Properties

Label 54.21.d.a.35.16
Level $54$
Weight $21$
Character 54.35
Analytic conductor $136.897$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [54,21,Mod(17,54)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("54.17"); S:= CuspForms(chi, 21); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(54, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5])) N = Newforms(chi, 21, names="a")
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 54.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(136.897433155\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(20\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 35.16
Character \(\chi\) \(=\) 54.35
Dual form 54.21.d.a.17.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(627.069 + 362.039i) q^{2} +(262144. + 454047. i) q^{4} +(5.93247e6 - 3.42511e6i) q^{5} +(1.73104e8 - 2.99825e8i) q^{7} +3.79625e8i q^{8} +4.96010e9 q^{10} +(3.11848e10 + 1.80045e10i) q^{11} +(-5.45632e10 - 9.45063e10i) q^{13} +(2.17097e11 - 1.25341e11i) q^{14} +(-1.37439e11 + 2.38051e11i) q^{16} -3.94900e12i q^{17} -6.76417e11 q^{19} +(3.11032e12 + 1.79575e12i) q^{20} +(1.30367e13 + 2.25802e13i) q^{22} +(3.84169e13 - 2.21800e13i) q^{23} +(-2.42209e13 + 4.19518e13i) q^{25} -7.90160e13i q^{26} +1.81513e14 q^{28} +(4.23142e14 + 2.44301e14i) q^{29} +(-1.45353e14 - 2.51760e14i) q^{31} +(-1.72368e14 + 9.95164e13i) q^{32} +(1.42969e15 - 2.47629e15i) q^{34} -2.37161e15i q^{35} -3.69514e15 q^{37} +(-4.24161e14 - 2.44889e14i) q^{38} +(1.30026e15 + 2.25212e15i) q^{40} +(-9.98071e15 + 5.76237e15i) q^{41} +(1.08739e16 - 1.88342e16i) q^{43} +1.88791e16i q^{44} +3.21201e16 q^{46} +(-5.92624e16 - 3.42152e16i) q^{47} +(-2.00339e16 - 3.46998e16i) q^{49} +(-3.03764e16 + 1.75378e16i) q^{50} +(2.86069e16 - 4.95485e16i) q^{52} -1.35148e17i q^{53} +2.46670e17 q^{55} +(1.13821e17 + 6.57146e16i) q^{56} +(1.76893e17 + 3.06387e17i) q^{58} +(-6.48610e17 + 3.74475e17i) q^{59} +(-2.20266e17 + 3.81512e17i) q^{61} -2.10494e17i q^{62} -1.44115e17 q^{64} +(-6.47390e17 - 3.73771e17i) q^{65} +(-1.65980e18 - 2.87486e18i) q^{67} +(1.79303e18 - 1.03521e18i) q^{68} +(8.58613e17 - 1.48716e18i) q^{70} +3.20903e18i q^{71} +7.00433e18 q^{73} +(-2.31711e18 - 1.33778e18i) q^{74} +(-1.77319e17 - 3.07125e17i) q^{76} +(1.07964e19 - 6.23332e18i) q^{77} +(-2.66102e18 + 4.60903e18i) q^{79} +1.88298e18i q^{80} -8.34480e18 q^{82} +(-3.82852e18 - 2.21040e18i) q^{83} +(-1.35258e19 - 2.34273e19i) q^{85} +(1.36374e19 - 7.87355e18i) q^{86} +(-6.83497e18 + 1.18385e19i) q^{88} -5.02252e19i q^{89} -3.77805e19 q^{91} +(2.01415e19 + 1.16287e19i) q^{92} +(-2.47744e19 - 4.29105e19i) q^{94} +(-4.01283e18 + 2.31681e18i) q^{95} +(5.30109e18 - 9.18176e18i) q^{97} -2.90122e19i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 10485760 q^{4} - 29763918 q^{5} + 133479866 q^{7} + 35793208728 q^{11} + 39827158550 q^{13} - 187564400640 q^{14} - 5497558138880 q^{16} - 10560819523540 q^{19} - 15604865040384 q^{20} + 10829007458304 q^{22}+ \cdots - 66\!\cdots\!16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 627.069 + 362.039i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 262144. + 454047.i 0.250000 + 0.433013i
\(5\) 5.93247e6 3.42511e6i 0.607485 0.350732i −0.164495 0.986378i \(-0.552600\pi\)
0.771981 + 0.635646i \(0.219266\pi\)
\(6\) 0 0
\(7\) 1.73104e8 2.99825e8i 0.612812 1.06142i −0.377953 0.925825i \(-0.623372\pi\)
0.990764 0.135596i \(-0.0432948\pi\)
\(8\) 3.79625e8i 0.353553i
\(9\) 0 0
\(10\) 4.96010e9 0.496010
\(11\) 3.11848e10 + 1.80045e10i 1.20231 + 0.694153i 0.961068 0.276313i \(-0.0891125\pi\)
0.241240 + 0.970465i \(0.422446\pi\)
\(12\) 0 0
\(13\) −5.45632e10 9.45063e10i −0.395792 0.685531i 0.597410 0.801936i \(-0.296196\pi\)
−0.993202 + 0.116405i \(0.962863\pi\)
\(14\) 2.17097e11 1.25341e11i 0.750538 0.433323i
\(15\) 0 0
\(16\) −1.37439e11 + 2.38051e11i −0.125000 + 0.216506i
\(17\) 3.94900e12i 1.95883i −0.201849 0.979417i \(-0.564695\pi\)
0.201849 0.979417i \(-0.435305\pi\)
\(18\) 0 0
\(19\) −6.76417e11 −0.110326 −0.0551631 0.998477i \(-0.517568\pi\)
−0.0551631 + 0.998477i \(0.517568\pi\)
\(20\) 3.11032e12 + 1.79575e12i 0.303743 + 0.175366i
\(21\) 0 0
\(22\) 1.30367e13 + 2.25802e13i 0.490840 + 0.850160i
\(23\) 3.84169e13 2.21800e13i 0.927351 0.535406i 0.0413781 0.999144i \(-0.486825\pi\)
0.885973 + 0.463737i \(0.153492\pi\)
\(24\) 0 0
\(25\) −2.42209e13 + 4.19518e13i −0.253975 + 0.439897i
\(26\) 7.90160e13i 0.559734i
\(27\) 0 0
\(28\) 1.81513e14 0.612812
\(29\) 4.23142e14 + 2.44301e14i 1.00579 + 0.580691i 0.909955 0.414707i \(-0.136116\pi\)
0.0958311 + 0.995398i \(0.469449\pi\)
\(30\) 0 0
\(31\) −1.45353e14 2.51760e14i −0.177341 0.307163i 0.763628 0.645656i \(-0.223416\pi\)
−0.940969 + 0.338493i \(0.890083\pi\)
\(32\) −1.72368e14 + 9.95164e13i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 1.42969e15 2.47629e15i 0.692552 1.19954i
\(35\) 2.37161e15i 0.859730i
\(36\) 0 0
\(37\) −3.69514e15 −0.768447 −0.384223 0.923240i \(-0.625531\pi\)
−0.384223 + 0.923240i \(0.625531\pi\)
\(38\) −4.24161e14 2.44889e14i −0.0675607 0.0390062i
\(39\) 0 0
\(40\) 1.30026e15 + 2.25212e15i 0.124002 + 0.214778i
\(41\) −9.98071e15 + 5.76237e15i −0.743572 + 0.429301i −0.823367 0.567510i \(-0.807907\pi\)
0.0797946 + 0.996811i \(0.474574\pi\)
\(42\) 0 0
\(43\) 1.08739e16 1.88342e16i 0.503154 0.871489i −0.496839 0.867843i \(-0.665506\pi\)
0.999993 0.00364595i \(-0.00116054\pi\)
\(44\) 1.88791e16i 0.694153i
\(45\) 0 0
\(46\) 3.21201e16 0.757179
\(47\) −5.92624e16 3.42152e16i −1.12668 0.650489i −0.183582 0.983004i \(-0.558769\pi\)
−0.943098 + 0.332516i \(0.892103\pi\)
\(48\) 0 0
\(49\) −2.00339e16 3.46998e16i −0.251076 0.434876i
\(50\) −3.03764e16 + 1.75378e16i −0.311054 + 0.179587i
\(51\) 0 0
\(52\) 2.86069e16 4.95485e16i 0.197896 0.342766i
\(53\) 1.35148e17i 0.772771i −0.922337 0.386386i \(-0.873723\pi\)
0.922337 0.386386i \(-0.126277\pi\)
\(54\) 0 0
\(55\) 2.46670e17 0.973846
\(56\) 1.13821e17 + 6.57146e16i 0.375269 + 0.216662i
\(57\) 0 0
\(58\) 1.76893e17 + 3.06387e17i 0.410611 + 0.711198i
\(59\) −6.48610e17 + 3.74475e17i −1.26901 + 0.732661i −0.974800 0.223081i \(-0.928388\pi\)
−0.294206 + 0.955742i \(0.595055\pi\)
\(60\) 0 0
\(61\) −2.20266e17 + 3.81512e17i −0.308780 + 0.534823i −0.978096 0.208155i \(-0.933254\pi\)
