 + 0.0615618i
\(743\) −170.432 468.259i −0.229384 0.630227i 0.770591 0.637330i \(-0.219961\pi\)
−0.999975 + 0.00710282i \(0.997739\pi\)
\(744\) 5.91650 135.673i 0.00795229 0.182356i
\(745\) −187.184 1061.57i −0.251254 1.42493i
\(746\) 501.747 + 289.684i 0.672583 + 0.388316i
\(747\) −82.6412 + 945.733i −0.110631 + 1.26604i
\(748\) −60.1678 104.214i −0.0804382 0.139323i
\(749\) −24.3312 28.9968i −0.0324850 0.0387141i
\(750\) 199.856 + 183.115i 0.266475 + 0.244154i
\(751\) 69.7868 395.781i 0.0929252 0.527005i −0.902438 0.430819i \(-0.858225\pi\)
0.995363 0.0961857i \(-0.0306643\pi\)
\(752\) 173.837 207.171i 0.231166 0.275493i
\(753\) −149.036 194.207i −0.197923 0.257911i
\(754\) 882.919 + 321.356i 1.17098 + 0.426202i
\(755\) 1002.17i 1.32738i
\(756\) −118.959 287.065i −0.157353 0.379715i
\(757\) 564.958 0.746312 0.373156 0.927769i \(-0.378276\pi\)
0.373156 + 0.927769i \(0.378276\pi\)
\(758\) 29.7536 81.7474i 0.0392528 0.107846i
\(759\) 702.017 + 290.742i 0.924924 + 0.383059i
\(760\) −258.264 216.710i −0.339822 0.285144i
\(761\) −353.849 62.3930i −0.464978 0.0819882i −0.0637492 0.997966i \(-0.520306\pi\)
−0.401229 + 0.915978i \(0.631417\pi\)
\(762\) −56.7031 179.806i −0.0744135 0.235966i
\(763\) 876.669 735.612i 1.14898 0.964105i
\(764\) 69.8670 40.3377i 0.0914489 0.0527981i
\(765\) −460.045 214.464i −0.601366 0.280345i
\(766\) −143.784 + 249.041i −0.187707 +