0.669316 + 0.742978i \(0.266587\pi\)
\(62\) 2.10494e17i 0.250798i
\(63\) 0 0
\(64\) −1.44115e17 −0.125000
\(65\) −6.47390e17 3.73771e17i −0.480875 0.277633i
\(66\) 0 0
\(67\) −1.65980e18 2.87486e18i −0.910558 1.57713i −0.813278 0.581875i \(-0.802319\pi\)
−0.0972793 0.995257i \(-0.531014\pi\)
\(68\) 1.79303e18 1.03521e18i 0.848200 0.489708i
\(69\) 0 0
\(70\) 8.58613e17 1.48716e18i 0.303960 0.526475i
\(71\) 3.20903e18i 0.985805i 0.870085 + 0.492902i \(0.164064\pi\)
−0.870085 + 0.492902i \(0.835936\pi\)
\(72\) 0 0
\(73\) 7.00433e18 1.62981 0.814906 0.579593i \(-0.196788\pi\)
0.814906 + 0.579593i \(0.196788\pi\)
\(74\) −2.31711e18 1.33778e18i −0.470576 0.271687i
\(75\) 0 0
\(76\) −1.77319e17 3.07125e17i −0.0275816 0.0477727i
\(77\) 1.07964e19 6.23332e18i 1.47358 0.850770i
\(78\) 0 0
\(79\) −2.66102e18 + 4.60903e18i −0.281046 + 0.486786i −0.971643 0.236454i \(-0.924015\pi\)
0.690596 + 0.723240i \(0.257348\pi\)
\(80\) 1.88298e18i 0.175366i
\(81\) 0 0
\(82\) −8.34480e18 −0.607124
\(83\) −3.82852e18 2.21040e18i −0.246746 0.142459i 0.371527 0.928422i \(-0.378834\pi\)
−0.618273 + 0.785963i \(0.712168\pi\)
\(84\) 0 0
\(85\) −1.35258e19 2.34273e19i −0.687025 1.18996i
\(86\) 1.36374e19 7.87355e18i 0.616235 0.355784i
\(87\) 0 0
\(88\) −6.83497e18 + 1.18385e19i −0.245420 + 0.425080i
\(89\) 5.02252e19i 1.61073i −0.592783 0.805363i \(-0.701971\pi\)
0.592783 0.805363i \(-0.298029\pi\)
\(90\) 0 0
\(91\) −3.77805e19 −0.970183
\(92\) 2.01415e19 + 1.16287e19i 0.463675 + 0.267703i
\(93\) 0 0
\(94\) −2.47744e19 4.29105e19i −0.459965 0.796683i
\(95\) −4.01283e18 + 2.31681e18i −0.0670216 + 0.0386949i
\(96\) 0 0
\(97\) 5.30109e18 9.18176e18i 0.0718866 0.124511i −0.827842 0.560962i \(-0.810431\pi\)
0.899728 + 0.436451i \(0.143765\pi\)
\(98\) 2.90122e19i 0.355075i
\(99\) 0 0
\(100\) −2.53975e19 −0.253975
\(101\) −1.36492e19 7.88038e18i −0.123565 0.0713400i 0.436944 0.899489i \(-0.356061\pi\)
−0.560508 + 0.828149i \(0.689394\pi\)
\(102\) 0 0
\(103\) 1.30666e19 + 2.26319e19i 0.0972274 + 0.168403i 0.910536 0.413430i \(-0.135669\pi\)
−0.813309 + 0.581833i \(0.802336\pi\)
\(104\) 3.58770e19 2.07136e19i 0.242372 0.139933i
\(105\) 0 0
\(106\) 4.89288e19 8.47472e19i 0.273216 0.473224i
\(107\) 4.16493e18i 0.0211724i 0.999944 + 0.0105862i \(0.00336975\pi\)
−0.999944 + 0.0105862i \(0.996630\pi\)
\(108\) 0 0
\(109\) 4.08736e20 1.72654 0.863272 0.504739i \(-0.168411\pi\)
0.863272 + 0.504739i \(0.168411\pi\)
\(110\) 1.54679e20 + 8.93042e19i 0.596356 + 0.344306i
\(111\) 0 0
\(112\) 4.75825e19 + 8.24153e19i 0.153203 + 0.265355i
\(113\) 3.28419e20 1.89613e20i 0.967483 0.558577i 0.0690151 0.997616i \(-0.478014\pi\)
0.898468 + 0.439039i \(0.144681\pi\)
\(114\) 0 0
\(115\) 1.51938e20 2.63165e20i 0.375568 0.650503i
\(116\) 2.56168e20i 0.580691i
\(117\) 0 0
\(118\) −5.42298e20 −1.03614
\(119\) −1.18401e21 6.83587e20i −2.07915 1.20040i
\(120\) 0 0
\(121\) 3.11952e20 + 5.40316e20i 0.463696 + 0.803146i
\(122\) −2.76244e20 + 1.59490e20i −0.378177 + 0.218340i
\(123\) 0 0
\(124\) 7.62071e19 1.31995e20i 0.0886703 0.153582i
\(125\) 9.85126e20i 1.05777i
\(126\) 0 0
\(127\) 1.42207e21 1.30282 0.651409 0.758727i \(-0.274178\pi\)
0.651409 + 0.758727i \(0.274178\pi\)
\(128\) −9.03702e19 5.21753e19i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −2.70639e20 4.68760e20i −0.196316 0.340030i
\(131\) −1.01421e21 + 5.85556e20i −0.681422 + 0.393419i −0.800391 0.599479i \(-0.795375\pi\)
0.118968 + 0.992898i \(0.462041\pi\)
\(132\) 0 0
\(133\) −1.17091e20 + 2.02807e20i −0.0676092 + 0.117103i
\(134\) 2.40365e21i 1.28772i
\(135\) 0 0
\(136\) 1.49914e21 0.692552
\(137\) −3.19830e20 1.84654e20i −0.137314 0.0792780i 0.429770 0.902939i \(-0.358595\pi\)
−0.567083 + 0.823661i \(0.691928\pi\)
\(138\) 0 0
\(139\) 2.33978e20 + 4.05262e20i 0.0869015 + 0.150518i 0.906200 0.422850i \(-0.138970\pi\)
−0.819298 + 0.573367i \(0.805637\pi\)
\(140\) 1.07682e21 6.21702e20i 0.372274 0.214932i
\(141\) 0 0
\(142\) −1.16179e21 + 2.01229e21i −0.348535 + 0.603680i
\(143\) 3.92954e21i 1.09896i
\(144\) 0 0
\(145\) 3.34703e21 0.814667
\(146\) 4.39220e21 + 2.53584e21i 0.998052 + 0.576226i
\(147\) 0 0
\(148\) −9.68659e20 1.67777e21i −0.192112 0.332747i
\(149\) 2.52379e21 1.45711e21i 0.467941 0.270166i −0.247436 0.968904i \(-0.579588\pi\)
0.715377 + 0.698738i \(0.246255\pi\)
\(150\) 0 0
\(151\) 2.76043e21 4.78121e21i 0.447927 0.775832i −0.550324 0.834951i \(-0.685496\pi\)
0.998251 + 0.0591188i \(0.0188291\pi\)
\(152\) 2.56785e20i 0.0390062i
\(153\) 0 0
\(154\) 9.02681e21 1.20317
\(155\) −1.72461e21 9.95704e20i −0.215464 0.124398i
\(156\) 0 0
\(157\) −2.92244e21 5.06181e21i −0.321180 0.556300i 0.659552 0.751659i \(-0.270746\pi\)
−0.980732 + 0.195359i \(0.937413\pi\)
\(158\) −3.33729e21 + 1.92679e21i −0.344210 + 0.198730i
\(159\) 0 0
\(160\) −6.81710e20 + 1.18076e21i −0.0620012 + 0.107389i
\(161\) 1.53578e22i 1.31241i
\(162\) 0 0
\(163\) −4.90496e21 −0.370476 −0.185238 0.982694i \(-0.559306\pi\)
−0.185238 + 0.982694i \(0.559306\pi\)
\(164\) −5.23277e21 3.02114e21i −0.371786 0.214651i
\(165\) 0 0
\(166\) −1.60050e21 2.77214e21i −0.100734 0.174476i
\(167\) 2.41465e22 1.39410e22i 1.43117 0.826285i 0.433957 0.900934i \(-0.357117\pi\)
0.997210 + 0.0746491i \(0.0237837\pi\)
\(168\) 0 0
\(169\) 3.54819e21 6.14564e21i 0.186698 0.323370i
\(170\) 1.95874e22i 0.971600i
\(171\) 0 0
\(172\) 1.14021e22 0.503154
\(173\) 1.52348e21 + 8.79580e20i 0.0634417 + 0.0366281i 0.531385 0.847130i \(-0.321672\pi\)
−0.467944 + 0.883758i \(0.655005\pi\)
\(174\) 0 0
\(175\) 8.38547e21 + 1.45241e22i 0.311277 + 0.539148i
\(176\) −8.57201e21 + 4.94905e21i −0.300577 + 0.173538i
\(177\) 0 0
\(178\) 1.81835e22 3.14947e22i 0.569477 0.986364i
\(179\) 4.92623e22i 1.45876i −0.684107 0.729381i \(-0.739808\pi\)
0.684107 0.729381i \(-0.260192\pi\)
\(180\) 0 0
\(181\) 5.28544e22 1.40054 0.700269 0.713879i \(-0.253063\pi\)
0.700269 + 0.713879i \(0.253063\pi\)
\(182\) −2.36910e22 1.36780e22i −0.594113 0.343011i
\(183\) 0 0
\(184\) 8.42009e21 + 1.45840e22i 0.189295 + 0.327868i
\(185\) −2.19213e22 + 1.26563e22i −0.466820 + 0.269519i
\(186\) 0 0
\(187\) 7.10998e22 1.23149e23i 1.35973 2.35512i
\(188\) 3.58772e22i 0.650489i
\(189\) 0 0
\(190\) −3.35510e21 −0.0547229
\(191\) −1.99516e22 1.15191e22i −0.308777 0.178272i 0.337602 0.941289i \(-0.390384\pi\)
−0.646379 + 0.763016i \(0.723718\pi\)
\(192\) 0 0
\(193\) −2.10837e22 3.65180e22i −0.294017 0.509253i 0.680738 0.732527i \(-0.261659\pi\)
−0.974756 + 0.223273i \(0.928326\pi\)
\(194\) 6.64831e21 3.83840e21i 0.0880428 0.0508315i
\(195\) 0 0
\(196\) 1.05035e22 1.81927e22i 0.125538 0.217438i
\(197\) 3.67083e22i 0.416967i −0.978026 0.208484i \(-0.933147\pi\)
0.978026 0.208484i \(-0.0668528\pi\)
\(198\) 0 0
\(199\) −1.22128e22 −0.125396 −0.0626981 0.998033i \(-0.519971\pi\)
−0.0626981 + 0.998033i \(0.519971\pi\)
\(200\) −1.59260e22 9.19486e21i −0.155527 0.0897936i
\(201\) 0 0
\(202\) −5.70600e21 9.88309e21i −0.0504450 0.0873733i
\(203\) 1.46495e23 8.45790e22i 1.23271 0.711708i
\(204\) 0 0
\(205\) −3.94735e22 + 6.83702e22i −0.301139 + 0.521589i
\(206\) 1.89224e22i 0.137500i
\(207\) 0 0
\(208\) 2.99965e22 0.197896
\(209\) −2.10939e22 1.21786e22i −0.132646 0.0765833i
\(210\) 0 0
\(211\) 5.65451e22 + 9.79390e22i 0.323274 + 0.559927i 0.981161 0.193189i \(-0.0618832\pi\)
−0.657888 + 0.753116i \(0.728550\pi\)
\(212\) 6.13635e22 3.54282e22i 0.334620 0.193193i
\(213\) 0 0
\(214\) −1.50787e21 + 2.61170e21i −0.00748557 + 0.0129654i
\(215\) 1.48978e23i 0.705889i
\(216\) 0 0
\(217\) −1.00645e23 −0.434706
\(218\) 2.56306e23 + 1.47978e23i 1.05729 + 0.610426i
\(219\) 0 0
\(220\) 6.46632e22 + 1.12000e23i 0.243461 + 0.421688i
\(221\) −3.73205e23 + 2.15470e23i −1.34284 + 0.775290i
\(222\) 0 0
\(223\) −9.42925e22 + 1.63319e23i −0.310048 + 0.537019i −0.978372 0.206851i \(-0.933678\pi\)
0.668325 + 0.743870i \(0.267012\pi\)
\(224\) 6.89068e22i 0.216662i
\(225\) 0 0
\(226\) 2.74588e23 0.789947
\(227\) 1.67797e23 + 9.68775e22i 0.461875 + 0.266664i 0.712832 0.701334i \(-0.247412\pi\)
−0.250957 + 0.967998i \(0.580745\pi\)
\(228\) 0 0
\(229\) 2.37772e23 + 4.11833e23i 0.599523 + 1.03841i 0.992891 + 0.119024i \(0.0379765\pi\)
−0.393368 + 0.919381i \(0.628690\pi\)
\(230\) 1.90552e23 1.10015e23i 0.459975 0.265567i
\(231\) 0 0
\(232\) −9.27427e22 + 1.60635e23i −0.205305 + 0.355599i
\(233\) 1.31657e23i 0.279180i 0.990209 + 0.139590i \(0.0445785\pi\)
−0.990209 + 0.139590i \(0.955421\pi\)
\(234\) 0 0
\(235\) −4.68763e23 −0.912588
\(236\) −3.40058e23 1.96333e23i −0.634503 0.366330i
\(237\) 0 0
\(238\) −4.94970e23 8.57313e23i −0.848808 1.47018i
\(239\) −7.94811e23 + 4.58885e23i −1.30703 + 0.754613i −0.981599 0.190953i \(-0.938842\pi\)
−0.325430 + 0.945566i \(0.605509\pi\)
\(240\) 0 0
\(241\) 1.97126e23 3.41432e23i 0.298245 0.516575i −0.677490 0.735532i \(-0.736932\pi\)
0.975734 + 0.218957i \(0.0702655\pi\)
\(242\) 4.51754e23i 0.655766i
\(243\) 0 0
\(244\) −2.30966e23 −0.308780
\(245\) −2.37701e23 1.37237e23i −0.305050 0.176121i
\(246\) 0 0
\(247\) 3.69075e22 + 6.39257e22i 0.0436662 + 0.0756321i
\(248\) 9.55742e22 5.51798e22i 0.108599 0.0626994i
\(249\) 0 0
\(250\) −3.56654e23 + 6.17742e23i −0.373979 + 0.647750i
\(251\) 2.86762e23i 0.288924i 0.989510 + 0.144462i \(0.0461452\pi\)
−0.989510 + 0.144462i \(0.953855\pi\)
\(252\) 0 0
\(253\) 1.59736e24 1.48662
\(254\) 8.91736e23 + 5.14844e23i 0.797809 + 0.460615i
\(255\) 0 0
\(256\) −3.77789e22 6.54350e22i −0.0312500 0.0541266i
\(257\) −1.35266e24 + 7.80958e23i −1.07611 + 0.621293i −0.929845 0.367952i \(-0.880059\pi\)
−0.146266 + 0.989245i \(0.546726\pi\)
\(258\) 0 0
\(259\) −6.39644e23 + 1.10790e24i −0.470913 + 0.815645i
\(260\) 3.91927e23i 0.277633i
\(261\) 0 0
\(262\) −8.47976e23 −0.556379
\(263\) 1.87714e24 + 1.08377e24i 1.18560 + 0.684508i 0.957304 0.289083i \(-0.0933502\pi\)
0.228299 + 0.973591i \(0.426684\pi\)
\(264\) 0 0
\(265\) −4.62897e23 8.01762e23i −0.271035 0.469447i
\(266\) −1.46848e23 + 8.47827e22i −0.0828040 + 0.0478069i
\(267\) 0 0
\(268\) 8.70213e23 1.50725e24i 0.455279 0.788566i
\(269\) 2.41699e24i 1.21830i −0.793057 0.609148i \(-0.791512\pi\)
0.793057 0.609148i \(-0.208488\pi\)
\(270\) 0 0
\(271\) −3.73186e24 −1.74676 −0.873378 0.487042i \(-0.838076\pi\)
−0.873378 + 0.487042i \(0.838076\pi\)
\(272\) 9.40063e23 + 5.42746e23i 0.424100 + 0.244854i
\(273\) 0 0
\(274\) −1.33704e23 2.31582e23i −0.0560580 0.0970953i
\(275\) −1.51065e24 + 8.72172e23i −0.610711 + 0.352594i
\(276\) 0 0
\(277\) −2.02418e24 + 3.50598e24i −0.761117 + 1.31829i 0.181157 + 0.983454i \(0.442016\pi\)
−0.942275 + 0.334840i \(0.891318\pi\)
\(278\) 3.38836e23i 0.122897i
\(279\) 0 0
\(280\) 9.00321e23 0.303960
\(281\) 2.04185e24 + 1.17886e24i 0.665212 + 0.384061i 0.794260 0.607578i \(-0.207859\pi\)
−0.129048 + 0.991638i \(0.541192\pi\)
\(282\) 0 0
\(283\) 7.01417e23 + 1.21489e24i 0.212869 + 0.368700i 0.952611 0.304191i \(-0.0983859\pi\)
−0.739742 + 0.672890i \(0.765053\pi\)
\(284\) −1.45705e24 + 8.41229e23i −0.426866 + 0.246451i
\(285\) 0 0
\(286\) 1.42265e24 2.46410e24i 0.388541 0.672973i
\(287\) 3.98996e24i 1.05232i
\(288\) 0 0
\(289\) −1.15303e25 −2.83703
\(290\) 2.09882e24 + 1.21176e24i 0.498880 + 0.288028i
\(291\) 0 0
\(292\) 1.83614e24 + 3.18029e24i 0.407453 + 0.705730i
\(293\) 3.04569e23 1.75843e23i 0.0653144 0.0377093i −0.466987 0.884264i \(-0.654661\pi\)
0.532302 + 0.846555i \(0.321327\pi\)
\(294\) 0 0
\(295\) −2.56524e24 + 4.44313e24i −0.513935 + 0.890161i
\(296\) 1.40277e24i 0.271687i
\(297\) 0 0
\(298\) 2.11012e24 0.382072
\(299\) −4.19230e24 2.42043e24i −0.734076 0.423819i
\(300\) 0 0
\(301\) −3.76464e24 6.52054e24i −0.616677 1.06812i
\(302\) 3.46196e24 1.99877e24i 0.548596 0.316732i
\(303\) 0 0
\(304\) 9.29661e22 1.61022e23i 0.0137908 0.0238863i
\(305\) 3.01775e24i 0.433196i
\(306\) 0 0
\(307\) 9.66992e24 1.30029 0.650143 0.759811i \(-0.274709\pi\)
0.650143 + 0.759811i \(0.274709\pi\)
\(308\) 5.66044e24 + 3.26805e24i 0.736788 + 0.425385i
\(309\) 0 0
\(310\) −7.20967e23 1.24875e24i −0.0879627 0.152356i
\(311\) 1.42746e24 8.24145e23i 0.168640 0.0973643i −0.413304 0.910593i \(-0.635625\pi\)
0.581944 + 0.813229i \(0.302292\pi\)
\(312\) 0 0
\(313\) 2.61512e24 4.52952e24i 0.289766 0.501890i −0.683988 0.729494i \(-0.739756\pi\)
0.973754 + 0.227604i \(0.0730891\pi\)
\(314\) 4.23214e24i 0.454217i
\(315\) 0 0
\(316\) −2.79029e24 −0.281046
\(317\) −3.02405e24 1.74594e24i −0.295118 0.170387i 0.345129 0.938555i \(-0.387835\pi\)
−0.640248 + 0.768168i \(0.721168\pi\)
\(318\) 0 0
\(319\) 8.79705e24 + 1.52369e25i 0.806177 + 1.39634i
\(320\) −8.54959e23 + 4.93611e23i −0.0759356 + 0.0438415i
\(321\) 0 0
\(322\) 5.56012e24 9.63041e24i 0.464008 0.803685i
\(323\) 2.67117e24i 0.216111i
\(324\) 0 0
\(325\) 5.28628e24 0.402084
\(326\) −3.07575e24 1.77579e24i −0.226869 0.130983i
\(327\) 0 0
\(328\) −2.18754e24 3.78893e24i −0.151781 0.262892i
\(329\) −2.05171e25 + 1.18456e25i −1.38088 + 0.797254i
\(330\) 0 0
\(331\) −1.12996e25 + 1.95715e25i −0.715788 + 1.23978i 0.246866 + 0.969050i \(0.420599\pi\)
−0.962655 + 0.270732i \(0.912734\pi\)
\(332\) 2.31777e24i 0.142459i
\(333\) 0 0
\(334\) 2.01887e25 1.16854
\(335\) −1.96934e25 1.13700e25i −1.10630 0.638723i
\(336\) 0 0
\(337\) 1.13293e24 + 1.96228e24i 0.0599656 + 0.103863i 0.894450 0.447168i \(-0.147568\pi\)
−0.834484 + 0.551032i \(0.814234\pi\)
\(338\) 4.44992e24 2.56916e24i 0.228657 0.132015i
\(339\) 0 0
\(340\) 7.09140e24 1.22827e25i 0.343512 0.594981i
\(341\) 1.04681e25i 0.492406i
\(342\) 0 0
\(343\) 1.37529e25 0.610174
\(344\) 7.14992e24 + 4.12801e24i 0.308118 + 0.177892i
\(345\) 0 0
\(346\) 6.36884e23 + 1.10311e24i 0.0259000 + 0.0448601i
\(347\) −3.41332e24 + 1.97068e24i −0.134860 + 0.0778612i −0.565912 0.824466i \(-0.691476\pi\)
0.431052 + 0.902327i \(0.358142\pi\)
\(348\) 0 0
\(349\) 2.00427e25 3.47149e25i 0.747655 1.29498i −0.201289 0.979532i \(-0.564513\pi\)
0.948944 0.315445i \(-0.102154\pi\)
\(350\) 1.21435e25i 0.440212i
\(351\) 0 0
\(352\) −7.16699e24 −0.245420
\(353\) −1.51856e25 8.76738e24i −0.505456 0.291825i 0.225508 0.974241i \(-0.427596\pi\)
−0.730964 + 0.682416i \(0.760929\pi\)
\(354\) 0 0
\(355\) 1.09913e25 + 1.90375e25i 0.345753 + 0.598862i
\(356\) 2.28046e25 1.31662e25i 0.697464 0.402681i
\(357\) 0 0
\(358\) 1.78349e25 3.08909e25i 0.515751 0.893306i
\(359\) 5.46046e25i 1.53562i −0.640675 0.767812i \(-0.721345\pi\)
0.640675 0.767812i \(-0.278655\pi\)
\(360\) 0 0
\(361\) −3.71324e25 −0.987828
\(362\) 3.31434e25 + 1.91353e25i 0.857651 + 0.495165i
\(363\) 0 0
\(364\) −9.90393e24 1.71541e25i −0.242546 0.420101i
\(365\) 4.15530e25 2.39906e25i 0.990087 0.571627i
\(366\) 0 0
\(367\) −4.86765e24 + 8.43101e24i −0.109814 + 0.190204i −0.915695 0.401874i \(-0.868359\pi\)
0.805881 + 0.592078i \(0.201692\pi\)
\(368\) 1.21936e25i 0.267703i
\(369\) 0 0
\(370\) −1.83283e25 −0.381157
\(371\) −4.05208e25 2.33947e25i −0.820235 0.473563i
\(372\) 0 0
\(373\) 4.62911e25 + 8.01786e25i 0.887993 + 1.53805i 0.842244 + 0.539096i \(0.181234\pi\)
0.0457489 + 0.998953i \(0.485433\pi\)
\(374\) 8.91691e25 5.14818e25i 1.66532 0.961474i
\(375\) 0 0
\(376\) 1.29889e25 2.24975e25i 0.229983 0.398341i
\(377\) 5.33194e25i 0.919331i
\(378\) 0 0
\(379\) 6.30876e24 0.103170 0.0515849 0.998669i \(-0.483573\pi\)
0.0515849 + 0.998669i \(0.483573\pi\)
\(380\) −2.10388e24 1.21467e24i −0.0335108 0.0193475i
\(381\) 0 0
\(382\) −8.34071e24 1.44465e25i −0.126058 0.218338i
\(383\) 1.89045e25 1.09145e25i 0.278341 0.160700i −0.354331 0.935120i \(-0.615291\pi\)
0.632672 + 0.774420i \(0.281958\pi\)
\(384\) 0 0
\(385\) 4.26997e25 7.39580e25i 0.596784 1.03366i
\(386\) 3.05324e25i 0.415803i
\(387\) 0 0
\(388\) 5.55860e24 0.0718866
\(389\) −7.42188e24 4.28503e24i −0.0935444 0.0540079i 0.452498 0.891765i \(-0.350533\pi\)
−0.546042 + 0.837757i \(0.683866\pi\)
\(390\) 0 0
\(391\) −8.75888e25 1.51708e26i −1.04877 1.81653i
\(392\) 1.31729e25 7.60538e24i 0.153752 0.0887687i
\(393\) 0 0
\(394\) 1.32898e25 2.30186e25i 0.147420 0.255339i
\(395\) 3.64572e25i 0.394287i
\(396\) 0 0
\(397\) −1.05722e26 −1.08708 −0.543538 0.839384i \(-0.682916\pi\)
−0.543538 + 0.839384i \(0.682916\pi\)
\(398\) −7.65827e24 4.42151e24i −0.0767892 0.0443343i
\(399\) 0 0
\(400\) −6.65779e24 1.15316e25i −0.0634936 0.109974i
\(401\) −1.78718e26 + 1.03183e26i −1.66236 + 0.959762i −0.690771 + 0.723074i \(0.742729\pi\)
−0.971586 + 0.236688i \(0.923938\pi\)
\(402\) 0 0
\(403\) −1.58619e25 + 2.74736e25i −0.140380 + 0.243145i
\(404\) 8.26317e24i 0.0713400i
\(405\) 0 0
\(406\) 1.22483e26 1.00651
\(407\) −1.15232e26 6.65293e25i −0.923910 0.533420i
\(408\) 0 0
\(409\) 1.19841e26 + 2.07571e26i 0.914897 + 1.58465i 0.807053 + 0.590479i \(0.201061\pi\)
0.107844 + 0.994168i \(0.465605\pi\)
\(410\) −4.95053e25 + 2.85819e25i −0.368819 + 0.212938i
\(411\) 0 0
\(412\) −6.85064e24 + 1.18656e25i −0.0486137 + 0.0842014i
\(413\) 2.59293e26i 1.79593i
\(414\) 0 0
\(415\) −3.02834e25 −0.199859
\(416\) 1.88099e25 + 1.08599e25i 0.121186 + 0.0699667i
\(417\) 0 0
\(418\) −8.81824e24 1.52736e25i −0.0541526 0.0937950i
\(419\) 1.07118e26 6.18445e25i 0.642276 0.370818i −0.143215 0.989692i \(-0.545744\pi\)
0.785491 + 0.618873i \(0.212411\pi\)
\(420\) 0 0
\(421\) −1.09562e26 + 1.89767e26i −0.626383 + 1.08493i 0.361889 + 0.932221i \(0.382132\pi\)
−0.988272 + 0.152706i \(0.951201\pi\)
\(422\) 8.18861e25i 0.457178i
\(423\) 0 0
\(424\) 5.13056e25 0.273216
\(425\) 1.65668e26 + 9.56482e25i 0.861684 + 0.497494i
\(426\) 0 0
\(427\) 7.62579e25 + 1.32083e26i 0.378448 + 0.655491i
\(428\) −1.89107e24 + 1.09181e24i −0.00916791 + 0.00529310i
\(429\) 0 0
\(430\) 5.39356e25 9.34192e25i 0.249569 0.432267i
\(431\) 1.34215e26i 0.606776i −0.952867 0.303388i \(-0.901882\pi\)
0.952867 0.303388i \(-0.0981178\pi\)
\(432\) 0 0
\(433\) −7.52121e25 −0.324645 −0.162323 0.986738i \(-0.551899\pi\)
−0.162323 + 0.986738i \(0.551899\pi\)
\(434\) −6.31115e25 3.64374e25i −0.266202 0.153692i
\(435\) 0 0
\(436\) 1.07148e26 + 1.85585e26i 0.431636 + 0.747616i
\(437\) −2.59859e25 + 1.50029e25i −0.102311 + 0.0590694i
\(438\) 0 0
\(439\) −7.41514e25 + 1.28434e26i −0.278916 + 0.483097i −0.971116 0.238609i \(-0.923309\pi\)
0.692199 + 0.721706i \(0.256642\pi\)
\(440\) 9.36423e25i 0.344306i
\(441\) 0 0
\(442\) −3.12034e26 −1.09643
\(443\) −2.89401e25 1.67086e25i −0.0994176 0.0573988i 0.449467 0.893297i \(-0.351614\pi\)
−0.548884 + 0.835898i \(0.684947\pi\)
\(444\) 0 0
\(445\) −1.72027e26 2.97959e26i −0.564932 0.978492i
\(446\) −1.18256e26 + 6.82751e25i −0.379730 + 0.219237i
\(447\) 0 0
\(448\) −2.49469e25 + 4.32093e25i −0.0766014 + 0.132678i
\(449\) 6.34676e26i 1.90585i 0.303207 + 0.952925i \(0.401943\pi\)
−0.303207 + 0.952925i \(0.598057\pi\)
\(450\) 0 0
\(451\) −4.14995e26 −1.19200
\(452\) 1.72186e26 + 9.94116e25i 0.483742 + 0.279288i
\(453\) 0 0
\(454\) 7.01468e25 + 1.21498e26i 0.188560 + 0.326595i
\(455\) −2.24132e26 + 1.29402e26i −0.589372 + 0.340274i
\(456\) 0 0
\(457\) 2.24391e26 3.88656e26i 0.564732 0.978145i −0.432342 0.901710i \(-0.642313\pi\)
0.997075 0.0764357i \(-0.0243540\pi\)
\(458\) 3.44331e26i 0.847854i
\(459\) 0 0
\(460\) 1.59319e26 0.375568
\(461\) 1.22822e26 + 7.09115e25i 0.283314 + 0.163571i 0.634923 0.772576i \(-0.281032\pi\)
−0.351609 + 0.936147i \(0.614365\pi\)
\(462\) 0 0
\(463\) 3.74798e26 + 6.49169e26i 0.827917 + 1.43399i 0.899669 + 0.436572i \(0.143808\pi\)
−0.0717518 + 0.997423i \(0.522859\pi\)
\(464\) −1.16312e26 + 6.71529e25i −0.251447 + 0.145173i
\(465\) 0 0
\(466\) −4.76649e25 + 8.25581e25i −0.0987052 + 0.170962i
\(467\) 3.69852e26i 0.749650i 0.927096 + 0.374825i \(0.122297\pi\)
−0.927096 + 0.374825i \(0.877703\pi\)
\(468\) 0 0
\(469\) −1.14927e27 −2.23200
\(470\) −2.93947e26 1.69710e26i −0.558844 0.322649i
\(471\) 0 0
\(472\) −1.42160e26 2.46229e26i −0.259035 0.448661i
\(473\) 6.78201e26 3.91559e26i 1.20989 0.698532i
\(474\) 0 0
\(475\) 1.63834e25 2.83769e25i 0.0280201 0.0485322i
\(476\) 7.16793e26i 1.20040i
\(477\) 0 0
\(478\) −6.64536e26 −1.06718
\(479\) −4.41847e26 2.55101e26i −0.694892 0.401196i 0.110550 0.993871i \(-0.464739\pi\)
−0.805442 + 0.592675i \(0.798072\pi\)
\(480\) 0 0
\(481\) 2.01619e26 + 3.49214e26i 0.304145 + 0.526794i
\(482\) 2.47223e26 1.42734e26i 0.365274 0.210891i
\(483\) 0 0
\(484\) −1.63553e26 + 2.83281e26i −0.231848 + 0.401573i
\(485\) 7.26274e25i 0.100852i
\(486\) 0 0
\(487\) −4.25959e26 −0.567646 −0.283823 0.958877i \(-0.591603\pi\)
−0.283823 + 0.958877i \(0.591603\pi\)
\(488\) −1.44832e26 8.36185e25i −0.189088 0.109170i
\(489\) 0 0
\(490\) −9.93701e25 1.72114e26i −0.124536 0.215703i
\(491\) 7.58761e26 4.38071e26i 0.931730 0.537935i 0.0443719 0.999015i \(-0.485871\pi\)
0.887358 + 0.461080i \(0.152538\pi\)
\(492\) 0 0
\(493\) 9.64743e26 1.67098e27i 1.13748 1.97017i
\(494\) 5.34478e25i 0.0617533i
\(495\) 0 0
\(496\) 7.99089e25 0.0886703
\(497\) 9.62149e26 + 5.55497e26i 1.04635 + 0.604112i
\(498\) 0 0
\(499\) 9.33699e26 + 1.61721e27i 0.975442 + 1.68952i 0.678468 + 0.734630i \(0.262644\pi\)
0.296974 + 0.954886i \(0.404023\pi\)
\(500\) −4.47293e26 + 2.58245e26i −0.458028 + 0.264443i
\(501\) 0 0
\(502\) −1.03819e26 + 1.79820e26i −0.102150 + 0.176929i
\(503\) 1.15358e27i 1.11267i −0.830956 0.556337i \(-0.812206\pi\)
0.830956 0.556337i \(-0.187794\pi\)
\(504\) 0 0
\(505\) −1.07965e26 −0.100085
\(506\) 1.00166e27 + 5.78307e26i 0.910362 + 0.525598i
\(507\) 0 0
\(508\) 3.72787e26 + 6.45686e26i 0.325704 + 0.564136i
\(509\) −1.82376e27 + 1.05295e27i −1.56239 + 0.902049i −0.565380 + 0.824831i \(0.691270\pi\)
−0.997014 + 0.0772180i \(0.975396\pi\)
\(510\) 0 0
\(511\) 1.21248e27 2.10007e27i 0.998768 1.72992i
\(512\) 5.47097e25i 0.0441942i
\(513\) 0 0
\(514\) −1.13095e27 −0.878641
\(515\) 1.55034e26 + 8.95089e25i 0.118128 + 0.0682015i
\(516\) 0 0
\(517\) −1.23206e27 2.13398e27i −0.903077 1.56418i
\(518\) −8.02202e26 + 4.63152e26i −0.576748 + 0.332986i
\(519\) 0 0
\(520\) 1.41893e26 2.45765e26i 0.0981582 0.170015i
\(521\) 2.24374e27i 1.52264i −0.648379 0.761318i \(-0.724553\pi\)
0.648379 0.761318i \(-0.275447\pi\)
\(522\) 0 0
\(523\) 2.32737e27 1.52002 0.760008 0.649914i \(-0.225195\pi\)
0.760008 + 0.649914i \(0.225195\pi\)
\(524\) −5.31740e26 3.07000e26i −0.340711 0.196710i
\(525\) 0 0
\(526\) 7.84732e26 + 1.35920e27i 0.484021 + 0.838348i
\(527\) −9.94197e26 + 5.74000e26i −0.601681 + 0.347381i
\(528\) 0 0
\(529\) 1.25828e26 2.17941e26i 0.0733197 0.126994i
\(530\) 6.70347e26i 0.383302i
\(531\) 0 0
\(532\) −1.22778e26 −0.0676092
\(533\) 1.08916e27 + 6.28827e26i 0.588599 + 0.339828i
\(534\) 0 0
\(535\) 1.42654e25 + 2.47083e25i 0.00742583 + 0.0128619i
\(536\) 1.09137e27 6.30101e26i 0.557600 0.321931i
\(537\) 0 0
\(538\) 8.75045e26 1.51562e27i 0.430732 0.746050i
\(539\) 1.44281e27i 0.697140i
\(540\) 0 0
\(541\) 2.86087e27 1.33206 0.666032 0.745923i \(-0.267991\pi\)
0.666032 + 0.745923i \(0.267991\pi\)
\(542\) −2.34014e27 1.35108e27i −1.06967 0.617572i
\(543\) 0 0
\(544\) 3.92990e26 + 6.80679e26i 0.173138 + 0.299884i
\(545\) 2.42481e27 1.39997e27i 1.04885 0.605554i
\(546\) 0 0
\(547\) −1.05474e26 + 1.82686e26i −0.0439816 + 0.0761784i −0.887178 0.461427i \(-0.847338\pi\)
0.843197 + 0.537605i \(0.180671\pi\)
\(548\) 1.93624e26i 0.0792780i
\(549\) 0 0
\(550\) −1.26304e27 −0.498644
\(551\) −2.86220e26 1.65249e26i −0.110965 0.0640654i
\(552\) 0 0
\(553\) 9.21268e26 + 1.59568e27i 0.344457 + 0.596617i
\(554\) −2.53860e27 + 1.46566e27i −0.932175 + 0.538191i
\(555\) 0 0
\(556\) −1.22672e26 + 2.12474e26i −0.0434507 + 0.0752589i
\(557\) 7.58693e26i 0.263945i −0.991253 0.131973i \(-0.957869\pi\)
0.991253 0.131973i \(-0.0421311\pi\)
\(558\) 0 0
\(559\) −2.37326e27 −0.796577
\(560\) 5.64564e26 + 3.25951e26i 0.186137 + 0.107466i
\(561\) 0 0
\(562\) 8.53587e26 + 1.47846e27i 0.271572 + 0.470376i
\(563\) 2.99845e27 1.73115e27i 0.937157 0.541068i 0.0480891 0.998843i \(-0.484687\pi\)
0.889068 + 0.457775i \(0.151354\pi\)
\(564\) 0 0
\(565\) 1.29889e27 2.24974e27i 0.391821 0.678654i
\(566\) 1.01576e27i 0.301042i
\(567\) 0 0
\(568\) −1.21823e27 −0.348535
\(569\) 9.04409e26 + 5.22161e26i 0.254239 + 0.146785i 0.621704 0.783253i \(-0.286441\pi\)
−0.367465 + 0.930037i \(0.619774\pi\)
\(570\) 0 0
\(571\) 8.12384e26 + 1.40709e27i 0.220496 + 0.381910i 0.954959 0.296739i \(-0.0958992\pi\)
−0.734463 + 0.678649i \(0.762566\pi\)
\(572\) 1.78420e27 1.03011e27i 0.475864 0.274740i
\(573\) 0 0
\(574\) −1.44452e27 + 2.50198e27i −0.372053 + 0.644414i
\(575\) 2.14888e27i 0.543918i
\(576\) 0 0
\(577\) 3.69616e26 0.0903634 0.0451817 0.998979i \(-0.485613\pi\)
0.0451817 + 0.998979i \(0.485613\pi\)
\(578\) −7.23032e27 4.17443e27i −1.73732 1.00304i
\(579\) 0 0
\(580\) 8.77405e26 + 1.51971e27i 0.203667 + 0.352761i
\(581\) −1.32546e27 + 7.65257e26i −0.302417 + 0.174601i
\(582\) 0 0
\(583\) 2.43328e27 4.21456e27i 0.536421 0.929109i
\(584\) 2.65902e27i 0.576226i
\(585\) 0 0
\(586\) 2.54648e26 0.0533290
\(587\) 7.47291e27 + 4.31449e27i 1.53854 + 0.888277i 0.998925 + 0.0463658i \(0.0147640\pi\)
0.539616 + 0.841911i \(0.318569\pi\)
\(588\) 0 0
\(589\) 9.83196e25 + 1.70295e26i 0.0195653 + 0.0338881i
\(590\) −3.21717e27 + 1.85743e27i −0.629439 + 0.363407i
\(591\) 0 0
\(592\) 5.07856e26 8.79633e26i 0.0960558 0.166374i
\(593\) 7.23061e27i 1.34471i −0.740230 0.672354i \(-0.765283\pi\)
0.740230 0.672354i \(-0.234717\pi\)
\(594\) 0 0
\(595\) −9.36546e27 −1.68407
\(596\) 1.32319e27 + 7.63947e26i 0.233971 + 0.135083i
\(597\) 0 0
\(598\) −1.75258e27 3.03555e27i −0.299685 0.519070i
\(599\) 3.79481e27 2.19093e27i 0.638148 0.368435i −0.145753 0.989321i \(-0.546560\pi\)
0.783901 + 0.620886i \(0.213227\pi\)
\(600\) 0 0
\(601\) 3.41261e27 5.91082e27i 0.555063 0.961398i −0.442835 0.896603i \(-0.646027\pi\)
0.997899 0.0647949i \(-0.0206393\pi\)
\(602\) 5.45177e27i 0.872113i
\(603\) 0 0
\(604\) 2.89452e27 0.447927
\(605\) 3.70129e27 + 2.13694e27i 0.563377 + 0.325266i
\(606\) 0 0
\(607\) 3.72113e27 + 6.44518e27i 0.548009 + 0.949179i 0.998411 + 0.0563533i \(0.0179473\pi\)
−0.450402 + 0.892826i \(0.648719\pi\)
\(608\) 1.16592e26 6.73147e25i 0.0168902 0.00975155i
\(609\) 0 0
\(610\) −1.09254e27 + 1.89234e27i −0.153158 + 0.265277i
\(611\) 7.46756e27i 1.02983i
\(612\) 0 0
\(613\) −2.51368e27 −0.335510 −0.167755 0.985829i \(-0.553652\pi\)
−0.167755 + 0.985829i \(0.553652\pi\)
\(614\) 6.06371e27 + 3.50089e27i 0.796260 + 0.459721i
\(615\) 0 0
\(616\) 2.36632e27 + 4.09859e27i 0.300793 + 0.520988i
\(617\) −1.29761e28 + 7.49174e27i −1.62290 + 0.936982i −0.636761 + 0.771061i \(0.719726\pi\)
−0.986139 + 0.165921i \(0.946940\pi\)
\(618\) 0 0
\(619\) 6.45322e26 1.11773e27i 0.0781394 0.135341i −0.824308 0.566142i \(-0.808435\pi\)
0.902447 + 0.430801i \(0.141769\pi\)
\(620\) 1.04407e27i 0.124398i
\(621\) 0 0
\(622\) 1.19349e27 0.137694
\(623\) −1.50588e28 8.69418e27i −1.70966 0.987071i
\(624\) 0 0
\(625\) 1.06429e27 + 1.84340e27i 0.117019 + 0.202684i
\(626\) 3.27972e27 1.89355e27i 0.354890 0.204896i
\(627\) 0 0
\(628\) 1.53220e27 2.65385e27i 0.160590 0.278150i
\(629\) 1.45921e28i 1.50526i
\(630\) 0 0
\(631\) −3.97000e27 −0.396732 −0.198366 0.980128i \(-0.563563\pi\)
−0.198366 + 0.980128i \(0.563563\pi\)
\(632\) −1.74970e27 1.01019e27i −0.172105 0.0993648i
\(633\) 0 0
\(634\) −1.26419e27 2.18965e27i −0.120482 0.208680i
\(635\) 8.43638e27 4.87075e27i 0.791442 0.456939i
\(636\) 0 0
\(637\) −2.18623e27 + 3.78666e27i −0.198748 + 0.344241i
\(638\) 1.27395e28i 1.14011i
\(639\) 0 0
\(640\) −7.14825e26 −0.0620012
\(641\) −9.82663e27 5.67341e27i −0.839121 0.484467i 0.0178446 0.999841i \(-0.494320\pi\)
−0.856965 + 0.515374i \(0.827653\pi\)
\(642\) 0 0
\(643\) −7.40078e27 1.28185e28i −0.612587 1.06103i −0.990803 0.135314i \(-0.956796\pi\)
0.378216 0.925717i \(-0.376538\pi\)
\(644\) 6.97316e27 4.02596e27i 0.568291 0.328103i
\(645\) 0 0
\(646\) −9.67067e26 + 1.67501e27i −0.0764067 + 0.132340i
\(647\) 1.75706e27i 0.136692i −0.997662 0.0683460i \(-0.978228\pi\)
0.997662 0.0683460i \(-0.0217722\pi\)
\(648\) 0 0
\(649\) −2.69690e28 −2.03431
\(650\) 3.31487e27 + 1.91384e27i 0.246225 + 0.142158i
\(651\) 0 0
\(652\) −1.28581e27 2.22708e27i −0.0926189 0.160421i
\(653\) 6.46890e27 3.73482e27i 0.458880 0.264934i −0.252693 0.967546i \(-0.581316\pi\)
0.711573 + 0.702612i \(0.247983\pi\)
\(654\) 0 0
\(655\) −4.01119e27 + 6.94759e27i −0.275969 + 0.477993i
\(656\) 3.16789e27i 0.214651i
\(657\) 0 0
\(658\) −1.71542e28 −1.12749
\(659\) 1.23415e27 + 7.12537e26i 0.0798940 + 0.0461268i 0.539415 0.842040i \(-0.318646\pi\)
−0.459521 + 0.888167i \(0.651979\pi\)
\(660\) 0 0
\(661\) 8.52779e27 + 1.47706e28i 0.535577 + 0.927647i 0.999135 + 0.0415803i \(0.0132392\pi\)
−0.463558 + 0.886067i \(0.653427\pi\)
\(662\) −1.41713e28 + 8.18181e27i −0.876658 + 0.506139i
\(663\) 0 0
\(664\) 8.39122e26 1.45340e27i 0.0503668 0.0872378i
\(665\) 1.60420e27i 0.0948508i
\(666\) 0 0
\(667\) 2.16744e28 1.24362
\(668\) 1.26597e28 + 7.30911e27i 0.715583 + 0.413142i
\(669\) 0 0
\(670\) −8.23276e27 1.42596e28i −0.451645 0.782273i
\(671\) −1.37379e28 + 7.93158e27i −0.742497 + 0.428681i
\(672\) 0 0
\(673\) −1.55981e28 + 2.70167e28i −0.818316 + 1.41737i 0.0886059 + 0.996067i \(0.471759\pi\)
−0.906922 + 0.421298i \(0.861575\pi\)
\(674\) 1.64065e27i 0.0848042i
\(675\) 0 0
\(676\) 3.72054e27 0.186698
\(677\) 1.52047e28 + 8.77843e27i 0.751780 + 0.434040i 0.826337 0.563177i \(-0.190421\pi\)
−0.0745569 + 0.997217i \(0.523754\pi\)
\(678\) 0 0
\(679\) −1.83528e27 3.17880e27i −0.0881059 0.152604i
\(680\) 8.89359e27 5.13472e27i 0.420715 0.242900i
\(681\) 0 0
\(682\) 3.78985e27 6.56422e27i 0.174092 0.301536i
\(683\) 2.50615e28i 1.13449i 0.823550 + 0.567244i \(0.191990\pi\)
−0.823550 + 0.567244i \(0.808010\pi\)
\(684\) 0 0
\(685\) −2.52984e27 −0.111221
\(686\) 8.62404e27 + 4.97909e27i 0.373654 + 0.215729i
\(687\) 0 0
\(688\) 2.98900e27 + 5.17709e27i 0.125789 + 0.217872i
\(689\) −1.27723e28 + 7.37411e27i −0.529759 + 0.305856i
\(690\) 0 0
\(691\) 1.22623e27 2.12389e27i 0.0494072 0.0855758i −0.840264 0.542177i \(-0.817600\pi\)
0.889671 + 0.456601i \(0.150933\pi\)
\(692\) 9.22306e26i 0.0366281i
\(693\) 0 0
\(694\) −2.85385e27 −0.110112
\(695\) 2.77614e27 + 1.60280e27i 0.105583 + 0.0609582i
\(696\) 0 0
\(697\) 2.27556e28 + 3.94138e28i 0.840930 + 1.45653i
\(698\) 2.51363e28 1.45124e28i 0.915687 0.528672i
\(699\) 0 0
\(700\) −4.39640e27 + 7.61479e27i −0.155639 + 0.269574i
\(701\) 3.01435e28i 1.05199i −0.850486 0.525997i \(-0.823692\pi\)
0.850486 0.525997i \(-0.176308\pi\)
\(702\) 0 0
\(703\) 2.49946e27 0.0847798
\(704\) −4.49420e27 2.59473e27i −0.150289 0.0867691i
\(705\) 0 0
\(706\) −6.34826e27 1.09955e28i −0.206352 0.357411i
\(707\) −4.72547e27 + 2.72825e27i −0.151444 + 0.0874360i
\(708\) 0 0
\(709\) 3.59242e27 6.22225e27i 0.111924 0.193859i −0.804622 0.593788i \(-0.797632\pi\)
0.916546 + 0.399929i \(0.130965\pi\)
\(710\) 1.59171e28i 0.488969i
\(711\) 0 0
\(712\) 1.90667e28 0.569477
\(713\) −1.11681e28 6.44788e27i −0.328914 0.189899i
\(714\) 0 0
\(715\) −1.34591e28 2.33119e28i −0.385440 0.667602i
\(716\) 2.23674e28 1.29138e28i 0.631663 0.364691i
\(717\) 0 0
\(718\) 1.97690e28 3.42409e28i 0.542925 0.940374i
\(719\) 5.39954e28i 1.46240i 0.682161 + 0.731202i \(0.261040\pi\)
−0.682161 + 0.731202i \(0.738960\pi\)
\(720\) 0 0
\(721\) 9.04749e27 0.238328
\(722\) −2.32846e28 1.34434e28i −0.604919 0.349250i
\(723\) 0 0
\(724\) 1.38555e28 + 2.39984e28i 0.350135 + 0.606451i
\(725\) −2.04977e28 + 1.18344e28i −0.510888 + 0.294961i
\(726\) 0 0
\(727\) −3.76699e28 + 6.52462e28i −0.913378 + 1.58202i −0.104120 + 0.994565i \(0.533203\pi\)
−0.809258 + 0.587453i \(0.800131\pi\)
\(728\) 1.43424e28i 0.343011i
\(729\) 0 0
\(730\) 3.47421e28 0.808403
\(731\) −7.43760e28 4.29410e28i −1.70710 0.985595i
\(732\) 0 0
\(733\) −1.16755e28 2.02226e28i −0.260758 0.451645i 0.705686 0.708525i \(-0.250639\pi\)
−0.966443 + 0.256880i \(0.917306\pi\)
\(734\) −6.10470e27 + 3.52455e27i −0.134494 + 0.0776504i
\(735\) 0 0
\(736\) −4.41455e27 + 7.64623e27i −0.0946474 + 0.163934i
\(737\) 1.19536e29i 2.52826i
\(738\) 0 0
\(739\) 1.10513e28 0.227494 0.113747 0.993510i \(-0.463715\pi\)
0.113747 + 0.993510i \(0.463715\pi\)
\(740\) −1.14931e28 6.63554e27i −0.233410 0.134759i
\(741\) 0 0
\(742\) −1.69395e28 2.93402e28i −0.334860 0.579994i
\(743\) −3.65996e28 + 2.11308e28i −0.713820 + 0.412124i −0.812474 0.582998i \(-0.801880\pi\)
0.0986540 + 0.995122i \(0.468546\pi\)
\(744\) 0 0
\(745\) 9.98156e27 1.72886e28i 0.189511 0.328244i
\(746\) 6.70367e28i 1.25581i
\(747\) 0 0
\(748\) 7.45536e28 1.35973
\(749\) 1.24875e27 + 7.20966e26i 0.0224728 + 0.0129747i
\(750\) 0 0
\(751\) −2.91773e28 5.05365e28i −0.511264 0.885536i −0.999915 0.0130561i \(-0.995844\pi\)
0.488650 0.872480i \(-0.337489\pi\)
\(752\) 1.62899e28 9.40499e27i 0.281670 0.162622i
\(753\) 0 0
\(754\) 1.93037e28 3.34350e28i 0.325032 0.562973i
\(755\) 3.78192e28i 0.628409i
\(756\) 0 0
\(757\) 6.36147e28 1.02943 0.514717 0.857360i \(-0.327897\pi\)
0.514717 + 0.857360i \(0.327897\pi\)
\(758\) 3.95603e27 + 2.28402e27i 0.0631783 + 0.0364760i
\(759\) 0 0
\(760\) −8.79518e26 1.52337e27i −0.0136807 0.0236957i
\(761\) 9.02875e28 5.21275e28i 1.38606 0.800240i 0.393189 0.919458i \(-0.371372\pi\)
0.992868 + 0.119217i \(0.0380385\pi\)
\(762\) 0 0
\(763\) 7.07539e28 1.22549e29i 1.05805 1.83259i
\(764\) 1.20786e28i 0.178272i
\(765\) 0 0
\(766\) 1.58059e28 0.227265
\(767\) 7.07805e28 + 4.08652e28i 1.00452 + 0.579962i
\(768\) 0 0
\(769\) −1.08779e28 1.88410e28i −0.150411 0.260520i 0.780967 0.624572i \(-0.214726\pi\)
−0.931379 + 0.364052i \(0.881393\pi\)
\(770\) 5.35513e28 3.09179e28i 0.730908 0.421990i
\(771\) 0 0
\(772\) 1.10539e28 1.91459e28i 0.147009 0.254627i
\(773\) 5.75380e26i 0.00755370i −0.999993 0.00377685i \(-0.998798\pi\)
0.999993 0.00377685i \(-0.00120221\pi\)
\(774\) 0 0
\(775\) 1.40824e28 0.180160
\(776\) 3.48563e27 + 2.01243e27i 0.0440214 + 0.0254158i
\(777\) 0 0
\(778\) −3.10269e27 5.37402e27i −0.0381894 0.0661459i
\(779\) 6.75113e27 3.89777e27i 0.0820355 0.0473632i
\(780\) 0 0
\(781\) −5.77772e28 + 1.00073e29i −0.684299 + 1.18524i
\(782\) 1.26842e29i 1.48319i
\(783\) 0 0
\(784\) 1.10138e28 0.125538
\(785\) −3.46746e28 2.00194e28i −0.390224 0.225296i
\(786\) 0 0
\(787\) −2.61109e28 4.52254e28i −0.286467 0.496175i 0.686497 0.727133i \(-0.259148\pi\)
−0.972964 + 0.230957i \(0.925814\pi\)
\(788\) 1.66673e28 9.62286e27i 0.180552 0.104242i
\(789\) 0 0
\(790\) −1.31989e28 + 2.28612e28i −0.139402 + 0.241451i
\(791\) 1.31291e29i 1.36921i
\(792\) 0 0
\(793\) 4.80737e28 0.488850
\(794\) −6.62950e28 3.82754e28i −0.665696 0.384340i
\(795\) 0 0
\(796\) −3.20151e27 5.54518e27i −0.0313491 0.0542982i
\(797\) −3.98687e28 + 2.30182e28i −0.385522 + 0.222581i −0.680218 0.733010i \(-0.738115\pi\)
0.294696 + 0.955591i \(0.404782\pi\)
\(798\) 0 0
\(799\) −1.35115e29 + 2.34027e29i −1.27420 + 2.20698i
\(800\) 9.64151e27i 0.0897936i
\(801\) 0 0
\(802\) −1.49425e29 −1.35731
\(803\) 2.18428e29 + 1.26110e29i 1.95954 + 1.13134i
\(804\) 0 0
\(805\) −5.26022e28 9.11097e28i −0.460305 0.797271i
\(806\) −1.98930e28 + 1.14852e28i −0.171930 + 0.0992636i
\(807\) 0 0
\(808\) 2.99159e27 5.18158e27i 0.0252225 0.0436867i
\(809\) 8.24121e28i 0.686287i 0.939283 + 0.343143i \(0.111492\pi\)
−0.939283 + 0.343143i \(0.888508\pi\)
\(810\) 0 0
\(811\) 1.92459e29 1.56361 0.781805 0.623522i \(-0.214299\pi\)
0.781805 + 0.623522i \(0.214299\pi\)
\(812\) 7.68056e28 + 4.43437e28i 0.616357 + 0.355854i
\(813\) 0 0
\(814\) −4.81724e28 8.34370e28i −0.377185 0.653303i
\(815\) −2.90985e28 + 1.68001e28i −0.225058 + 0.129938i
\(816\) 0 0
\(817\) −7.35530e27 + 1.27398e28i −0.0555111 + 0.0961481i
\(818\) 1.73548e29i 1.29386i
\(819\) 0 0
\(820\) −4.13910e28 −0.301139
\(821\) −9.72425e28 5.61430e28i −0.698915 0.403519i 0.108028 0.994148i \(-0.465546\pi\)
−0.806943 + 0.590629i \(0.798880\pi\)
\(822\) 0 0
\(823\) −1.00668e28 1.74362e28i −0.0706144 0.122308i 0.828556 0.559906i \(-0.189163\pi\)
−0.899171 + 0.437598i \(0.855829\pi\)
\(824\) −8.59165e27 + 4.96039e27i −0.0595394 + 0.0343751i
\(825\) 0 0
\(826\) −9.38740e28 + 1.62595e29i −0.634958 + 1.09978i
\(827\) 1.27346e29i 0.851000i −0.904958 0.425500i \(-0.860098\pi\)
0.904958 0.425500i \(-0.139902\pi\)
\(828\) 0 0
\(829\) −8.05711e28 −0.525574 −0.262787 0.964854i \(-0.584642\pi\)
−0.262787 + 0.964854i \(0.584642\pi\)
\(830\) −1.89898e28 1.09638e28i −0.122388 0.0706609i
\(831\) 0 0
\(832\) 7.86339e27 + 1.36198e28i 0.0494740 + 0.0856914i
\(833\) −1.37029e29 + 7.91138e28i −0.851850 + 0.491816i
\(834\) 0 0
\(835\) 9.54991e28 1.65409e29i 0.579608 1.00391i
\(836\) 1.27702e28i 0.0765833i
\(837\) 0 0
\(838\) 8.95605e28 0.524416
\(839\) −4.52553e28 2.61282e28i −0.261848 0.151178i 0.363329 0.931661i \(-0.381640\pi\)
−0.625177 + 0.780483i \(0.714973\pi\)
\(840\) 0 0
\(841\) 3.08686e28 + 5.34659e28i 0.174404 + 0.302077i
\(842\) −1.37406e29 + 7.93315e28i −0.767159 + 0.442920i
\(843\) 0 0
\(844\) −2.96459e28 + 5.13483e28i −0.161637 + 0.279963i
\(845\) 4.86118e28i 0.261923i
\(846\) 0 0
\(847\) 2.16000e29 1.13663
\(848\) 3.21721e28 + 1.85746e28i 0.167310 + 0.0965964i
\(849\) 0 0
\(850\) 6.92567e28 + 1.19956e29i 0.351781 + 0.609303i
\(851\) −1.41956e29 + 8.19583e28i −0.712620 + 0.411431i
\(852\) 0 0
\(853\) −3.12309e28 + 5.40936e28i −0.153142 + 0.265250i −0.932381 0.361477i \(-0.882273\pi\)
0.779239 + 0.626727i \(0.215606\pi\)
\(854\) 1.10433e29i 0.535206i
\(855\) 0 0
\(856\) −1.58111e27 −0.00748557
\(857\) 1.55842e29 + 8.99753e28i 0.729249 + 0.421032i 0.818147 0.575009i \(-0.195001\pi\)
−0.0888984 + 0.996041i \(0.528335\pi\)
\(858\) 0 0
\(859\) −4.73984e27 8.20964e27i −0.0216687 0.0375312i 0.854988 0.518648i \(-0.173565\pi\)
−0.876656 + 0.481117i \(0.840231\pi\)
\(860\) 6.76428e28 3.90536e28i 0.305659 0.176472i
\(861\) 0 0
\(862\) 4.85910e28 8.41621e28i 0.214528 0.371573i
\(863\) 3.07896e29i 1.34368i 0.740696 + 0.671841i \(0.234496\pi\)
−0.740696 + 0.671841i \(0.765504\pi\)
\(864\) 0 0
\(865\) 1.20506e28 0.0513865
\(866\) −4.71632e28 2.72297e28i −0.198804 0.114779i
\(867\) 0 0
\(868\) −2.63835e28 4.56976e28i −0.108676 0.188233i
\(869\) −1.65967e29 + 9.58210e28i −0.675808 + 0.390178i
\(870\) 0 0
\(871\) −1.81128e29 + 3.13723e29i −0.720782 + 1.24843i
\(872\) 1.55166e29i 0.610426i
\(873\) 0 0
\(874\) −2.17266e28 −0.0835367
\(875\) 2.95366e29 + 1.70529e29i 1.12274 + 0.648214i
\(876\) 0 0
\(877\) 6.19063e28 + 1.07225e29i 0.230006 + 0.398382i 0.957810 0.287404i \(-0.0927921\pi\)
−0.727804 + 0.685786i \(0.759459\pi\)
\(878\) −9.29961e28 + 5.36913e28i −0.341601 + 0.197224i
\(879\) 0 0
\(880\) −3.39021e28 + 5.87202e28i −0.121731 + 0.210844i
\(881\) 1.84569e29i 0.655238i 0.944810 + 0.327619i \(0.106246\pi\)
−0.944810 + 0.327619i \(0.893754\pi\)
\(882\) 0 0
\(883\) −3.66084e29 −1.27050 −0.635249 0.772307i \(-0.719103\pi\)
−0.635249 + 0.772307i \(0.719103\pi\)
\(884\) −1.95667e29 1.12968e29i −0.671421 0.387645i
\(885\) 0 0
\(886\) −1.20983e28 2.09549e28i −0.0405871 0.0702989i
\(887\) −9.06355e28 + 5.23284e28i −0.300651 + 0.173581i −0.642735 0.766088i \(-0.722200\pi\)
0.342084 + 0.939669i \(0.388867\pi\)
\(888\) 0 0
\(889\) 2.46166e29 4.26372e29i 0.798381 1.38284i
\(890\) 2.49122e29i 0.798935i
\(891\) 0 0
\(892\) −9.88729e28 −0.310048
\(893\) 4.00861e28 + 2.31437e28i 0.124302 + 0.0717660i
\(894\) 0 0
\(895\) −1.68729e29 2.92247e29i −0.511634 0.886177i
\(896\) −3.12869e28 + 1.80635e28i −0.0938172 + 0.0541654i
\(897\) 0 0
\(898\) −2.29777e29 + 3.97986e29i −0.673819 + 1.16709i
\(899\) 1.42040e29i 0.411921i
\(900\) 0 0
\(901\) −5.33699e29 −1.51373
\(902\) −2.60231e29 1.50244e29i −0.729950 0.421437i
\(903\) 0 0
\(904\) 7.19817e28 + 1.24676e29i 0.197487 + 0.342057i
\(905\) 3.13557e29 1.81032e29i 0.850807 0.491213i
\(906\) 0 0
\(907\) −1.11435e29 + 1.93010e29i −0.295765 + 0.512281i −0.975163 0.221490i \(-0.928908\pi\)
0.679397 + 0.733771i \(0.262241\pi\)
\(908\) 1.01583e29i 0.266664i
\(909\) 0 0
\(910\) −1.87395e29 −0.481220
\(911\) 1.00163e29 + 5.78293e28i 0.254405 + 0.146881i 0.621779 0.783192i \(-0.286410\pi\)
−0.367375 + 0.930073i \(0.619743\pi\)
\(912\) 0 0
\(913\) −7.95943e28 1.37861e29i −0.197776 0.342559i
\(914\) 2.81417e29 1.62476e29i 0.691653 0.399326i
\(915\) 0 0
\(916\) −1.24661e29 + 2.15919e29i −0.299762 + 0.519203i
\(917\) 4.05449e29i 0.964368i
\(918\) 0 0
\(919\) 8.25764e29 1.92177 0.960883 0.276954i \(-0.0893248\pi\)
0.960883 + 0.276954i \(0.0893248\pi\)
\(920\) 9.99039e28 + 5.76795e28i 0.229987 + 0.132783i
\(921\) 0 0
\(922\) 5.13454e28 + 8.89329e28i 0.115662 + 0.200333i
\(923\) 3.03274e29 1.75095e29i 0.675800 0.390173i
\(924\) 0 0
\(925\) 8.94996e28 1.55018e29i 0.195166 0.338037i
\(926\) 5.42765e29i 1.17085i
\(927\) 0 0
\(928\) −9.72478e28 −0.205305
\(929\) 5.08109e29 + 2.93357e29i 1.06121 + 0.612687i 0.925765 0.378098i \(-0.123422\pi\)
0.135440 + 0.990786i \(0.456755\pi\)
\(930\) 0 0
\(931\) 1.35513e28 + 2.34715e28i 0.0277003 + 0.0479783i
\(932\) −5.97784e28 + 3.45131e28i −0.120889 + 0.0697951i
\(933\) 0 0
\(934\) −1.33901e29 + 2.31923e29i −0.265041 + 0.459065i
\(935\) 9.74100e29i 1.90760i
\(936\) 0 0
\(937\) −2.58444e28 −0.0495416 −0.0247708 0.999693i \(-0.507886\pi\)
−0.0247708 + 0.999693i \(0.507886\pi\)
\(938\) −7.20673e29 4.16081e29i −1.36682 0.789131i
\(939\) 0 0
\(940\) −1.22883e29 2.12840e29i −0.228147 0.395162i
\(941\) 5.46385e29 3.15456e29i 1.00370 0.579485i 0.0943573 0.995538i \(-0.469920\pi\)
0.909340 + 0.416053i \(0.136587\pi\)
\(942\) 0 0
\(943\) −2.55619e29 + 4.42745e29i −0.459701 + 0.796226i
\(944\) 2.05870e29i 0.366330i
\(945\) 0 0
\(946\) 5.67039e29 0.987873
\(947\) 3.26875e29 + 1.88721e29i 0.563484 + 0.325328i 0.754543 0.656251i \(-0.227859\pi\)
−0.191058 + 0.981579i \(0.561192\pi\)
\(948\) 0 0
\(949\) −3.82179e29 6.61953e29i −0.645066 1.11729i
\(950\) 2.05471e28 1.18629e28i 0.0343174 0.0198132i
\(951\) 0 0
\(952\) 2.59507e29 4.49479e29i 0.424404 0.735089i
\(953\) 4.14984e29i 0.671588i −0.941935 0.335794i \(-0.890995\pi\)
0.941935 0.335794i \(-0.109005\pi\)
\(954\) 0 0
\(955\) −1.57817e29 −0.250103
\(956\) −4.16710e29 2.40588e29i −0.653514 0.377307i
\(957\) 0 0
\(958\) −1.84713e29 3.19932e29i −0.283688 0.491363i
\(959\) −1.10728e29 + 6.39287e28i −0.168295 + 0.0971649i
\(960\) 0 0
\(961\) 2.93640e29 5.08599e29i 0.437101 0.757080i
\(962\) 2.91975e29i 0.430126i
\(963\) 0 0
\(964\) 2.06701e29 0.298245
\(965\) −2.50157e29 1.44428e29i −0.357223 0.206243i
\(966\) 0 0
\(967\) 5.00708e28 + 8.67252e28i 0.0700358 + 0.121306i 0.898917 0.438119i \(-0.144355\pi\)
−0.828881 + 0.559425i \(0.811022\pi\)
\(968\) −2.05118e29 + 1.18425e29i −0.283955 + 0.163941i
\(969\) 0 0
\(970\) 2.62939e28 4.55424e28i 0.0356565 0.0617588i
\(971\) 2.57696e29i 0.345872i 0.984933 + 0.172936i \(0.0553254\pi\)
−0.984933 + 0.172936i \(0.944675\pi\)
\(972\) 0 0
\(973\) 1.62010e29 0.213017
\(974\) −2.67106e29 1.54213e29i −0.347611 0.200693i
\(975\) 0 0
\(976\) −6.05463e28 1.04869e29i −0.0771950 0.133706i
\(977\) −3.16209e29 + 1.82563e29i −0.399051 + 0.230392i −0.686075 0.727531i \(-0.740668\pi\)
0.287023 + 0.957924i \(0.407334\pi\)
\(978\) 0 0
\(979\) 9.04281e29 1.56626e30i 1.11809 1.93659i
\(980\) 1.43903e29i 0.176121i
\(981\) 0 0
\(982\) 6.34395e29 0.760755
\(983\) −5.50252e29 3.17688e29i −0.653171 0.377108i 0.136499 0.990640i \(-0.456415\pi\)
−0.789670 + 0.613532i \(0.789748\pi\)
\(984\) 0 0
\(985\) −1.25730e29 2.17771e29i −0.146244 0.253301i
\(986\) 1.20992e30 6.98549e29i 1.39312 0.804318i
\(987\) 0 0
\(988\) −1.93502e28 + 3.35155e28i −0.0218331 + 0.0378160i
\(989\) 9.64734e29i 1.07757i
\(990\) 0 0
\(991\) 4.90773e29 0.537210 0.268605 0.963250i \(-0.413437\pi\)
0.268605 + 0.963250i \(0.413437\pi\)
\(992\) 5.01084e28 + 2.89301e28i 0.0542993 + 0.0313497i
\(993\) 0 0
\(994\) 4.02223e29 + 6.96670e29i 0.427172 + 0.739884i
\(995\) −7.24521e28 + 4.18302e28i −0.0761764 + 0.0439804i
\(996\) 0 0
\(997\) −3.82823e29 + 6.63069e29i −0.394500 + 0.683293i −0.993037 0.117801i \(-0.962415\pi\)
0.598538 + 0.801095i \(0.295749\pi\)
\(998\) 1.35214e30i 1.37948i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.21.d.a.35.16 40
3.2 odd 2 18.21.d.a.11.5 yes 40
9.4 even 3 18.21.d.a.5.5 40
9.5 odd 6 inner 54.21.d.a.17.16 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.21.d.a.5.5 40 9.4 even 3
18.21.d.a.11.5 yes 40 3.2 odd 2
54.21.d.a.17.16 40 9.5 odd 6 inner
54.21.d.a.35.16 40 1.1 even 1 trivial